JPH03159278A - Laminated type displacement element - Google Patents

Laminated type displacement element

Info

Publication number
JPH03159278A
JPH03159278A JP1299205A JP29920589A JPH03159278A JP H03159278 A JPH03159278 A JP H03159278A JP 1299205 A JP1299205 A JP 1299205A JP 29920589 A JP29920589 A JP 29920589A JP H03159278 A JPH03159278 A JP H03159278A
Authority
JP
Japan
Prior art keywords
laminated
plates
thin plate
laminate
displacement element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1299205A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Watabe
嘉幸 渡部
Junichi Watanabe
純一 渡辺
Takahiro Sometsugu
孝博 染次
Shigeru Sadamura
定村 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1299205A priority Critical patent/JPH03159278A/en
Publication of JPH03159278A publication Critical patent/JPH03159278A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain a laminated displacement element which is excellent in insulating property and very rarely dielectrically broken down by a method wherein a thin plate formed of electromechanical conversion material and an inner electrode formed of conductive material are constituted in a specific form. CONSTITUTION:Thin plates 1 formed of electromechanical conversion material are formed nearly the same in planar outline and contact area, and each of the plates 1 is so constituted so to satisfy a formula I. In the formula I, S denotes the cross-sectional area of the plate 1 vertical to a laminating direction, S0 represents the cross-sectional area of the processing affected layer formed in the plate 1 vertical to a laminating direction, rho is the resistivity of the electromechanical conversion material of the plate 1, and rho0 denotes the resistivity of the processing affected layer. Inner electrodes 2a and 2b are formed on all the surfaces of each of the plates 1, the plates 1 provided with inner electrodes 2a and 2b are laminated, pressure-joined together, and cut into a laminated body as prescribed in shape and size, and the laminated body is burned for a few hours at a prescribed temperature into a laminated body 5. By this setup, a laminated type displacement element of this design can be remarkably improved in insulation resistance, protected against dielectric breakdown even if it operates in an ambient atmosphere of high temperature, and improved in reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、産業用ロボットのアクチュエータ。[Detailed description of the invention] [Industrial application field] The present invention relates to an actuator for an industrial robot.

超音波モータ等に使用する電気機械変換素子に関するも
のであり、特に電気機械変換材料からなる薄板を、内部
電極を介して複数枚積層することにより、変位量を増大
させた積層型変位素子の改良に関するものである。
This relates to electromechanical transducers used in ultrasonic motors, etc., and in particular improves laminated displacement elements that increase the amount of displacement by laminating multiple thin plates made of electromechanical transducer material via internal electrodes. It is related to.

但し、S:積層方向と垂直な面における薄板の横断面積 So:積層方向と垂直な面における薄板内の加工変質層
の横断面積 ρ:Fii板を形成する電気機械変換材料の固有抵抗率 〔従来の技術〕 従来、X−Yステージの位置決め機構や制動ブレーキ等
に用いられている変位用素子に使用する積層型圧電素子
は、所定の形状に加工した圧電セラミック材料からなる
薄板に電極を設けて分極した後、直接若しくは薄い金属
を介して有機系の接着剤で接合する方法が採用されてい
る。しかし上記のように接着剤を使用して積層したもの
は、使用条件により、圧電素子の振動による変位を接着
剤層が吸収したり、高温の環境若しくは長期間の使用に
より接着剤が劣化する等の欠点がある。
However, S: cross-sectional area of the thin plate in the plane perpendicular to the lamination direction So: cross-sectional area of the processed damaged layer in the thin plate in the plane perpendicular to the lamination direction ρ: specific resistivity of the electromechanical transducer material forming the Fii plate [conventional [Technology] Conventionally, laminated piezoelectric elements used for displacement elements used in X-Y stage positioning mechanisms and brakes, etc., are made by providing electrodes on a thin plate made of piezoelectric ceramic material processed into a predetermined shape. After polarization, a method of bonding with an organic adhesive directly or via a thin metal is used. However, when stacking layers using adhesive as described above, depending on the usage conditions, the adhesive layer may absorb displacement due to vibration of the piezoelectric element, or the adhesive may deteriorate due to high temperature environment or long-term use. There are drawbacks.

このため、最近では積層チップコンデンサ構造方式の積
層型圧電素子が実用化されている。すなわち1例えば特
公昭59−32040号公報に記載のように、原料粉末
にバインダーを添加、混練したペースト状の圧電セラミ
ック材料を、所定の厚さの薄板に形成し、この薄板の一
方の面若しくは両面に銀−パラジウム等の導電材料を塗
布して内部電極を形成する。上記薄板を所定枚数積層し
て圧着し。
For this reason, recently, multilayer piezoelectric elements having a multilayer chip capacitor structure have been put into practical use. That is, 1. For example, as described in Japanese Patent Publication No. 59-32040, a paste-like piezoelectric ceramic material made by adding a binder to raw material powder and kneading is formed into a thin plate of a predetermined thickness, and one side of this thin plate or Internal electrodes are formed by coating both sides with a conductive material such as silver-palladium. A predetermined number of the above thin plates are laminated and crimped.

更に所定の形状に加工した後、焼成することによってセ
ラミック化し、積層体の両側面に外部電極を形成したも
のである。上記構成の積層型圧電素子は、圧電セラミッ
ク材料からなる薄板と内部電極の接合部の密着性に優れ
ると共に、熱的特性も安定であるため高温環境において
も充分に使用可能であり、また長期間に亘って劣化が極
めて少ない等の利点がある。
Further, after being processed into a predetermined shape, the laminate is made into a ceramic by firing, and external electrodes are formed on both sides of the laminate. The laminated piezoelectric element with the above structure has excellent adhesion between the thin plate made of piezoelectric ceramic material and the internal electrode, and has stable thermal properties, so it can be used satisfactorily even in high-temperature environments, and can be used for long periods of time. It has the advantage of extremely little deterioration over time.

第4図は上記積層型圧電素子の構成の例であり。FIG. 4 shows an example of the structure of the laminated piezoelectric element.

所謂交互電極型と称されるものである。第4図において
、1は薄板であり圧電セラミック材料によって形成し、
正負の内部電極2a、2bを交互に挟着して積層し、積
層体5を形成する。内部電極2a、2bは各々一方の端
縁部が外方に突出若しくは露出するように形成し、各々
積層方向に延設した外部電極3a、3bと接続し、リー
ド線6を接続する。
This is the so-called alternating electrode type. In FIG. 4, 1 is a thin plate made of piezoelectric ceramic material,
Positive and negative internal electrodes 2a and 2b are alternately sandwiched and stacked to form a stacked body 5. The internal electrodes 2a, 2b are each formed so that one end edge protrudes or is exposed to the outside, and are connected to external electrodes 3a, 3b each extending in the stacking direction, and the lead wire 6 is connected thereto.

以上の構成により、外部電極3a、3bに正負の電圧を
印加すると、前記内部電極2a、2b間に電界が発生し
、薄板1は圧電セラミック材料の縦効果により厚さ方向
に伸びて変位を生ずる。
With the above configuration, when positive and negative voltages are applied to the external electrodes 3a and 3b, an electric field is generated between the internal electrodes 2a and 2b, and the thin plate 1 is extended in the thickness direction due to the longitudinal effect of the piezoelectric ceramic material, causing displacement. .

次に第5図に示すものは他の積層型圧電素子の例であり
、圧電変位効率を向上させた所謂全面電極型と称される
ものである(例えば特開昭58196068号公報等参
照)、第5図において同一部分は前記第4図と同一の参
照符号で示すが、内部電極2a、2bは薄板lの表面全
域に及ぶように形成して、所要枚数を前記同様に積層す
る。次に上記のようにして形成した積層体5の一方の側
面において、内部電極2a、2bの端縁に一層おきに(
例えば内部電極2bのみに)絶縁材料からなる被覆4を
設けると共に、被覆4の上から導電性材料からなる外部
電極3aを被着させる。一方積層体5の他の側面におい
ては、上記被覆4を設けなかった内部電極(例えば2a
)の端縁に前記と同様に被覆4を設け、その上から外部
電極3bを被着させるのである。以上の構成による作用
は前記第4図におけるものと同様である。
Next, the one shown in FIG. 5 is an example of another laminated piezoelectric element, which is a so-called full electrode type with improved piezoelectric displacement efficiency (see, for example, Japanese Patent Application Laid-Open No. 58196068, etc.). In FIG. 5, the same parts are indicated by the same reference numerals as in FIG. 4, but the internal electrodes 2a, 2b are formed so as to cover the entire surface of the thin plate 1, and the required number of internal electrodes are laminated in the same manner as described above. Next, on one side of the laminate 5 formed as described above, the edges of the internal electrodes 2a, 2b are lined with (
For example, a coating 4 made of an insulating material is provided only on the internal electrode 2b, and an external electrode 3a made of a conductive material is applied over the coating 4. On the other hand, on the other side of the laminate 5, an internal electrode (for example 2a
) is provided with a coating 4 in the same manner as described above, and an external electrode 3b is applied thereon. The effect of the above configuration is similar to that shown in FIG. 4 above.

なお上記構成の素子において、内部電極2a。Note that in the element having the above configuration, the internal electrode 2a.

2b間の短絡を防止するために、積層体5の側面に樹脂
材料若しくは高絶縁性弾性体9例えばシリコーンゴム等
からなる被覆(図示せず)を設ける手段が講じられてい
る(例えば特開昭59−218784号公報参照)。
In order to prevent short circuits between the laminates 5 and 2b, measures have been taken to provide a coating (not shown) made of a resin material or a highly insulating elastic body 9, such as silicone rubber, on the side surface of the laminate 5 (for example, as disclosed in Japanese Patent Application Laid-Open No. 59-218784).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記構成の被覆を設けたものにより、積層体5の外部か
らの汚染、若しくは絶縁特性に影響を及ぼす非絶縁性物
質の付着および侵入を防止することは可能ではあるが、
積層体5を構成する薄板lの絶縁抵抗自体を向上させる
ことはできない。
Although it is possible to prevent contamination from the outside of the laminate 5 or the adhesion and intrusion of non-insulating substances that affect the insulation properties by providing the coating with the above-mentioned structure,
The insulation resistance of the thin plates 1 constituting the laminate 5 cannot be improved.

一般に積層体5は9例えば50mmX50mm程度の横
断面を有する積層ブロックを、バンドソー等で切断した
後、研磨等の加工を加え1例えば5mmX5mm程度の
横断面を有する積層体5に形成するのであるが、前記バ
ンドソーあるいは研磨加工等による加工面に加工変質層
が形成される。
Generally, the laminate 5 is formed by cutting a laminate block with a cross section of, for example, about 50 mm x 50 mm using a band saw or the like, and then processing such as polishing to form the laminate 5 having a cross section of, for example, about 5 mm x 5 mm. A process-affected layer is formed on the processed surface by the band saw or polishing process.

そしてこの加工変質層の固有抵抗率は、薄板lを構成す
る電気機械変換材料の具有する固有抵抗率と比較して極
めて低いため、内部電極2a、2b間の絶縁抵抗を大幅
に低下させることとなる。このため内部電極2a、2b
間に印加される電圧がパルス的に変動した際に生じる高
電圧によって瞬間的に大電流が流れ、これがなだれ現象
を惹起し。
Since the specific resistivity of this process-affected layer is extremely low compared to the specific resistivity of the electromechanical conversion material constituting the thin plate 1, it is possible to significantly reduce the insulation resistance between the internal electrodes 2a and 2b. Become. Therefore, the internal electrodes 2a, 2b
The high voltage generated when the voltage applied between them fluctuates in a pulse-like manner causes a large current to flow instantaneously, causing an avalanche phenomenon.

絶縁破壊を発生するという問題点がある。また薄板1を
構成する上記電気機械変換材料は、−船釣に温度が上昇
するに従って固有抵抗率が低下する性質を有し9例えば
100℃の上昇によりその値が1桁程度低下するため、
使用雰囲気温度の上昇により、前記絶縁破壊を招来する
可能性が更に増大するという問題点も併存する。
There is a problem that dielectric breakdown occurs. Furthermore, the electromechanical transducer material constituting the thin plate 1 has a property that its specific resistivity decreases as the temperature increases;
There is also the problem that as the temperature of the operating atmosphere increases, the possibility of causing dielectric breakdown further increases.

本発明は上記従来技術に存在する問題点を解決し、絶縁
抵抗値が極めて大であり、絶縁破壊を招来する危険性の
極めて小である絶縁性の優れた積層型変位素子を提供す
ることを目的とする。
The present invention solves the problems existing in the above-mentioned prior art and provides a laminated displacement element with excellent insulation properties, which has an extremely high insulation resistance value and an extremely low risk of causing dielectric breakdown. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため1本発明においては。 In order to achieve the above object, one aspect of the present invention is as follows.

路間−の平面輪郭および接触面積に形成した電気機械変
換材料からなる薄板と導電材料からなる内部電極とを各
々複数個交互に積層して積層体を形成し、この積層体の
側面に前記内部電極と一層おきに接続すべき1対の外部
電極を設けてなる積層型変位素子において。
A laminate is formed by alternately laminating a plurality of thin plates made of an electromechanical transducer material and internal electrodes made of a conductive material formed on the planar contour and contact area of the path, and the inner electrode is formed on the side surface of this laminate. In a laminated displacement element provided with a pair of external electrodes to be connected to electrodes every other layer.

但し、S:積層方向と垂直な面における薄板の横断面積 So:積層方向と垂直な面における薄板内の加工変質層
の横断面積 ρ:薄板を形成する電気機械変換材料 の固有抵抗率 ρ0.加工変質層の固有抵抗率 となるように構成する。という技術的手段を採用した。
However, S: cross-sectional area of the thin plate in a plane perpendicular to the lamination direction So: cross-sectional area of a processed damaged layer in the thin plate in a plane perpendicular to the lamination direction ρ: specific resistivity ρ0 of the electromechanical conversion material forming the thin plate. It is configured to have the specific resistivity of the process-affected layer. A technical method was adopted.

以下数値限定理由について記述する。The reasons for the numerical limitations are described below.

第6図(a)(b)は各々積層体を形成する薄板を模式
的に示す斜視図である。両図において薄板lは積層方向
と垂直な面における横断面積をS。
FIGS. 6(a) and 6(b) are perspective views schematically showing thin plates forming a laminate. In both figures, the cross-sectional area of the thin plate l in the plane perpendicular to the lamination direction is S.

厚さをtに形成しである。第6図(b)に、おいてla
は加工変質層であり、Iilの周縁部に形成されている
。金薄板1を形成する電気機械変換材料の固有抵抗率を
ρ、加工変質層1aの固有抵抗率をρ。とすると、第6
図(a)(b)の場合における薄板lの電気抵抗R1゜
R2は下記のように表わされる。
The thickness is t. In Figure 6(b), la
is a process-affected layer, which is formed at the periphery of Iil. The specific resistivity of the electromechanical conversion material forming the thin gold plate 1 is ρ, and the specific resistivity of the processed damaged layer 1a is ρ. Then, the sixth
The electrical resistance R1°R2 of the thin plate 1 in the cases shown in FIGS. (a) and (b) is expressed as follows.

ρ t R,= 従って れば上記要求仕様を満足することができる。一方RI/
Rtが40を超えると、常温においては所定の絶縁抵抗
値を具有するものの、150℃の温度領域においては絶
縁抵抗値が減少し、絶縁破壊を招来するため不都合であ
る。
ρ t R,= Accordingly, the above required specifications can be satisfied. On the other hand, RI/
If Rt exceeds 40, although it has a predetermined insulation resistance value at room temperature, the insulation resistance value decreases in a temperature range of 150° C., which is disadvantageous because dielectric breakdown may occur.

となる。becomes.

次に一般的な電気機械変換材料のキューリー温度は15
0°C前後であると共に、温度上昇に伴って固有抵抗率
が減少する傾向にあるが、少なくとも上記150°Cに
おいて所定の絶縁抵抗値を具有する必要がある。一方従
来から圧電素子に要求される絶縁抵抗値としては、信頼
性1発熱、駆動回路の低消費電力化等を勘案して、DC
looVにおいて50MΩ以上が必要である。前記(1
)式においてR,/R,がlであれば加工変質層1a(
第6図(b)参照)が全く存在しない場合であり。
Next, the Curie temperature of common electromechanical conversion materials is 15
Although the specific resistivity tends to decrease as the temperature rises around 0°C, it is necessary to have a predetermined insulation resistance value at least at the above 150°C. On the other hand, the insulation resistance value conventionally required for piezoelectric elements is
50 MΩ or more is required at looV. Said (1
), if R, /R, is l, then the work-affected layer 1a (
(see FIG. 6(b)) does not exist at all.

理想的状態であるが、加工変質層1aが若干存在しても
上記仕様を満足する絶縁抵抗値を具有すればよい。本発
明においてはR,/Rz≦40であ〔実施例〕 第1図(a)ないしくc)は夫々本発明の実施例を示す
斜視図であり、同一部分は前記第4図および第5図と同
一の参照符号゛で示す、まず第1図(a)において例え
ばP b (Z r+ T t) Os粉末に有機パイ
グーとしてPVB、可塑剤としてBPBG。
Although this is an ideal state, even if some work-affected layer 1a is present, it is sufficient to have an insulation resistance value that satisfies the above specifications. In the present invention, R, /Rz≦40 [Example] Figures 1(a) to 1c) are perspective views showing examples of the present invention, and the same parts are shown in Figures 4 and 5 above. First, in FIG. 1(a), which is indicated by the same reference numeral ``,'' for example, P b (Z r + T t ) Os powder is mixed with PVB as an organic Pygoo and BPBG as a plasticizer.

有機溶剤としてトリクレンを夫々添加して混合し。Trichlene was added as an organic solvent and mixed.

この混合材料をドクターブレード法により厚さ約100
μmのシート状の薄板1に形成する。次にこの薄板1の
表面全域に内部電極2a、2bを形成する白金導電ペー
スト若しくは銀パラジウムペーストをスクリーン印刷す
る。上記のように形成した内部電極2a、2bを有する
薄板1を交互に例えば100枚積層して圧着した後、所
定の寸法形状9例えば5mmX5mmに切断して積層体
とし、1050〜1200°Cで1〜5時間焼成して積
層体5を形成する0次にこの積層体5の相隣る側面に絶
縁材料からなる被覆7a、7bを、内部電極2a、2b
を横断するように設ける。第1図(b)において8a、
8bは溝であり1例えばグイサー等により、被覆7a、
7bの内部電極2a。
This mixed material is coated with a doctor blade method to a thickness of approximately 100 mm.
It is formed into a sheet-like thin plate 1 of μm. Next, platinum conductive paste or silver palladium paste for forming internal electrodes 2a, 2b is screen printed over the entire surface of this thin plate 1. For example, 100 sheets of the thin plates 1 having the internal electrodes 2a and 2b formed as described above are alternately laminated and crimped, and then cut into a predetermined size and shape 9 of, for example, 5 mm x 5 mm to form a laminate. After firing for ~5 hours to form a laminate 5, coatings 7a and 7b made of an insulating material are applied to adjacent sides of the laminate 5, and internal electrodes 2a and 2b are coated on adjacent sides of the laminate 5.
provided so as to cross the In FIG. 1(b), 8a,
Reference numeral 8b indicates a groove, and the covering 7a,
Internal electrode 2a of 7b.

2bに対応する位置に刻設する。第1図(c)において
外部電極3a、3bを被覆7a、7b上に。
It is engraved at the position corresponding to 2b. In FIG. 1(c), external electrodes 3a, 3b are placed on coatings 7a, 7b.

前記溝8a、8bを横断するように設ければ、外部電極
3a、3bと内部電極2a、2bとを各々対応して接続
することができる。この状態において絶縁抵抗を測定し
たところ1.5X10@Ωであった。この場合積層体5
には加工変質層が存在する。一方上記積層体5の側面を
4面共鏡面研磨加工して、加工変質層をほぼ除去したも
のの絶縁抵抗は、2.1X1010Ωであった。なお測
定電圧は何れも100Vである。
By providing the grooves 8a, 8b so as to cross them, the external electrodes 3a, 3b and the internal electrodes 2a, 2b can be connected to each other in a corresponding manner. When the insulation resistance was measured in this state, it was 1.5×10@Ω. In this case, the laminate 5
There is a process-altered layer. On the other hand, the insulation resistance of the laminate 5, which was mirror-polished on all four sides to remove most of the damaged layer, was 2.1×10 10 Ω. Note that the measurement voltage was 100V in all cases.

次に上記加工変質層の存在する積層体5の側面に塩酸溶
液による化学エツチングを施して、逐次絶縁抵抗を測定
した。第2図は加工代と絶縁抵抗との関係を示す図であ
る。第2図から明らかなように、加工代の増大と共に絶
縁抵抗が増大し、加工代約13μmで飽和する。従って
加工変質層の厚さは13μmであると推定される。この
場合の加工変質層の積層方向と垂直な面における断面積
は、前記第6図(b)から、0.013X5X4=0.
26mm”であるから、前記(1)式にR+=2.1x
lO”Ω、Rt =1.5X10”Ω。
Next, chemical etching with a hydrochloric acid solution was applied to the side surface of the laminate 5 where the process-affected layer was present, and the insulation resistance was successively measured. FIG. 2 is a diagram showing the relationship between machining allowance and insulation resistance. As is clear from FIG. 2, the insulation resistance increases as the machining allowance increases, and is saturated at a machining allowance of approximately 13 μm. Therefore, the thickness of the process-affected layer is estimated to be 13 μm. In this case, the cross-sectional area of the damaged layer in a plane perpendicular to the stacking direction is 0.013X5X4=0.013X5X4 from FIG. 6(b).
26mm”, so in the above equation (1), R+=2.1x
lO"Ω, Rt = 1.5X10"Ω.

So =0.26mm” 、S=25mm”を代入して
ρ ζ]、3X10’を得る。すなわち加工変質ρO 層の固有抵抗率は、電気機械変換材料の固有抵抗率と比
較すると4桁相違する。このため素子全体の絶縁抵抗を
大幅に低下させることとなるのである。
By substituting So = 0.26 mm'' and S = 25 mm'', we obtain ρ ζ], 3X10'. That is, the specific resistivity of the process-altered ρO layer differs by four orders of magnitude from the specific resistivity of the electromechanical conversion material. Therefore, the insulation resistance of the entire element is significantly reduced.

第3図は温度と絶縁抵抗との関係を示す図であり、同図
中の数字は加工変質層の加工代(単位μm)である、な
お曲線aは加工変質層が°存在しないものに対するもの
である。何れも前記第2図における対象と同一の積層体
によって求めた。第3図から明らかなように温度150
℃において絶縁抵抗50MΩ以上を確保するためには、
加工代を2μm以上とする必要がある。なお150℃に
おける曲線aに対応する絶縁抵抗は500MΩであるか
ら、前記(1)式におけるR、/R,は略10となる。
Figure 3 is a diagram showing the relationship between temperature and insulation resistance, and the numbers in the figure are the machining allowances (unit: μm) for the process-affected layer.Curve a is for the case where no process-affected layer exists. It is. Both were determined using the same laminate as the object in FIG. 2 above. As is clear from Figure 3, the temperature is 150
In order to ensure insulation resistance of 50MΩ or more at ℃,
The processing allowance must be 2 μm or more. Note that since the insulation resistance corresponding to curve a at 150° C. is 500 MΩ, R and /R in the above equation (1) are approximately 10.

換言すれば加工変質層が若干残存していても、R+/R
zO値を10以下に保持し得る限り、温度150℃の雰
囲気においても、絶縁抵抗50MΩ以上を確保すること
ができる。上記の関係は常温においてはRl / Rt
ζ40となる。なおR,/R,の測定は常温において行
なうのが容易かつ信頼性が高いため、R,/R,=40
を上限とするのが好ましい。従って前記(])式は。
In other words, even if some process-affected layers remain, R+/R
As long as the zO value can be maintained at 10 or less, an insulation resistance of 50 MΩ or more can be ensured even in an atmosphere at a temperature of 150°C. The above relationship is Rl / Rt at room temperature
It becomes ζ40. Note that since it is easy and reliable to measure R, /R, at room temperature, R, /R, = 40.
It is preferable to set the upper limit to . Therefore, the above formula (]) is.

S   ρ0 本実施例においては、加工変質層の除去手段として化学
エツチングによる場合の例を示したが。
S ρ0 In this embodiment, an example in which chemical etching was used as a means for removing the process-affected layer was shown.

イオンエツチング等のその他のエツチングおよび研磨、
ポリッシング、アニーリング等の加工変質層除去手段な
らびに加工変質層を発生しにくい加工手段によってもよ
い。
Other etching and polishing such as ion etching,
It is also possible to use a process-affected layer removing means such as polishing or annealing, or a processing means that does not easily generate a process-affected layer.

本実施例においては、第1図に示す構成の全面電極型の
例について記述したが、第4図に示す交互電極型のもの
についても、また第5図に示す構成の全面電極型のもの
についても当然に適用可能である。また薄板および内部
電極の平面投影形状は矩形以外に、正方形1円形、楕円
形その他の幾何学的形状とすることができる。あるいは
より大きな変位を得るために、前記素子を耐熱性接着剤
で複数本接着して使用することも可能である。なお上記
の実施例においては、内部電極および外部電極の形成手
段としてスクリーン印刷法を使用した例について記述し
たが、これに限定せず、メツキ、蒸着、塗布等の他の手
段によっても作用は同一である。
In this embodiment, an example of the full-surface electrode type with the configuration shown in FIG. 1 has been described, but the alternate electrode type shown in FIG. 4 and the full-surface electrode type with the configuration shown in FIG. 5 are also described. is also naturally applicable. In addition, the planar projection shape of the thin plate and the internal electrodes may be a square, a circle, an ellipse, or other geometric shapes other than a rectangle. Alternatively, in order to obtain a larger displacement, it is also possible to use a plurality of the elements bonded together with a heat-resistant adhesive. In the above embodiment, an example was described in which screen printing was used as a means of forming the internal electrodes and external electrodes, but the same effect can be obtained by other methods such as plating, vapor deposition, and coating. It is.

〔発明の効果〕〔Effect of the invention〕

本発明は以上記述のような構成および作用であるから、
従来不充分であった積層型変位素子の絶総抵抗値を大幅
に向上させることができると共に。
Since the present invention has the structure and operation as described above,
The absolute total resistance value of the laminated displacement element, which has been insufficient in the past, can be significantly improved.

使用雰囲気温度が高い場合においても絶縁破壊を防止す
ることができ、信軌性を向上させ得るという効果がある
Even when the temperature of the operating atmosphere is high, dielectric breakdown can be prevented and the reliability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)ないしくC)は夫々本発明の実施例を示す
斜視図、第2図は加工代と絶縁抵抗との関係を示す図、
第3図は温度と絶縁抵抗との関係を示す図、第4図およ
び第5図は各々従来の積層型変位素子の例を模式的に示
す図、第6図(a)(b)は各々積層体を形成する薄板
を模式的に示す斜視図である。 l:薄板、5:積層体。
FIGS. 1(a) to C) are perspective views showing embodiments of the present invention, FIG. 2 is a diagram showing the relationship between processing allowance and insulation resistance,
Figure 3 is a diagram showing the relationship between temperature and insulation resistance, Figures 4 and 5 are diagrams each schematically showing an example of a conventional laminated displacement element, and Figures 6 (a) and (b) are respectively FIG. 2 is a perspective view schematically showing thin plates forming a laminate. 1: thin plate, 5: laminate.

Claims (1)

【特許請求の範囲】[Claims] (1)略同一の平面輪郭および接触面積に形成した電気
機械変換材料からなる薄板と導電材料からなる内部電極
とを各々複数個交互に積層して積層体を形成し,この積
層体の側面に前記内部電極と一層おきに接続すべき1対
の外部電極を設けてなる積層型変位素子において, 薄板を,1+S_0/S(ρ/ρ_0−1)≦40但し
,S:積層方向と垂直な面における薄板の横断面積 S_0:積層方向と垂直な面における薄板 内の加工変質層の横断面積 ρ:薄板を形成する電気機械変換材料 の固有抵抗率 ρ_0:加工変質層の固有抵抗率 となるように構成したことを特徴とする積層型変位素子
(1) A laminate is formed by alternately stacking a plurality of thin plates made of an electromechanical transducer material and internal electrodes made of a conductive material, which are formed to have approximately the same planar contour and contact area, and the side surfaces of this laminate are In the laminated displacement element having a pair of external electrodes to be connected to the internal electrodes every other layer, the thin plates are 1+S_0/S(ρ/ρ_0-1)≦40, where S: a plane perpendicular to the stacking direction. Cross-sectional area of the thin plate S_0: Cross-sectional area of the process-affected layer in the thin plate in the plane perpendicular to the lamination direction ρ: Specific resistivity of the electromechanical conversion material forming the thin plate ρ_0: Specific resistivity of the process-affected layer A laminated displacement element characterized by comprising:
JP1299205A 1989-11-17 1989-11-17 Laminated type displacement element Pending JPH03159278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1299205A JPH03159278A (en) 1989-11-17 1989-11-17 Laminated type displacement element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1299205A JPH03159278A (en) 1989-11-17 1989-11-17 Laminated type displacement element

Publications (1)

Publication Number Publication Date
JPH03159278A true JPH03159278A (en) 1991-07-09

Family

ID=17869509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1299205A Pending JPH03159278A (en) 1989-11-17 1989-11-17 Laminated type displacement element

Country Status (1)

Country Link
JP (1) JPH03159278A (en)

Similar Documents

Publication Publication Date Title
JP2965602B2 (en) Stacked displacement element
JP2567046B2 (en) Stacked displacement element
JP2006351602A (en) Multilayer piezoelectric actuator device
JP2007173456A (en) Stacked piezoelectric bimorph element, and method of manufacturing same
JP3024763B2 (en) Stacked displacement element
JP3045531B2 (en) Stacked displacement element
JPS62211974A (en) Laminated piezoelectric element and manufacture thereof
JPS59115579A (en) Electrostrictive effect element and manufacture thereof
JPH03159278A (en) Laminated type displacement element
JP2000340849A (en) Stacked piezoelectric actuator
JPH06181343A (en) Laminated displacement element and manufacture thereof
JPH1174576A (en) Laminated piezoelectric actuator
JPH03155180A (en) Laminated displacement element
US20220376163A1 (en) Laminated piezoelectric element
JP2613408B2 (en) Multilayer piezoelectric actuator
JPS62133777A (en) Lamination-type piezoelectric element and manufacture thereof
JPH07106654A (en) Multilayer displacement element
JPH0737747A (en) Chip type multilayer ceramic capacitor
JPH04139884A (en) Displacement element of lamination type
JPH02203578A (en) Manufacture of lamination type displacement element
JPH02132870A (en) Laminated piezoelectric element
JPH08181032A (en) Laminated ceramic capacitor
JPH0555658A (en) Multilayered piezoelectric actuator and its manufacture
JPH03178174A (en) Lamination type piezoelectric actuator element
JP3567330B2 (en) Multilayer type piezoelectric ceramic actuator