JPH0315908A - Acceleration/deceleration method for locus direction of moving member - Google Patents

Acceleration/deceleration method for locus direction of moving member

Info

Publication number
JPH0315908A
JPH0315908A JP14936189A JP14936189A JPH0315908A JP H0315908 A JPH0315908 A JP H0315908A JP 14936189 A JP14936189 A JP 14936189A JP 14936189 A JP14936189 A JP 14936189A JP H0315908 A JPH0315908 A JP H0315908A
Authority
JP
Japan
Prior art keywords
movement
orthogonal
joint
deceleration
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14936189A
Other languages
Japanese (ja)
Inventor
Takashi Shirae
白栄 隆司
Noboru Hirano
昇 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP14936189A priority Critical patent/JPH0315908A/en
Publication of JPH0315908A publication Critical patent/JPH0315908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To attain a smooth movement without stopping a locus when a moving member changes in an orthogonal movement and a joint movement by independently accelerating and decelerating the orthogonal movement and the joint movement and respectively adding them. CONSTITUTION:An instruction is read from RAM. When it is a moving instruction, a moving quantity at that time is calculated and the data is transferred to an interpola tion processing. The moving quantity in unit time is obtained in the interpolation processing, and it is recognized whether a moving instruction is the orthogonal move ment or the joint movement. Then, orthogonal components and joint components are processed by different algorithms. When a new movement is the orthogonal move ment in the movement different from the present movement, namely, the present joint movement, the processing of a deceleration quantity is executed. When it is the orthogonal components, a system changes to the joint movement after the accelera tion processing. Next, both results are added and the result is outputted to the driving part of a joint axis as a servo command. Thus, smooth movement can continuously be executed without permitting the moving member to stop between two kinds of operations of the orthogonal movement and the joint movement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多関節型ロボット等の先端部材の先端である
作用点の動作が直交移動と関節移動するようなロボット
の軌跡方向の加減速方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to acceleration/deceleration in the trajectory direction of a robot such as an articulated robot in which the motion of the point of action, which is the tip of the tip member, is orthogonal movement and joint movement. It is about the method.

〔従来の技術〕[Conventional technology]

従来は、(1)可動部材の全移動を関節移動に直して各
関節ごとに加減速を行なうが、あるいは(2)直交移動
は直交で、関節移動は関節で別々のアルゴリズムにてよ
って加減速を行なっていた。
Conventionally, (1) all movements of movable members are converted into joint movements and acceleration/deceleration is performed for each joint, or (2) orthogonal movements are orthogonal, and joint movements are accelerated/decelerated at each joint using separate algorithms. was doing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の技術の(1)の場合は、関節の加減速制御で
あるため、軌跡通りの制御ができない。
In the case of the above conventional technique (1), since the joint acceleration/deceleration control is performed, control cannot be performed according to the trajectory.

また(2)の場合は、直交移動制御と関節移動制御の間
で可動部材は1度停止してしまい、動作がスムーズにつ
ながらないという問題がある。
In the case of (2), there is a problem that the movable member stops once between the orthogonal movement control and the joint movement control, and the movements do not continue smoothly.

多関節型ロボットのように、軸の動作が直交座標系でな
い機械において、各軸ごとに加減速を行なうと、各軸の
加減速時定数を一致させても、その軌跡は直交座標系で
は複雑な曲線になる。このため直交座標系の動作(直線
移動、円弧移動)では直交座標系で軌跡方向に加減速す
る必要がある。一方姿勢を変える等のため各軸ごとに動
作させる゛こともあり、この場合は各軸ごとに加減速す
る。
In a machine such as an articulated robot whose axes do not operate in a Cartesian coordinate system, if each axis is accelerated or decelerated, the trajectory will be complicated in the Cartesian coordinate system even if the acceleration/deceleration time constants of each axis are made to match. It becomes a curve. For this reason, in operations in the orthogonal coordinate system (linear movement, circular arc movement), it is necessary to accelerate and decelerate in the trajectory direction in the orthogonal coordinate system. On the other hand, in order to change the posture, etc., each axis may be operated separately, and in this case, acceleration and deceleration are performed for each axis.

本発明は上記2種類の動作を、この動作間で停止するこ
となく連続してスムーズに行なうことができるようにし
たロボットの軌跡方向の加減速方法を提供することを目
的とするものである。
It is an object of the present invention to provide a method for accelerating and decelerating a robot in the trajectory direction, which allows the above two types of operations to be performed continuously and smoothly without stopping between these operations.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明に係るロボット等の
移動部材の軌跡方向の加減速方法は、作用点の動作が直
交移動と関節移動する移動部材の軌跡方向の加減速方法
において、直交移動と関節移動の加減速を別々に行ない
、それぞれをたし合わせる。
In order to achieve the above object, a method for accelerating/decelerating a movable member such as a robot in a trajectory direction according to the present invention is a method for accelerating/decelerating a movable member in a trajectory direction in which the motion of a point of action is orthogonal movement and joint movement. and acceleration/deceleration of joint movement separately, and then add them together.

また上記移動部材の軌跡方向の加減速方法において、移
動部材の移動中に直交移動から関節移動に移動命令変化
した場合、直交方向の減速移動量を関節移動量に変換し
、これを次の関節移動に加え、また上記移動命令が関節
移動から直交移動に変化した場合、関節軸の威速移動量
を直交移動量に変換し、これを次の直交移動に加ええる
In addition, in the method for accelerating and decelerating the moving member in the trajectory direction, if the movement command changes from orthogonal movement to joint movement while the moving member is moving, the amount of deceleration movement in the orthogonal direction is converted to the amount of joint movement, and this is used for the next joint movement. In addition to movement, if the movement command changes from joint movement to orthogonal movement, the amount of rapid movement of the joint axis can be converted into an orthogonal movement amount, and this can be added to the next orthogonal movement.

〔作 用〕[For production]

上記方法において、移動部材の直交移動と関節移動の相
互の変化時における軌跡は停止することなくスムーズ移
動される。
In the above method, the trajectory of the moving member when the orthogonal movement and the joint movement mutually change is smoothly moved without stopping.

〔実  施  例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

第1図は本発明の第1の実施例で、直交移動と関節移動
の加減速を別々に並列処理で行ない、それぞれをたし合
わせて制御する方法のアルゴリズムを示すもので、RA
Mより命令を読み取り、これが移動命令であるときは、
このときの移動量を計算し、一定周期で起動する補間処
理にこのデータを渡す。
FIG. 1 shows a first embodiment of the present invention, which shows an algorithm for performing acceleration and deceleration of orthogonal movement and joint movement separately in parallel processing, and controlling them by adding them together.
Read a command from M, and if this is a movement command,
The amount of movement at this time is calculated and this data is passed to an interpolation process that starts at regular intervals.

補間処理で単位時間における移動量を求めた後、上記移
動命令が直交移動か関節移動かを認識して、直交戊分を
関節成分をそれぞれ別々のアルゴリズムで処理を行なう
。このとき、現在の移動と異なる移動、例えば、現在関
節移動なら新規の移動が直交移動の場合は減速量の処理
を行なう。また直交成分の場合、上記加減速処理の後に
関節移動に変換する。
After determining the amount of movement per unit time by interpolation processing, it is recognized whether the movement command is orthogonal movement or joint movement, and the orthogonal segment and joint components are processed using separate algorithms. At this time, if the movement is different from the current movement, for example, if the current joint movement is an orthogonal movement, then the deceleration amount is processed. In the case of orthogonal components, the motion is converted into joint movement after the acceleration/deceleration processing described above.

ついで両処理の結果を加算し、その結果をサーボ指令と
して関節軸の駆動部へ出力する。
Then, the results of both processes are added and the result is output as a servo command to the joint axis drive unit.

上記処理における各信号は第3図に示すようになり、こ
の図中a,bは第1図に示す補間後の直交成分と関節或
分、以下同様にc,dは加減速機処理後の各成分、eは
加算処理後のサーボ指令信号である。また図中11は補
間のステップ、!I2は命令のステップである。
Each signal in the above processing is as shown in Fig. 3, in which a and b are the orthogonal components and joint components after interpolation shown in Fig. 1, and c and d are the signals after the acceleration/deceleration processing. Each component, e, is a servo command signal after addition processing. Also, 11 in the figure is the interpolation step! I2 is the step of the instruction.

なお、この第3図におけるP1 +  P2 *  P
3は第4図に示すような4軸型の多関節型ロボット1の
先端部材2の各ステップごとの軌跡位置を示す。
In addition, P1 + P2 * P in this figure 3
3 indicates the locus position of the tip member 2 of the four-axis articulated robot 1 at each step as shown in FIG.

12図は本発明の第2の実施例で、移動命令が変化した
場合に直交一関節移動量変換の処理方法を示すもので、
このブロック図において、RAMよりの命令の読み取り
、移動量計算、補間までは上記第1図に示す方法と同じ
である。
FIG. 12 shows a second embodiment of the present invention, which shows a processing method for orthogonal single joint movement amount conversion when a movement command changes.
In this block diagram, the method up to reading instructions from the RAM, calculation of movement amount, and interpolation is the same as the method shown in FIG. 1 above.

補間後に移動命令が変化したかどうかを調べ、その結果
移動命令が直交移動から関節移動に変化した場合には、
Aにて直交の減速量を関節移動量に変える。
Checks whether the movement command has changed after interpolation, and if the movement command changes from orthogonal movement to joint movement,
At A, change the orthogonal deceleration amount to the joint movement amount.

また上記移動命令が関節移動から直交移動に変化した場
合に、Bにて関節の減速量を直交移動量に変える。
Further, when the movement command changes from joint movement to orthogonal movement, the deceleration amount of the joint is changed to the orthogonal movement amount at B.

次にCにてそれぞれの変換した移動量と新規移動量を加
算した後加減速を行ない、その結果が直交の場合には関
節に変えてサーボ指令として関節軸の駆動部へ出力する
Next, at C, each converted movement amount and new movement amount are added, and then acceleration/deceleration is performed, and if the result is orthogonal, it is output to the joint axis drive unit as a servo command instead of the joint.

上記直交及び関節の減速量は加速時の残りである。The amount of deceleration of the orthogonal and joints described above is the remainder of the acceleration.

上記において、Dの加減速をFIR型のフィルタを使う
ものの場合、直交移動動は第5図に示すように演算され
、Xn’が出力される。
In the above case, when an FIR type filter is used for acceleration/deceleration of D, orthogonal movement is calculated as shown in FIG. 5, and Xn' is output.

そして次の補間ステップが関節移動のときには、第6図
に示すように演算され、θn′が出力される。
When the next interpolation step is joint movement, calculations are performed as shown in FIG. 6, and θn' is output.

またAの部分での1つの関節軸の演算は、θ1an−1
−f1  (Xn,Yn,Zn,an)θ 1  ar
r  2  −f’1  (Xn−1  +Yn−1 
 ,Zn−t  . a n−j  )θ+  an−
r)−f  1  (Xn−r+1  ,Yn−r+1
  .Zn−r+1  .αn−r+1  ) 他の軸も同様に、例えば θ2 an−1−f2  (Xn,Yn,Zn,  α
n)等となる。
Also, the calculation of one joint axis in part A is θ1an-1
−f1 (Xn, Yn, Zn, an) θ 1 ar
r 2 −f'1 (Xn-1 +Yn-1
, Zn-t. a n-j ) θ+ an-
r)-f 1 (Xn-r+1 , Yn-r+1
.. Zn-r+1. αn-r+1) Similarly, for other axes, for example, θ2 an-1-f2 (Xn, Yn, Zn, α
n) etc.

またBの部では逆に関節移動直交移動の演算されてるが
、これも同様に、 X,−gt(θ1n,  θ2n,  θ3 n,  
θ4n)等となる。
Also, in part B, the joint movement orthogonal movement is calculated in the opposite way, but this is also calculated as X, -gt(θ1n, θ2n, θ3 n,
θ4n), etc.

なお上記演算式において、x,y,z,  α,θは第
4図に示す多関節型ロボット1の先端部材2の各ステッ
プごとの各方向の移動量を示す。
In the above equation, x, y, z, α, and θ represent the amount of movement of the tip member 2 of the articulated robot 1 shown in FIG. 4 in each direction for each step.

第7図は第4図に示す4軸型の多関節ロボットの各関節
の駆動部を駆動するサーボ機構を示すもので、図中3は
累算器、4は減算器、5はアンプ、6はモータ、7は位
置センサである。
FIG. 7 shows a servo mechanism that drives the driving parts of each joint of the 4-axis articulated robot shown in FIG. 4, in which 3 is an accumulator, 4 is a subtracter, 5 is an amplifier, and 6 is a motor, and 7 is a position sensor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、直交移動と関節移動の2種類の動作を
、この動作間で停止することなく連続してスムーズに行
なうことができる。
According to the present invention, two types of movements, orthogonal movement and joint movement, can be performed continuously and smoothly without stopping between these movements.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図,第2図は
それぞれ異なる方法を示すブロック図、第3図は第1図
に示す方法における処理信号を示す線図、第4図は多関
節型ロボットの一例を示す説明図、第5図,第6図は第
2図に示す方法の演算例を示す説明図、第7図は関節軸
の駆動部の駆動制御を示すブロック図である。 1は多関節型ロボット、2は移動部材。 第1図 第 4 図 第 5 図 第 6 図
The drawings show embodiments of the present invention; FIGS. 1 and 2 are block diagrams showing different methods, FIG. 3 is a diagram showing processed signals in the method shown in FIG. 1, and FIG. 4 is a diagram showing processed signals in the method shown in FIG. FIGS. 5 and 6 are explanatory diagrams showing an example of an articulated robot. FIGS. 5 and 6 are explanatory diagrams showing calculation examples of the method shown in FIG. 2. FIG. 7 is a block diagram showing drive control of the joint axis drive unit. be. 1 is an articulated robot, and 2 is a moving member. Figure 1 Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)作用点の動作が直交移動と関節移動する移動部材
の軌跡方向の加減速方法において、直交移動と関節移動
の加減速を別々に行ない、それぞれをたし合わせること
を特徴とする移動部材の軌跡方向の加減速方法。
(1) A method for accelerating and decelerating a moving member in the trajectory direction in which the motion of the point of action is orthogonal movement and joint movement, characterized in that the acceleration and deceleration of orthogonal movement and joint movement are performed separately, and the acceleration and deceleration of orthogonal movement and joint movement are added. Acceleration/deceleration method in the trajectory direction.
(2)作用点の動作が直交移動と関節移動する移動部材
の軌跡方向の加減速方法において、移動部材の移動中に
直交移動から関節移動に移動命令が変化した場合、直交
方向の減速移動量を関節移動量に変換し、これを次の関
節移動に加え、また上記移動命令が関節移動から直交移
動に変化した場合、関節軸の減速移動量を直交移動量に
変換し、これを次の直交移動に加えることを特徴とする
移動部材の軌跡方向の加減速方法。
(2) In an acceleration/deceleration method in the trajectory direction of a moving member in which the motion of the point of action is orthogonal movement and joint movement, if the movement command changes from orthogonal movement to joint movement while the moving member is moving, the amount of deceleration movement in the orthogonal direction is converted into a joint movement amount, and this is added to the next joint movement. Also, if the above movement command changes from joint movement to orthogonal movement, convert the joint axis deceleration movement amount to orthogonal movement amount, and add this to the next joint movement. A method for accelerating and decelerating a moving member in a trajectory direction, characterized by adding the acceleration and deceleration to orthogonal movement.
JP14936189A 1989-06-14 1989-06-14 Acceleration/deceleration method for locus direction of moving member Pending JPH0315908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14936189A JPH0315908A (en) 1989-06-14 1989-06-14 Acceleration/deceleration method for locus direction of moving member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14936189A JPH0315908A (en) 1989-06-14 1989-06-14 Acceleration/deceleration method for locus direction of moving member

Publications (1)

Publication Number Publication Date
JPH0315908A true JPH0315908A (en) 1991-01-24

Family

ID=15473454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14936189A Pending JPH0315908A (en) 1989-06-14 1989-06-14 Acceleration/deceleration method for locus direction of moving member

Country Status (1)

Country Link
JP (1) JPH0315908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004109690A (en) * 2002-09-19 2004-04-08 Canon Inc Camera system and camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004109690A (en) * 2002-09-19 2004-04-08 Canon Inc Camera system and camera

Similar Documents

Publication Publication Date Title
JP2524931B2 (en) Robot linear interpolation method
JP3478946B2 (en) Servo adjustment method and device
JPS61157909A (en) System for correcting route error of robot
EP0357778B1 (en) Method of speed control for servomotor
JPS63318240A (en) Acceleration and deceleration controller
WO1991003009A1 (en) Acceleration/deceleration control method of numeric controller
US5740327A (en) Method of and apparatus for robot tip trajectory control
JPH0315908A (en) Acceleration/deceleration method for locus direction of moving member
Kircanski et al. Resolved-rate and resolved-acceleration-based robot control in the presence of actuators' constraints
JP3121920B2 (en) Acceleration / deceleration control device
JPH0677910B2 (en) Control method for industrial robot
JPH06110534A (en) Position control method for machine tool
JP3402378B2 (en) Control method of 7-axis manipulator
JPH11194813A (en) Operation command generating method for industrial machine
JPH04245505A (en) Speed controlled and numerically controlled feeding speed control method
JPH05297916A (en) Track control method for robot
JP2001154719A (en) Method for interpolating free curve
JPH07205068A (en) Coordinate system setting method of robot
JPS60220408A (en) Joint type robot controller
KR0161004B1 (en) Continuous travelling control method of multi-robot
SU1248765A1 (en) Method of stabilizing the position of working members of machine
JPH1063329A (en) Method for controlling accerelation
JPS62145306A (en) Driving control method for robot
JPH04135085A (en) Laser beam machine
JPH04102905A (en) Control method