JPH03158287A - Recording - Google Patents

Recording

Info

Publication number
JPH03158287A
JPH03158287A JP1296990A JP29699089A JPH03158287A JP H03158287 A JPH03158287 A JP H03158287A JP 1296990 A JP1296990 A JP 1296990A JP 29699089 A JP29699089 A JP 29699089A JP H03158287 A JPH03158287 A JP H03158287A
Authority
JP
Japan
Prior art keywords
recording
layer
recording layer
light
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1296990A
Other languages
Japanese (ja)
Inventor
Kyoji Tsutsui
恭治 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1296990A priority Critical patent/JPH03158287A/en
Publication of JPH03158287A publication Critical patent/JPH03158287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To ensure the acceleration of deletion speed and the complete deletion of data when it is required by controlling the range of an area subjected to change in a recording layer where a crystal state changes reversibly due to heat. CONSTITUTION:A recording layer 2 where a crystal state changes reversibly and a protecting layer 3 are provided on a substrate 1. A method of recording data by changing a crystal state in only part of the recording layer in a width direction applies here. For example, when this recording medium is irradiated with light from the protecting layer side, the protecting layer 3 is transparent to the projected light and the recording layer 2 absorbs the light. When the light absorption factor is high, the light is absorbed by only the top of the recording layer 2, so that heat generated there. When the thermal conductivity of the recording layer 2 is comparatively low and time required for light emission, is short the heat diffuses to the surroundings, if the light emission is discontinued, and the layer cools off immediately. Subsequently, only the top 4 of the recording layer where the temperature reaches the level for the occurrence of a change in the crystal state, changes, forming records. In addition, the deletion speed can be accelerated without any undeleted portion as the changed portion during recording is apt to return to its original state during deletion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱の印加または光の照射により情報を記録す
るヒートモード記録媒体の記録方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a recording method for a heat mode recording medium in which information is recorded by applying heat or irradiating light.

〔従来の技術〕[Conventional technology]

近年、情報を熱エネルギーの形で印加し、記録材料の形
状変化や物性変化として記録するいわゆるヒートモード
記録システムが実用化されつつある。このようなヒート
モード記録媒体としては、Te、 Bi、 Se、 T
b、Inなどを主成分とする金属材料を用いた無機系の
記録媒体、あるいは、シアニンなどのポリメチン系色素
、フタロシアニン、ナフタロシアニン、ポルフィリンな
どの大環状アザアヌレン系色素、ナフトキノン、アント
ラキノン系色素およびジチオール金属錯体系色素などの
有機色素を用いた記録媒体が知られている。これらの記
録媒体は集光したレーザー光の照射などにより熱エネル
ギーが加えられると、照射部分の記録層が溶融あるいは
蒸発して孔(ビット)を形成し、情報を記録するもので
ある。しかし、これらの記録媒体は、記録した情報を消
去して、再び新しい情報を記録する可逆性を有していな
い。
In recent years, so-called heat mode recording systems have been put into practical use, in which information is applied in the form of thermal energy and recorded as changes in the shape or physical properties of a recording material. Such heat mode recording media include Te, Bi, Se, T
b, inorganic recording media using metal materials mainly composed of In, etc., or polymethine dyes such as cyanine, macrocyclic azaannulene dyes such as phthalocyanine, naphthalocyanine, and porphyrin, naphthoquinone, anthraquinone dyes, and dithiol. Recording media using organic dyes such as metal complex dyes are known. When thermal energy is applied to these recording media, such as by irradiation with focused laser light, the recording layer in the irradiated area melts or evaporates, forming holes (bits) and recording information. However, these recording media do not have the reversibility of erasing recorded information and recording new information again.

上記のような再生専用、追記型のヒートモード光記録媒
体の発達とともに、記録、再生、消去が可能な可逆記録
媒体の必要性が高まっている。
With the development of read-only, write-once type heat mode optical recording media as described above, the need for reversible recording media that can be recorded, read, and erased is increasing.

こうした可逆記録媒体として、たとえばGd、 Tb、
Dyなとの希土類金属とFe、 Ni、 Coなどの遷
移金属とからなる合金薄膜を用いた光磁気記録媒体があ
る。これは、レーザー光照射による加熱と外部印加磁界
を併用して記録し、磁化の向きによる光の振動面の回転
方向の違いを利用して再生するものである。また、情報
の消去はレーザーによる加熱と記録時とは逆向きの外部
磁界を加えることにより行なわれる。しかし、この光磁
気記録媒体は再生時の感度が十分でなく S/N比が悪
いこと、および磁化などの影響により記録感度の劣化や
記録の安定性に問題があるなどの欠点を有している。
Examples of such reversible recording media include Gd, Tb,
There is a magneto-optical recording medium that uses an alloy thin film made of a rare earth metal such as Dy and a transition metal such as Fe, Ni, or Co. This uses a combination of heating by laser beam irradiation and an externally applied magnetic field to record, and reproduces data by utilizing the difference in the rotational direction of the light vibration plane depending on the direction of magnetization. Furthermore, information is erased by heating with a laser and by applying an external magnetic field in the opposite direction to that used during recording. However, this magneto-optical recording medium has drawbacks such as insufficient sensitivity during reproduction, a poor S/N ratio, and problems such as deterioration of recording sensitivity and recording stability due to effects such as magnetization. There is.

また、可逆記録媒体として、Ge、 Te、 Se、 
Sb、In、 Snなどの元素を主成分とする無機材料
薄膜からなる記録層の結晶−非晶質間の相転移を利用し
たものがある。この記録媒体はレーザー光の照射のみで
、ヒートモードで記録および消去ができる利点があるが
、記録部と非記録部のコントラスl−や記録の安定性が
十分でないこと、記録層の材料の安定性に関して問題が
あるなどの欠点を有している。
In addition, as a reversible recording medium, Ge, Te, Se,
There is one that utilizes the crystal-amorphous phase transition of a recording layer made of a thin film of an inorganic material mainly composed of elements such as Sb, In, and Sn. This recording medium has the advantage of being able to record and erase information in a heat mode using only laser light irradiation, but it has problems with the contrast between recorded and non-recorded areas, insufficient recording stability, and the stability of the material of the recording layer. It has drawbacks such as problems with sexuality.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように従来の記録方法は、記録の感度、消去速度、
記録の安定性、記録のコントラストなど種々の問題を残
している。特に、記録層の相転移や結晶状態の変化を利
用した記録媒体では、消去速度の高速化や、消去時に消
し残りがなく信頼性が高い記録、消去が行なわれること
が望まれている。
In this way, conventional recording methods have problems with recording sensitivity, erasing speed,
Various problems remain, including recording stability and recording contrast. In particular, for recording media that utilize phase transitions or changes in the crystalline state of the recording layer, it is desired that the erasing speed be increased and that recording and erasing can be performed with high reliability without leaving any unerased data during erasing.

このような観点から1本発明は記録層の結晶状態の変化
または相変化による記録、消去が高速かつ確実に行なわ
れる記録方法を提供するものである。
From this viewpoint, one object of the present invention is to provide a recording method in which recording and erasing can be performed quickly and reliably by changing the crystalline state or phase change of the recording layer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、以上のような目的から、光エネルギー照
射にともなう熱により、結晶状態が可逆的に変化する記
録層への記録、消去を検討した結果、記録層中の結晶状
態の変化する部分の範囲をコントロールすることにより
、上記の目的が達成できることを見い出した。
For the above-mentioned purposes, the present inventors investigated recording and erasing on a recording layer whose crystalline state changes reversibly due to heat accompanying light energy irradiation, and found that the crystalline state in the recording layer changes. It has been found that the above object can be achieved by controlling the range of the parts.

すなわち、本発明の記録方法は、少なくとも基板と、熱
により可逆的に結晶状態が変化したり、相変化して記録
、消去を行なう記録層を有する記録媒体に、光を照射し
て記録層の厚さ方向の一部分の結晶状態を変化させて記
録するか、または相変化させて記録するものであり、ま
た、上記記録層が有機薄膜状結晶であるか、またはこれ
を含むものである記録方法である。
That is, in the recording method of the present invention, light is irradiated onto a recording medium having at least a substrate and a recording layer whose crystal state changes reversibly by heat or whose phase changes to perform recording and erasing. A recording method in which recording is performed by changing the crystal state of a portion in the thickness direction or by changing the phase, and the recording layer is or contains an organic thin film crystal. .

本発明に用いる記録媒体の記録層は、結晶状態の可逆的
な変化および、相間の可逆的な変化により記録と消去を
行ない、繰り返し使用できるものである。この結晶状態
の変化とは、結晶の構造的な変化や相転移を含むもので
あり、たとえば、結晶型間の可逆的な結晶転移、結晶質
と非晶質間の可逆的な相転移、結晶化度の可逆的な変化
、分子の配向度の可逆的な変化、結晶方位の可逆的な変
化すなわち結晶軸方向の可逆的な変化、分子の配向方向
の可逆的な変化、あるいは、結晶粒の大きさ、結晶ドメ
インの大きさの可逆的な変化などがあり、これらが記録
層中で単独または複合して起こるものである。これらの
変化は、記録時または消去時に加えられる熱、または光
照射により発生する熱によって記録層の温度がいったん
上昇し、融液相あるいは液晶相を経由して、未記録状態
から記録状態あるいは記録状態から消去状態(未記録状
態と同じ)に変化する場合や、融液相、液晶相を経由せ
ず温度上昇により直接的に状態間の転移が起こる場合や
、非晶状態を経由して転移する場合などがある。
The recording layer of the recording medium used in the present invention performs recording and erasing by reversible changes in the crystal state and reversible changes between phases, and can be used repeatedly. This change in crystal state includes structural changes and phase transitions of crystals, such as reversible crystal transitions between crystal forms, reversible phase transitions between crystalline and amorphous forms, and crystalline changes. a reversible change in the degree of chemical orientation, a reversible change in the degree of molecular orientation, a reversible change in crystal orientation, that is, a reversible change in the crystal axis direction, a reversible change in the direction of molecular orientation, or a reversible change in the orientation of crystal grains. There are reversible changes in the size and size of crystalline domains, and these occur singly or in combination in the recording layer. These changes occur when the temperature of the recording layer rises due to heat applied during recording or erasing, or heat generated by light irradiation, and changes from an unrecorded state to a recorded state or recorded state via a melt phase or liquid crystal phase. There are cases where the state changes from a state to an erased state (same as an unrecorded state), cases where a transition between states occurs directly due to temperature rise without going through the melt phase or liquid crystal phase, and cases where a transition occurs via an amorphous state. There are cases where you do so.

このような記録、消去が行なわれる記録媒体には、たと
えば以下のようなものがある。無機材料の結晶質−非晶
質間の相転移を利用するものとしてTe−Ge−5b系
、Te−Ga−3e−5b系、 Te−Ge−3n−0
系、Te−Ge−5n−Au系、In−5s系、In−
5e−Tl系、 In−5e−TI−Co系、In−5
b4e系、Te−5s−Go−5b系など、また低温相
−高温相間の転移、安定相−準安定相間の転移など結晶
−結晶間の転移を利用するものとしては、Ag−Zn系
、Cu−AQ−Ni系、In−3b−5e系、 In−
5b−Te系などの材料がある。また、有機材料の結晶
−結晶間、結晶−非晶間の転移を利用するものとして、
たとえば、銅フタロシアニン、マグネシウムフタロシア
ニンなどのフタロシアニン系材料があり、配向状態と等
方性状態または非晶状態間の転移を利用する高分子液晶
材料または低分子液晶材料がある。液晶材料の場合は配
向状態を形成するために電界または磁界を利用する場合
もある。さらに、有機の薄膜状結晶の結晶状態の可逆的
な変化を利用するものでは、たとえば脂肪酸または脂肪
rvIvI導体、安息香酸誘導体、融点が50℃以上の
n−アルカンまたはその誘導体などがある。
Examples of recording media on which such recording and erasing are performed include the following. Te-Ge-5b system, Te-Ga-3e-5b system, Te-Ge-3n-0 that utilize the phase transition between crystalline and amorphous inorganic materials.
system, Te-Ge-5n-Au system, In-5s system, In-
5e-Tl system, In-5e-TI-Co system, In-5
b4e system, Te-5s-Go-5b system, etc., and those that utilize crystal-to-crystal transitions such as transition between low temperature phase and high temperature phase, transition between stable phase and metastable phase, etc., include Ag-Zn system, Cu -AQ-Ni system, In-3b-5e system, In-
There are materials such as 5b-Te type. In addition, as a method that utilizes the crystal-crystal and crystal-amorphous transitions of organic materials,
For example, there are phthalocyanine materials such as copper phthalocyanine and magnesium phthalocyanine, and there are polymeric liquid crystal materials and low molecular liquid crystal materials that utilize transition between an oriented state and an isotropic state or an amorphous state. In the case of liquid crystal materials, electric or magnetic fields may be used to form the alignment state. Furthermore, those that utilize reversible changes in the crystalline state of organic thin film crystals include, for example, fatty acid or fat rvIvI conductors, benzoic acid derivatives, and n-alkanes or their derivatives having a melting point of 50° C. or higher.

本発明でいう脂肪酸または脂肪酸誘導体とは、詳しくは
飽和または不飽和のモノまたはジカルボン酸またはこれ
らのエステル、アミド、アニリド、ヒドラジド、ウレイ
ド、無水物、あるいはアンモニウム塩または金属塩のよ
うな脂肪酸塩は意味する。この場合、エステルは2個以
上のヒドロキシ基を持つ化合物とのエステル、たとえば
モノ、ジまたはトリグリセリドなどを含む。また、これ
らのものはハロゲン、ヒドロキシ基、アシル基、アシル
オキシ基、あるいは置換または無置換のアリール基によ
り置換されていてもよい。これらの飽和または不飽和脂
肪酸は直鎖のものでも枝分れしたものでもよく、不飽和
脂肪酸は二重結合または三重結合を1個持つものでも、
2個以上持つものでもよい。これらの脂肪酸中の炭化水
素鎖の炭素数は10以上であることが好ましい。
The fatty acid or fatty acid derivative as used in the present invention specifically refers to saturated or unsaturated mono- or dicarboxylic acids, their esters, amides, anilides, hydrazides, ureides, anhydrides, or fatty acid salts such as ammonium salts or metal salts. means. In this case, esters include esters with compounds having two or more hydroxy groups, such as mono-, di- or triglycerides. Further, these may be substituted with a halogen, a hydroxy group, an acyl group, an acyloxy group, or a substituted or unsubstituted aryl group. These saturated or unsaturated fatty acids may be straight-chain or branched, and unsaturated fatty acids may have one double or triple bond,
It may have two or more. The number of carbon atoms in the hydrocarbon chain in these fatty acids is preferably 10 or more.

飽和脂肪酸の具体例としては、たとえば、ウンデカン酸
、ラウリン酸、ミリスチン酸、ペンタデカン酸、バルミ
チン酸、ヘプタデカン酸、ステアリン酸、ナノデカン酸
、アラキン酸、ベヘン醜、リグノセリン酸、セロチン酸
、モンタン酸、メリシン酸などがあり、不飽和脂肪酸と
しては、たとえば、オレイン酸、エライジン酸、リノー
ル酸、ソルビン酸、ステアロール酸などがある。またエ
ステルの具体例としては、たとえば、これらの脂肪酸の
メチルエステル、エチルエステル、ヘキシルエステル、
オクチルエステル、デシルエステル5ドデシルエステル
、テトラデシルエステル、ステアリルエステル、エイコ
シルエステル、トコシルエステルなどがある。また、金
属塩の例としては、たとえば、これらの脂肪酸のナトリ
ウム、カリウム、マグネシウム、カルシウム、ニッケル
、コバルト、亜鉛、カドミウム、アルミニウムなどの金
属塩である。
Specific examples of saturated fatty acids include undecanoic acid, lauric acid, myristic acid, pentadecanoic acid, balmitic acid, heptadecanoic acid, stearic acid, nanodecanoic acid, arachidic acid, behenugly, lignoceric acid, cerotic acid, montanic acid, and melisic acid. Examples of unsaturated fatty acids include oleic acid, elaidic acid, linoleic acid, sorbic acid, and stearolic acid. Specific examples of esters include methyl ester, ethyl ester, hexyl ester,
Examples include octyl ester, decyl ester, 5-dodecyl ester, tetradecyl ester, stearyl ester, eicosyl ester, and tocosyl ester. Further, examples of metal salts include metal salts of these fatty acids such as sodium, potassium, magnesium, calcium, nickel, cobalt, zinc, cadmium, and aluminum.

また、本発明でいう安息香酸誘導体には、詳しくは、下
記一般式(1)〜(IV)で表わされる安息香酸および
そのエステル、アミド、アニリドなどが含まれる。また
、この他に置換されていてもよいヒドラジド、ウレイド
あるいは無水物、金属塩。
Further, the benzoic acid derivatives referred to in the present invention specifically include benzoic acids represented by the following general formulas (1) to (IV), and their esters, amides, anilides, and the like. In addition, hydrazides, ureidos, anhydrides, and metal salts that may be substituted.

アンモニウム塩などの塩類が含まれる。また、エステル
は一般式(n)で表わされる化合物以外に。
Contains salts such as ammonium salts. Moreover, esters include compounds other than those represented by general formula (n).

脂肪族炭化水素化合物の多価アルコールあるいは。Polyhydric alcohols or aliphatic hydrocarbon compounds.

複数のヒドロキシ基を持つ芳香族炭化水素とのエステル
を含む。
Contains esters with aromatic hydrocarbons having multiple hydroxy groups.

3 一般式中のR1,R,、R,、およびその他の安息香酸
誘導体の置換基としては、たとえば水素、アルキル基、
アルコキシ基、フェニル基、ビフェニル基、ナフチル基
、アントラニル基などのアリール基であり、R1はこれ
らの他、アシル基、アシルオキシ基、ハロゲン、ニトロ
基、ヒドロキシ基、シアノ基、カルボキシル基およびそ
のエステル、置換されていてもよいカルバモイル基、ス
ルホ基およびそのエステルあるいはアルキル基、フェニ
ル基、置換フェニル基で置換されていてもよいアミノ基
などがある。また、上記のアルキル基、アルコキシ基、
アリール基は、R1と同様の置換基で置換されていても
よい、また、アルキル基、アルコキシ基は、直鎖状のも
のでも枝分れしたものでもよく、炭素数2個以上のもの
にあっては炭素鎖中に、1個以上の不飽和結合を含んで
いてもよい。
3 R1, R,, R, and other substituents of the benzoic acid derivative in the general formula include, for example, hydrogen, an alkyl group,
An aryl group such as an alkoxy group, a phenyl group, a biphenyl group, a naphthyl group, an anthranyl group, and R1 is an aryl group such as an acyl group, an acyloxy group, a halogen, a nitro group, a hydroxy group, a cyano group, a carboxyl group, and esters thereof; Examples include a carbamoyl group which may be substituted, a sulfo group and its ester or alkyl group, a phenyl group, and an amino group which may be substituted with a substituted phenyl group. In addition, the above alkyl groups, alkoxy groups,
The aryl group may be substituted with the same substituent as R1, and the alkyl group and alkoxy group may be linear or branched, and may have 2 or more carbon atoms. The carbon chain may contain one or more unsaturated bonds.

また、本発明でいうn−アルカンの誘導体とは、炭素鎖
中に1個または複数個の二重結合または三重結合を含む
化合物、水素原子が1個以上ハロゲン原子で置換された
化合物、および末端の炭素原子にアルキル基、アルコキ
シ基で置換されていてもよいベンゼン環が結合した化合
物である。具体的には、たとえば、テトラコサン、ペン
タコサン。
Furthermore, the n-alkane derivatives used in the present invention include compounds containing one or more double bonds or triple bonds in the carbon chain, compounds in which one or more hydrogen atoms are substituted with halogen atoms, and terminal It is a compound in which a benzene ring which may be substituted with an alkyl group or an alkoxy group is bonded to the carbon atom. Specifically, for example, tetracosane and pentacosane.

ヘキサコサン、ヘプタコサン、オクタコサン、ノナコサ
ン、トリアコンタン、トドリアコンタン、テトラトリア
コンタン、ヘキサトリアコンタン、オクタトリアコンタ
ン、テトラコンタンなどのn−アルカンまたはこれらを
主成分とする混合物、いわゆるパラフィン、パラフィン
ろうがある。また誘導体としては、1−へキサコセン、
1−へプタコセン、1−オフタコセン、1−トリアコン
チン、1−テトラトリアコンチン、1−ヘキサトリアコ
ンチン、1−オクタトリアコンチン、1−テトラコンチ
ン、トコシルベンゼン、テトラコンタンゼン、ヘキサコ
シルベンゼン、オフタコシルベンゼン、トリアコンチル
ベンゼン、トリトリアコンチルベンゼン、テトラトリア
コンチルベンゼン、ヘキサトリアコンチルベンゼン、1
.18−ジブロムオクタデカン、I。
There are n-alkanes such as hexacosane, heptacosane, octacosane, nonacosane, triacontane, todoriacontane, tetratriacontane, hexatriacontane, octatriacontane, and tetracontane, or mixtures containing these as main components, so-called paraffins and paraffin waxes. . Further, as derivatives, 1-hexacosene,
1-heptacontine, 1-oftacocene, 1-triacontin, 1-tetratriacontin, 1-hexatriacontin, 1-octatriacontin, 1-tetracontin, tocosylbenzene, tetracontanzene, hexacosylbenzene, Oftacosylbenzene, triacontylbenzene, tritriacontylbenzene, tetratriacontylbenzene, hexatriacontylbenzene, 1
.. 18-dibromooctadecane, I.

20−ジブロムエイコサン、1,22−ジブロムトコサ
ンなどがある。
Examples include 20-dibromoeicosane and 1,22-dibromotocosane.

本発明に用いる記録媒体は、基本的には第1図に示すよ
うに、基板1上に結晶状態が可逆的に変化し得る記録層
2および保護層3を有するものである。この記録層中の
厚さ方向の一部分のみの結晶状態を変化させて記録する
方法としては、たとえばその結晶状態の変化が熱によっ
て起こるものである場合には、記録層の厚さ方向の一部
分だけに熱が加わり温度が上昇するようにすればよい。
The recording medium used in the present invention basically has, as shown in FIG. 1, a recording layer 2 and a protective layer 3 on a substrate 1, the crystal state of which can be changed reversibly. As a method for recording by changing the crystalline state of only a portion of the recording layer in the thickness direction, for example, if the change in the crystalline state is caused by heat, it is possible to record by changing the crystalline state of only a portion of the recording layer in the thickness direction. The temperature can be increased by adding heat to the.

熱を加える方法にはたとえばサーマルヘッドなどを記録
層に接触させる方法と、光を照射し、その光の吸収によ
って発生する熱を利用する方法がある。
Methods of applying heat include, for example, a method in which a thermal head or the like is brought into contact with the recording layer, and a method in which light is irradiated and the heat generated by absorption of the light is utilized.

一般的に高い記録密度を要求される情報記録媒体では、
光照射による方法が多く用いられる。どちらの場合にお
いても、記録時に記録層中に第2図(a) 、 (b)
 、 (C)に示すような温度分布を形成しなければな
らない。この温度分布は、熱“を加える方法と、加える
熱の量、加える時間および記録層、基板、その他の記#
媒体を構成する層の熱伝導度。
For information recording media that generally require high recording density,
A method using light irradiation is often used. In either case, during recording, some particles are left in the recording layer as shown in Figs. 2(a) and (b).
, a temperature distribution as shown in (C) must be formed. This temperature distribution depends on the method of applying heat, the amount of heat applied, the time it is applied, and the number of recording layers, substrates, and other records.
Thermal conductivity of the layers that make up the medium.

比熱などの熱物性によって決まる。また光照射による場
合には、光がどこで吸収され熱になるかを考慮しなけれ
ばならない。
Determined by thermal properties such as specific heat. In addition, when using light irradiation, consideration must be given to where the light is absorbed and becomes heat.

より具体的に説明するために、第1図に示す基板、記録
層、保護層からなる記録媒体に保護層側から光を照射し
た場合を考える。保rM層が照射した光に対して透明で
あり、記録層が光を吸収し。
To explain more specifically, consider the case where a recording medium consisting of a substrate, a recording layer, and a protective layer shown in FIG. 1 is irradiated with light from the protective layer side. The retention layer is transparent to the irradiated light, and the recording layer absorbs the light.

しかもかなり吸光度が高い場合には、光は記録層の上部
のみで吸収されるため、この部分で熱が発生する。この
記録層の熱伝導度が比較的小さく、また光を照射する時
間が短かいとき(熱を発生している時間が短かいとき)
は、熱の拡散が少なく、形成される温度分布は第2図(
a)のようになる。この温度分布は光が短時間照射され
たとき1w4間的に形成されるものであって、光の照射
が止めば熱は周囲に拡散し、直ちに冷却される。したが
って。
Moreover, if the absorbance is quite high, the light is absorbed only in the upper part of the recording layer, and heat is generated in this part. When the thermal conductivity of this recording layer is relatively low and the time for irradiating light is short (when the time for generating heat is short)
, there is less heat diffusion, and the temperature distribution formed is as shown in Figure 2 (
It will be like a). This temperature distribution is formed for 1w4 when light is irradiated for a short period of time, and when the light irradiation stops, the heat diffuses to the surroundings and is immediately cooled. therefore.

ここで結晶状態変化を起こす温度以上になった記録層上
部だけが変化し記録が形成される(第3図参照:図中4
が形成された記録を示す(以下の図において同様)。)
。ここに起こる変化が溶融状態を経由して起こる変化で
あれば、光照射によりいったん溶融した部分が、冷却後
には初期の状態すなわち光照射を受けなかった周囲の結
晶の状態とは異なった状態となり、記録となる。
At this point, only the upper part of the recording layer, whose temperature exceeds the temperature that causes the crystal state change, changes and a record is formed (see Figure 3: 4 in the figure).
(The same applies to the following figures). )
. If the change that occurs here is a change that occurs via a molten state, the part that has been melted by light irradiation will, after cooling, be in a state different from its initial state, that is, the state of the surrounding crystal that was not exposed to light irradiation. , becomes a record.

また、記録層をはさむ基板と保、7I層の熱伝導度が大
きく、あるいは熱容量が大きく記録層の熱が逃げやすい
場合は、記録層の厚さ方向全体に均等に光を吸収し、発
熱したとしても上下に熱が拡散するため、第2図(b)
に示すように記録層の中央部だけが温度が高くなり、中
央部の結晶状態だけが変化して第4図のように記録され
る。
In addition, if the substrate sandwiching the recording layer and the 7I layer have high thermal conductivity or a large heat capacity and the heat of the recording layer can easily escape, light will be absorbed evenly throughout the thickness of the recording layer and heat will be generated. Figure 2 (b)
As shown in FIG. 4, only the central portion of the recording layer has a high temperature, and only the crystalline state in the central portion changes, resulting in recording as shown in FIG.

次に、保護層と記録層が照射した光に対して透明であり
、基板が光を吸収する場合には、基板の上部の記録層に
接している部分で光を吸収し熱が発生し、この熱が記録
層に伝わるために、温度分布は第2図(C)に示すよう
になり、記#、暦は基板に接している部分が最も温度が
高くなる。記録層内部へは、記録層の熱伝導度が大きい
ほど、また光照射時間が長いほど深くまで温度が上昇す
る。光照射時間を短かくすれば記録層の基板側の一部だ
けを記録層の溶融温度以上あるいは相転移温度範囲にす
ることができ、第5図のように記録される。
Next, the protective layer and the recording layer are transparent to the irradiated light, and when the substrate absorbs the light, the upper part of the substrate that is in contact with the recording layer absorbs the light and generates heat. Since this heat is transmitted to the recording layer, the temperature distribution becomes as shown in FIG. 2(C), where the temperature is highest at the part of the recording layer that is in contact with the substrate. The temperature rises deeper into the recording layer as the thermal conductivity of the recording layer increases and as the light irradiation time increases. By shortening the light irradiation time, only a portion of the recording layer on the substrate side can be brought to a temperature higher than the melting temperature of the recording layer or within the phase transition temperature range, and recording is performed as shown in FIG. 5.

基板には、ガラス板やアクリル樹脂、ポリカーボネート
樹脂などのプラスチック板が用いられることが多いが、
このように透明な基板の場合には、記録層と基板の間に
光吸収して熱に変換する光熱変換m(第6図の5)を設
ければよい。光熱変換層で発生した熱が記録層に伝わり
第6図に示すように記録することができる。光熱変換層
は、たとえば白金、チタン、シリコン、クロム、ニッケ
ル、ゲルマニウムアルミニウムなどの金属または半金属
の層を用いればよく、この層は光の一部を反射する反射
層と兼用することができる。
Glass plates, acrylic resins, polycarbonate resins, and other plastic plates are often used as substrates.
In the case of such a transparent substrate, a photothermal converter m (5 in FIG. 6) that absorbs light and converts it into heat may be provided between the recording layer and the substrate. The heat generated in the photothermal conversion layer is transmitted to the recording layer and can be recorded as shown in FIG. The photothermal conversion layer may be a layer of metal or semimetal such as platinum, titanium, silicon, chromium, nickel, germanium aluminum, etc., and this layer can also be used as a reflective layer that reflects part of the light.

本発明に用いる記録層は加えられた熱の量あるいは到達
した温度によって結晶−結晶間の転移や結晶質−非晶質
間の相転移、配向状態の変化、配向方向の変化が可逆的
に起こる層である。たとえば、薄膜状の結晶からなる記
録層が光照射により加熱溶融し、急冷されると、その部
分が非晶質となって固定されたり、結晶の配向方向が変
化して固定され情報が記録される0次に、記録時には別
の条件で光を照射して溶融温度より低い温度に加熱した
り、記録時より長時間加熱したり、冷却速度がおそくな
るようにして照射すると、記録によって結晶状態が変化
した部分が、記録前の結晶の状態に戻り、消去が行なわ
れる。このとき、本発明の記録方法によれば、記録され
た状態は第3〜5図に示すように記録層の厚さ方向の一
部分が変化しただけであるため、その周囲は元の未記録
状態の結晶に囲まれているゆこの状態と、第7図に示す
ように記録層が記録時に層全体にわたって結晶状態が変
化している状態を比較すると、消去時には厚さ方向の一
部だけが変化しているもののほうが、変化部分の周囲の
結晶の規制力によって元の結晶状態に戻りやすく、した
がって消去速度が速く、また消え残りがなくなる。
In the recording layer used in the present invention, crystal-crystal transition, crystalline-amorphous phase transition, change in orientation state, and change in orientation direction occur reversibly depending on the amount of heat applied or the temperature reached. It is a layer. For example, when a recording layer made of a thin film of crystals is heated and melted by light irradiation and then rapidly cooled, that part becomes amorphous and becomes fixed, or the crystal orientation changes and becomes fixed, and information is recorded. Next, during recording, if you irradiate light under different conditions to heat it to a temperature lower than the melting temperature, heat it for a longer time than during recording, or irradiate it with a slower cooling rate, the crystalline state will change depending on the recording. The portion where the data has changed returns to the crystalline state before recording, and erasing is performed. At this time, according to the recording method of the present invention, since only a portion of the recording layer in the thickness direction has changed in the recorded state as shown in FIGS. 3 to 5, the surrounding area remains in the original unrecorded state. Comparing the state in which Yuko is surrounded by crystals and the state in which the crystal state of the recording layer changes over the entire layer during recording, as shown in Figure 7, only a portion of the thickness direction changes during erasing. It is easier to return to the original crystalline state due to the regulating force of the crystals around the changed part, and therefore the erasure speed is faster and there is no residue remaining.

以上のように、本発明の記録方法によれば、信頼性の高
い、高速な記録、消去が可能となる。
As described above, the recording method of the present invention enables highly reliable and high-speed recording and erasing.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 光学研磨された直径4インチ(101,6mm)、厚さ
1 、2mmのガラスディスク上に、厚さ約900人の
クロム(Cr)蒸着膜を設は光熱変換層とした。この上
に塩化ビニル−酢酸ビニル共重合体くユニオンカーバイ
ド社1:VYHH)の5wt%テトラヒドロフラン溶液
を塗布し、乾燥して厚さ約0.2−の樹脂層を設けた。
Example 1 A chromium (Cr) vapor deposited film with a thickness of approximately 900 mm was provided as a light-to-heat conversion layer on an optically polished glass disk having a diameter of 4 inches (101.6 mm) and a thickness of 1 to 2 mm. A 5 wt % solution of vinyl chloride-vinyl acetate copolymer (Union Carbide Co., Ltd. 1: VYHH) in tetrahydrofuran was applied thereon and dried to form a resin layer with a thickness of about 0.2 mm.

次に、この樹脂層上にステアリン酸(シグマ社製:純度
99%)の10wt%テトラヒドロフラン溶液を塗布し
、45℃で乾燥した。さらに、その上に前記と同じ塩化
ビニル−酢酸ビニル共重合体の5wt%テトラヒドロフ
ラン溶液を塗布し、45℃で乾燥した。このディスクを
温度95℃に加熱したホットプレート上にのせ2分間放
置した後、ホットプレート上を一方向にゆっくり移動さ
せて、ホットプレートからはずしていった。このときス
テアリン酸融液層は、ホットプレートからはずれた部分
から結晶化し、一方向に拡がって全体が結晶化した0以
上の操作により、最終的にCr層上にほぼ−様な方向に
配向したステアリン酸の薄膜状結晶よりなる記録層(厚
さ約0.81Ja)と、その上に塩化ビニル−酢酸ビニ
ル共重合体よりなる保護層(厚さ約0.6μm)が形成
された。
Next, a 10 wt % tetrahydrofuran solution of stearic acid (manufactured by Sigma, purity 99%) was applied onto this resin layer and dried at 45°C. Furthermore, a 5 wt % tetrahydrofuran solution of the same vinyl chloride-vinyl acetate copolymer as above was applied thereon and dried at 45°C. This disk was placed on a hot plate heated to 95° C. and left for 2 minutes, then slowly moved in one direction on the hot plate and removed from the hot plate. At this time, the stearic acid melt layer was crystallized from the part removed from the hot plate, spread in one direction, and was crystallized as a whole. Through the operation of 0 or more, it was finally oriented in a nearly -like direction on the Cr layer. A recording layer (thickness: about 0.81 Ja) made of thin film-like crystals of stearic acid, and a protective layer (thickness: about 0.6 μm) made of vinyl chloride-vinyl acetate copolymer were formed thereon.

このようにして作成した記録媒体を90ORPMで回転
させながら、直径11に集光した波長830nmの半導
体レーザー光を下記(1)および(2)の条件で照射し
、スパイラル状の記録を形成した。このとき、ディスク
上の記録した部分における記録方向の線速度は約3SO
O=4000mm/seeである。
While rotating the thus produced recording medium at 90 ORPM, it was irradiated with a semiconductor laser beam having a wavelength of 830 nm focused on a diameter 11 under the following conditions (1) and (2) to form a spiral record. At this time, the linear velocity in the recording direction in the recorded portion of the disk is approximately 3 SO
O=4000mm/see.

照射条件(1)点灯条件二周波数200KIlz、デユ
ーティ比50% 記録媒体面での強度:5mW 記録ラインの間隔:約3゜5μm(中心間)(2)点灯
条件二連読点灯 記録媒体面での強度:5mW 記録ラインの間隔:約ha(中心間) 上記(1)の条件でレーザー光を照射した記録媒体を反
射偏光顕微鏡を用い直交ニコル状態で観察すると、記@
暦のレーザー光照射部分に幅約1.nのライン状の記録
部が形成されているのが、明瞭なコントラストでIlt
察できた。ただし、この記録部は通常の光学顕微maf
Aでは、はとんど確認できない程度であった。
Irradiation conditions (1) Lighting conditions: 2 frequencies: 200 KIlz, duty ratio: 50% Intensity on the recording medium surface: 5 mW Recording line spacing: approx. 3° 5 μm (center distance) (2) Lighting conditions: 2 consecutive reading lights on the recording medium surface Intensity: 5 mW Recording line spacing: Approximately ha (center to center) When observing a recording medium irradiated with laser light under the conditions (1) above in a crossed Nicol state using a reflective polarizing microscope, it is noted that
The laser beam irradiation part of the calendar has a width of approximately 1. It is clear that the n line-shaped recorded areas are formed with clear contrast.
I could tell. However, this recording section is a normal optical microscope maf.
In A, it was barely noticeable.

上記(2)の条件でレーザー光を照射した記録媒体と同
様に偏光顕微鏡を用いてwt察すると、記録媒体の照射
範囲全面にほとんどすき間なく記録されているのが認め
られた。この全面記録を行なった記録媒体について、記
録を行なう前と記録後の同一部分のX線回折を測定した
。記録前のX線回折を第8図、記録後のX線回折を第9
図に示す。第8図より、記録前はステアリン酸のC型結
晶の長面間隔に基づく回折線のみが認められ、a、b軸
を平行に配向した構造になっていた。しかし、第9図の
記録後では、短面間隔に基づく回折線(2θ=21.6
″′)が現われ、記録層の記録部の中にC軸を基板に平
行に配向した構造が形成されたことを示している。
When the recording medium was observed using a polarizing microscope in the same way as the recording medium irradiated with laser light under the conditions (2) above, it was observed that recording was performed over the entire irradiated area of the recording medium with almost no gaps. X-ray diffraction of the same portion of the recording medium on which the entire surface was recorded was measured before and after recording. Figure 8 shows the X-ray diffraction before recording, and Figure 9 shows the X-ray diffraction after recording.
As shown in the figure. From FIG. 8, before recording, only the diffraction lines based on the long-plane distance of the C-type crystal of stearic acid were observed, and the structure was such that the a and b axes were oriented in parallel. However, after recording in Figure 9, the diffraction line (2θ=21.6
'') appears, indicating that a structure in which the C axis is oriented parallel to the substrate is formed in the recording portion of the recording layer.

次に、(2)の条件で記録した記録媒体の上部の保護層
を一端から剥離するとステアリン酸記録層が下部のクロ
ム層側と上部の保護層側に分離し、上部は保護層といっ
しょに剥離された。このふたつに分かれたステアリン酸
記録層について前記と同様X線回折を測定した。上部保
護層側のX線回折を第10図に、下部Cr、lW側のX
線回折を第11図に示す。第10図の保護層側のステア
リン酸結晶収は第8図の記録前のX線回折図と一致する
のに対し、第11図のCr層側のステアリン酸結晶には
、第9図の記録後の記録層全体のX線回折に現われたと
同様の短面間隔に基づく回折線(2θ=21.6°)が
認められた。
Next, when the upper protective layer of the recording medium recorded under the condition (2) is peeled off from one end, the stearic acid recording layer is separated into the lower chromium layer side and the upper protective layer side, and the upper part is separated together with the protective layer. Peeled off. X-ray diffraction was measured in the same manner as above for the stearic acid recording layer divided into two parts. Figure 10 shows the X-ray diffraction on the upper protective layer side, and the X-ray diffraction on the lower Cr and lW side.
Line diffraction is shown in FIG. The stearic acid crystal yield on the protective layer side in FIG. 10 matches the X-ray diffraction pattern before recording in FIG. 8, whereas the stearic acid crystal yield on the Cr layer side in FIG. A diffraction line (2θ=21.6°) based on the short plane spacing similar to that which appeared in the subsequent X-ray diffraction of the entire recording layer was observed.

以上の結果より、ステアリン酸薄膜状結晶への記録が結
晶の配向方向の変化によるものであること、この条件で
のレーザー光照射では記O層の全体が変化して記録され
ているのではな(、Cr71側の一部分だけが変化して
記録されていることがわかる。
From the above results, it can be concluded that the recording on the stearic acid thin film crystal is due to a change in the orientation direction of the crystal, and that the entire O layer is changed and recorded under these conditions when irradiated with laser light. (It can be seen that only a part of the Cr71 side is changed and recorded.

レーザー光を照射したとき記録層中にどのような温度分
布が形成されているかは実際に測定することができない
ためレーザー光の強度分布、記録媒体各層の光吸収と熱
伝導を考慮し、各層の厚さ、光吸収特性、熱伝導率、比
熱などの熱特性を表−1に示す値とし、記録層中の温度
分布をシュミレーションすると、第12図に示すような
結果が得られた。この記録媒体では、レーザー光はCr
Mのみで吸収されて熱に変わり、この熱が記録層に伝わ
る。
Since it is not possible to actually measure what kind of temperature distribution is formed in the recording layer when laser light is irradiated, the intensity distribution of the laser light and the light absorption and heat conduction of each layer of the recording medium are taken into account to determine the temperature distribution of each layer. When the temperature distribution in the recording layer was simulated using the thermal characteristics such as thickness, light absorption characteristics, thermal conductivity, and specific heat as shown in Table 1, the results shown in FIG. 12 were obtained. In this recording medium, the laser beam is Cr
It is absorbed only by M and turns into heat, and this heat is transmitted to the recording layer.

この条件では照射時間が非常に短かく、また記録層の熱
伝導率も小さいため、記録層のCr層に近い部分だけが
昇温しで、この部分だけが溶融するが、レーザー光の照
射が止まると直ちに冷却され再び結晶化し、記録される
ものと考えられる。これは前記の実験結果と一致する。
Under these conditions, the irradiation time is very short and the thermal conductivity of the recording layer is also low, so only the portion of the recording layer close to the Cr layer will heat up and only this portion will melt. It is thought that as soon as it stops, it cools down, crystallizes again, and records it. This is consistent with the experimental results described above.

表−ル −ザー光波長:830nm 次に、(1)の条件で記録した記録媒体に対して、直径
5−に集光した波長780nmの半導体レーザー光を記
録媒体面での強度が1.51となるように連続点灯し、
線速50ma+/seeの速度で、すでに形成されてい
る記録部と重なるように直線状に走査した。
Table - Loser light wavelength: 830 nm Next, on the recording medium recorded under the conditions (1), a semiconductor laser beam with a wavelength of 780 nm focused at a diameter of 5 mm was applied to the recording medium with an intensity of 1.51 nm. It lights up continuously so that
Scanning was performed linearly at a linear speed of 50 ma+/see so as to overlap the already formed recording portion.

この記録媒体を反射偏光顕微鏡で観察すると、5趨φの
レーザー光が走査した部分は、1μmφのレーザー光で
形成された記録が約2.5μ署の幅で帯状に消去されて
いた。
When this recording medium was observed with a reflective polarizing microscope, it was found that in the area scanned by the 5-line laser beam, the record formed by the 1-μm-diameter laser beam was erased in a band shape with a width of about 2.5 μm.

以上の結果より、ステアリン酸結晶からなる記録層の厚
さ方向の一部に形成された記録は、レーザー光を重ねて
照射することにより消去できることがわかった。
From the above results, it was found that records formed in a part of the recording layer made of stearic acid crystals in the thickness direction can be erased by irradiating the recording layer with laser light in a layered manner.

実施例2 光学研磨された直径4インチ(101,6ma+)、厚
さ1.2mmのガラスディスク上に、光熱変換層である
Cr層を真空蒸着により設けた。厚さは約950人であ
った。この基板を温度95℃にコントロールしたホット
プレート上にCr層を上にしてのせ、その丘にベヘン酸
(シグマ社製:純度99%)を少量のせ溶融させた。厚
さ約0,1o+iのガラス板をベヘン酸融液上にかぶせ
、融液を全面に均一に拡げてはさみ込んだ。次に、この
ディスクをホットプレート上でゆっくり一方向に動かし
、ホットプレートからはずしていった。ディスクはホッ
トプレートからはずれた部分から温度が下がり、この部
分からベヘン醜融液層の結晶化が始まり、徐々に一方向
に拡がって全体が結晶化した。この結晶膜上にポリビニ
ルアルコールの1(ht%水溶液を塗布した。以上の操
作により、Cr層上にほぼ−様な方向に配向したステア
リン酸の薄膜状結晶よりなる記録層(厚さ約0.6μ1
1)と、その上にポリビニルアルコールよりなる保護層
(厚さ約0.3趨)が形成された。
Example 2 A Cr layer as a light-to-heat conversion layer was provided by vacuum deposition on an optically polished glass disk having a diameter of 4 inches (101.6 ma+) and a thickness of 1.2 mm. The thickness was approximately 950 people. This substrate was placed on a hot plate whose temperature was controlled to 95° C. with the Cr layer facing upward, and a small amount of behenic acid (manufactured by Sigma, purity 99%) was placed on the top and melted. A glass plate with a thickness of about 0.1o+i was placed over the behenic acid melt, and the melt was spread uniformly over the entire surface and sandwiched. Next, the disk was moved slowly in one direction on the hot plate and removed from the hot plate. The temperature of the disk decreased from the part removed from the hot plate, and the crystallization of the behen melt layer started from this part, gradually spreading in one direction and crystallizing the entire disc. A 1 (ht%) aqueous solution of polyvinyl alcohol was coated on this crystal film. Through the above operations, a recording layer (with a thickness of approximately 0.5 h) consisting of thin film-like crystals of stearic acid oriented in a substantially --like direction was formed on the Cr layer. 6μ1
1) and a protective layer (about 0.3 mm thick) made of polyvinyl alcohol was formed thereon.

このようにして作成した記録媒体に、記録時のレーザー
光の強度を6mwとした以外は実施例1の照射条件(1
)と同様に照射して記録を行なったところ。記録は偏光
顕微鏡で明瞭にi察できた。
The thus prepared recording medium was subjected to the irradiation conditions of Example 1 (1.
) Irradiated and recorded in the same way. The recording could be clearly observed using a polarizing microscope.

次に、実施例1と同様に、直径5μmに集光した半導体
レーザー光を強度21117となるように連続点灯し、
線速50mm/seeの速度で、すでに形成されている
記録部と重なるように直線状に走査した。その後、偏光
顕微鏡で観察すると、5−φのレーザー光が走査した部
分は、1paφのレーザー光により形成された記録が、
約3μ徊の幅で帯状に消去されていた。
Next, as in Example 1, a semiconductor laser beam focused to a diameter of 5 μm was continuously turned on with an intensity of 21117,
Scanning was performed in a straight line at a linear speed of 50 mm/see so as to overlap the recorded portion that had already been formed. Afterwards, when observed with a polarizing microscope, the area scanned by the 5-φ laser beam was found to have a record formed by the 1-paφ laser beam.
It was erased in a band shape with a width of about 3μ.

比較例1 実施例1と全く同様にして、ステアリン酸の薄膜状結晶
からなる記録層を有する記録媒体を作成した。
Comparative Example 1 A recording medium having a recording layer made of thin film crystals of stearic acid was prepared in exactly the same manner as in Example 1.

この記録媒体に直径5μ−に集光した波長780nmの
半導体レーザー光を記録媒体面で強度が7.10.14
mVとなるように連続点灯し線速200mm/seeで
直線状に走査した。この記録媒体を偏光顕微鏡でa察す
ると、記録強度が7mWでは幅が約2μl、10n+W
では約4μ―、14Wでは約5癖のライン状の記録が明
瞭なコントラストで観察できた。
A semiconductor laser beam with a wavelength of 780 nm focused to a diameter of 5 μm is applied to this recording medium with an intensity of 7.10.14 at the surface of the recording medium.
It was lit continuously so that the voltage was mV, and scanning was performed in a straight line at a linear velocity of 200 mm/see. When observing this recording medium with a polarizing microscope, the width is approximately 2 μl at a recording intensity of 7 mW, 10n+W.
A line-shaped record of about 4 μ- and about 5 lines at 14 W could be observed with clear contrast.

次に、この記録媒体に対して実施例1と同様に直径5I
JIaに集光したレーザー光を記録媒体面での強度が1
 、5mwとなるように連続点灯し、線速50mm/s
eeの線速で、前の記録ラインと直交する方向に走査し
たところ、すでに形成されているライン状の記録部と後
から照射したレーザー光が交叉した部分を偏光顕微鏡で
i察すると、10aWと14aWの強度で記録したライ
ンは全(変化がなく、消去されていなかった。また7a
llの強度で記録したラインは、交叉した部分が若干く
びれでおり、ラインの周辺部でわずかに消去が起きてい
るのが認められた。この結果から、実施例1の記録条件
(1paφ、線速3500〜4000mm/5ec)で
記録したものは完全に消去できたものに対し、この比較
例の条件(5趨φ、線’i!l 200mm/5ec)
で記録したものはほとんど消去できないことがわかった
Next, as in Example 1, a diameter of 5I was applied to this recording medium.
The laser beam focused on JIa has an intensity of 1 on the recording medium surface.
, continuous lighting at 5mW, linear speed 50mm/s
When scanning was performed at a linear velocity of ee in a direction perpendicular to the previous recording line, the area where the already formed line-shaped recording part intersected with the laser beam irradiated from behind was observed with a polarizing microscope and found to be 10aW. All lines recorded at an intensity of 14aW (no change, not erased), and 7aW
The line recorded at the intensity of 11 was slightly constricted at the intersection, and slight erasure was observed at the periphery of the line. From this result, it was found that the recordings recorded under the recording conditions of Example 1 (1 paφ, linear velocity 3500-4000 mm/5ec) could be completely erased, whereas those recorded under the conditions of this comparative example (5 lines φ, line 'i!l) 200mm/5ec)
It turns out that most of what is recorded cannot be erased.

記録条件の差にともなう記録層中の温度分布の違いを考
えるため、実施例1と同様に、この比較例の条件で形成
される温度分布をシュミレーションすると第13図のよ
うになった。この条件では、Cr層で発生した熱は記録
層上部にまで伝わり、記録層の厚さ方向全体が溶融温度
以上に達し、記録による結晶状態の変化は、厚さ方向全
体にわたっているものと考えられる。
In order to consider the difference in temperature distribution in the recording layer due to the difference in recording conditions, the temperature distribution formed under the conditions of this comparative example was simulated as in Example 1, and the result was as shown in FIG. Under these conditions, the heat generated in the Cr layer is transmitted to the upper part of the recording layer, reaching the melting temperature or higher throughout the thickness of the recording layer, and the change in crystalline state due to recording is thought to occur throughout the thickness. .

また、記録後の記録媒体上部の保護層を剥離すると保護
層だけがはがれ、残った記録層の結晶膜表面を観察する
と記録部分は微結晶の集合した状態のように見え、記録
層の上部まで熱が伝わり変化が起きていることを示して
いた。
In addition, when the protective layer on the top of the recording medium is peeled off after recording, only the protective layer is peeled off, and when the surface of the crystal film of the remaining recording layer is observed, the recorded area looks like a collection of microcrystals, and the top of the recording layer It showed that heat was being transferred and changes were occurring.

以上の結果より、記録層の厚さ方向の全体の結晶状態が
変化して記録された場合には、記録部の結晶が元の結晶
に戻りにくく、消去が難しいことがわかった。
From the above results, it has been found that when the overall crystal state in the thickness direction of the recording layer is changed and recorded, the crystal in the recorded portion is difficult to return to the original crystal, and erasing is difficult.

〔発明の効果〕〔Effect of the invention〕

本発明の記録方法は、記録層に穴をあけたり、記録層の
表面形状を変化させたりするものではなく、記録層の厚
さ方向の一部分の結晶状態を変化させるか、あるいは相
変化させて記録を行うので、記録時の変化部分が消去の
際に元の状態に戻りやすいため消し残りがなくかつ消去
速度が高速化され、信頼性の高い記録、消去を高速に行
うことが可能となる。
The recording method of the present invention does not involve making holes in the recording layer or changing the surface shape of the recording layer, but instead changes the crystalline state of a portion of the recording layer in the thickness direction or causes a phase change. Since recording is performed, parts that have changed during recording can easily return to their original state during erasing, so there is no unerased area and the erasing speed is increased, making it possible to perform highly reliable recording and erasing at high speed. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に用いる記録媒体の基本的な構成を示
す断面図で、図中1は基板、2は記録層、3は保護層を
示す。 第2図は、レーザー光照射時に記録層中に形成される温
度分布を示す図である。第3図、4図、5図は、それぞ
れ第2図に示す温度分布(a)、(b)、(C)に対応
して形成された記録層中の変化部分4を示す図である。 第6図は、透明基板上に光熱変換層5を設けた記録媒体
に記録した状態を示す図である。第7図は、記録層の厚
さ方向にわたり全体に記録が形成された状態を示す図で
ある。 第8図は、未記録の記録層のX線回折図で、第9図は、
はぼ全面にレーザー光を照射して記録した後の記録層の
X線回折図である。第10図は、全面記録後の記録層を
保護層側と基板側に分離したときの保護層側の記@層の
X線回折図であり、第11図は、基板側の記録層のX線
回折図である。 第12図は、シュミレーションより求めた照射時間0.
25μsecのときの記録層中に形成される温度分布を
示す図で、第13図は、同様に照射時間25μsecの
ときの記録層中に形成される温度分布を示す図である。
FIG. 1 is a sectional view showing the basic structure of a recording medium used in the present invention, in which 1 is a substrate, 2 is a recording layer, and 3 is a protective layer. FIG. 2 is a diagram showing the temperature distribution formed in the recording layer during laser beam irradiation. FIGS. 3, 4, and 5 are diagrams showing changing portions 4 in the recording layer formed corresponding to the temperature distributions (a), (b), and (C) shown in FIG. 2, respectively. FIG. 6 is a diagram showing a state in which information is recorded on a recording medium in which a light-to-heat conversion layer 5 is provided on a transparent substrate. FIG. 7 is a diagram showing a state in which recording is formed over the entire thickness of the recording layer. Figure 8 is an X-ray diffraction diagram of an unrecorded recording layer, and Figure 9 is an X-ray diffraction diagram of an unrecorded recording layer.
2 is an X-ray diffraction diagram of a recording layer after recording by irradiating the entire surface with a laser beam. FIG. Figure 10 is an X-ray diffraction diagram of the recording layer on the protective layer side when the recording layer is separated into the protective layer side and the substrate side after full-surface recording, and Figure 11 is an X-ray diffraction diagram of the recording layer on the substrate side. It is a line diffraction diagram. Figure 12 shows the irradiation time 0.
FIG. 13 is a diagram showing the temperature distribution formed in the recording layer when the irradiation time is 25 μsec, and FIG. 13 is a diagram showing the temperature distribution formed in the recording layer when the irradiation time is 25 μsec.

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも基板と、熱によって可逆的な結晶状態
の変化または相変化を起こして記録、消去を行なう記録
層を有する記録媒体を用い、記録層の厚さ方向の一部分
の結晶状態を変化させて記録するか、または相変化させ
て記録することを特徴とする記録方法。
(1) Using a recording medium that has at least a substrate and a recording layer that performs recording and erasing by causing a reversible crystal state change or phase change by heat, the crystal state of a portion of the recording layer in the thickness direction is changed. A recording method characterized by recording by changing the phase or recording by changing the phase.
(2)上記記録層が有機薄膜状結晶であるか、または、
これを含むものである記録媒体を用いる請求項(1)記
載の記録方法。
(2) the recording layer is an organic thin film crystal, or
The recording method according to claim 1, wherein a recording medium containing this is used.
(3)上記記録層が脂肪酸または脂肪酸誘導体、安息香
酸誘導体、n−アルカンまたはその誘導体の薄膜状結晶
であるか、高分子液晶の層である記録媒体を用いる請求
項(1)記載の記録方法。
(3) The recording method according to claim (1), wherein a recording medium is used in which the recording layer is a thin film crystal of a fatty acid or a fatty acid derivative, a benzoic acid derivative, an n-alkane or a derivative thereof, or a layer of polymer liquid crystal. .
JP1296990A 1989-11-15 1989-11-15 Recording Pending JPH03158287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1296990A JPH03158287A (en) 1989-11-15 1989-11-15 Recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1296990A JPH03158287A (en) 1989-11-15 1989-11-15 Recording

Publications (1)

Publication Number Publication Date
JPH03158287A true JPH03158287A (en) 1991-07-08

Family

ID=17840825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1296990A Pending JPH03158287A (en) 1989-11-15 1989-11-15 Recording

Country Status (1)

Country Link
JP (1) JPH03158287A (en)

Similar Documents

Publication Publication Date Title
US5185194A (en) Heat-mode recording medium
JP3136153B2 (en) Optical recording medium and manufacturing method thereof
US4633273A (en) Information recording medium including antimony-selenium compounds
JPS63132090A (en) Write-erasing method on optical recording element
US6090508A (en) Optically anisotropic recording medium and method of recording and erasing information using the same
JPH03158287A (en) Recording
JPH03293194A (en) Method for erasing record
JPH03158288A (en) Recording
JPH03158286A (en) Recording
JP3054769B2 (en) Recording / erasing method
JP2583221B2 (en) Optical recording medium
JP3030436B2 (en) Recording medium and method of manufacturing the same
JPH04296593A (en) Recording method
JPH0316786A (en) Recording medium and recording method
JPH03152736A (en) Optical information recording medium and protective film for optical information recording medium
JPH0476820A (en) Method for erasing recording
JP2941703B2 (en) Information recording method and information recording device
JPH0476821A (en) Method for erasing recording
JPH04294192A (en) High density recording method
JPH04294190A (en) Record medium and method for erasing record
JPH04294191A (en) High density recording method
JPH031340A (en) Recording medium and production thereof
JP2995681B2 (en) recoding media
JPH03194741A (en) Recording medium and production thereof
JPH03197086A (en) Recording medium