JPH03157817A - Optical recording device - Google Patents

Optical recording device

Info

Publication number
JPH03157817A
JPH03157817A JP1296531A JP29653189A JPH03157817A JP H03157817 A JPH03157817 A JP H03157817A JP 1296531 A JP1296531 A JP 1296531A JP 29653189 A JP29653189 A JP 29653189A JP H03157817 A JPH03157817 A JP H03157817A
Authority
JP
Japan
Prior art keywords
recording
recording medium
optical
substance
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1296531A
Other languages
Japanese (ja)
Inventor
Noboru Yamada
昇 山田
Isao Sato
勲 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1296531A priority Critical patent/JPH03157817A/en
Priority to US07/555,639 priority patent/US5255260A/en
Priority to KR1019900011248A priority patent/KR950001234B1/en
Priority to DE69022792T priority patent/DE69022792T2/en
Priority to EP94202946A priority patent/EP0639830B1/en
Priority to EP90308112A priority patent/EP0410704B1/en
Priority to DE69030960T priority patent/DE69030960T2/en
Priority to CA002022005A priority patent/CA2022005C/en
Publication of JPH03157817A publication Critical patent/JPH03157817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To form a thinner protective layer or to use no protective layer by dispersing such a phase-transition material which controllers optical properties of the medium in another material having higher melting point, thereby shutting influences from outside. CONSTITUTION:The first material 19 shows reversible or irreversible changes among plural states which are detectable, according to the irradiation conditions of laser light, and is dispersed in the form of fine particles into the second material 18 which is transparent and has higher melting point than that of the first material 19 to form the information recording thin film. By embedding the first material 19 which contributes to recording in the material 18 of higher melting point, the first material 19 can be protected from outside atmosphere without using a special protective layer. Thereby, the total thickness of the recording medium can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ光線等の高密度エネルギー束を用いて記
録媒体上に高密度な情報記録を行なう光記録装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical recording device that records high-density information on a recording medium using a high-density energy flux such as a laser beam.

従来の技術 光記録媒体が従来の磁気記録媒体に比べてはるかに高密
度に記録が可能であることはよく知られている。例えば
 面記録密度に関して磁気記録媒体と光記録媒体を比較
すると、磁気記録の場合には出力を確保する必要から、
あるいはトラッキング精度の限界の問題からトラックピ
ッチを記録マークピッチに比較してひとけた以上大きく
しなければならないのに対して、光記録では基板上に光
ガイド用の溝を予め形成しておく等の方法でトラックピ
ッチを光の波長オーダーにまで詰めることができ、これ
によって磁気記録媒体の数倍からIO倍程度の高密度が
容易に達成できる ところが記録装置としての容量という点で比較すると、
面記録密度で見られるような大きな差はなt、%  こ
れ(よ 光記録装置の場合には同時にアクセスできる記
録面が1面だけであるのに比べて、磁気記録装置におい
ては記録媒体を何枚も積層したスタック構造とフライイ
ングヘッドと呼ばれる小形の磁気ヘッドを採用すること
によって同時に多くの面をアクセス可能し 装置として
の容量を大きくしているためである。
BACKGROUND OF THE INVENTION It is well known that optical recording media are capable of recording at a much higher density than conventional magnetic recording media. For example, when comparing magnetic recording media and optical recording media in terms of areal recording density, in the case of magnetic recording, it is necessary to ensure the output;
Alternatively, due to the problem of tracking accuracy limits, the track pitch must be an order of magnitude larger than the recording mark pitch, whereas in optical recording, grooves for light guides are formed on the substrate in advance, etc. When compared in terms of capacity as a recording device, the track pitch can be reduced to the order of the wavelength of light using this method, and by doing so, it is possible to easily achieve high densities from several times to IO times that of magnetic recording media.
There is no such large difference as seen in the areal recording density.In the case of optical recording devices, only one recording surface can be accessed at the same time, but in the case of magnetic recording devices, the recording medium can be This is because by using a stacked structure in which many sheets are stacked and a small magnetic head called a flying head, many surfaces can be accessed at the same time, increasing the capacity of the device.

光記録媒体そのものの、記録密度を飛躍的に高めるため
の手段は記録メカニズムを従来のヒートモード記録から
フォトンモード記録へと転換することと言われており、
PHB (フォトケミカルホールバーニング)による波
長多重配電 フォトクロミック材料を用いた多層膜記録
等が提案されていも しかしながら現在のとこへ 前者
は極低温での使用が前提であること、後者は波長可変レ
ーザまたは波長の異なる複数のレーザが必要な上に感度
が紫外域にあって半導体レーザの開発が困難視されてい
ること啄 装置として考えた場合に実用的なレベルには
遠い状態に有も 発明者等はこのような状況に鑑へ すでに大容量光記録
装置に関する出願を行なっている(特願平1−9774
1号)。これ(よ 光ディスクに単板構造を採用し ど
ちらの面に対しても記録膜側から記録光を入射する構造
を採用することと、浮上型の光学的記録ヘッドを用いる
ことで高開口数(以下N、ん と称する)対物レンズの
使用を可能とし従来に比較して高密度な記録を可能とす
るものであり九 この場合、両面が同時にアクセス可能
な記録媒体とすることで記録媒体を効率よく積層するこ
とが可能になり、装置としての飛躍的な容量アップが可
能となる。さらく 気密ボックスに閉じ込めることでゴ
ミ、埃の影響を排除すると共に 記録媒体の保護層を薄
くしても外気の影響を受けにくくできるという点につい
ても既に開示している。さらに記録媒体としては単一の
レーザビームによるオーバライトが可能なことがら相変
化材料が有力であることも開示していも発明が解決しよ
うとする課題 単板構造のディスクと浮上型の光記録ヘッドとを用いる
高密度光記録装置の特徴は記録媒体と光記録ヘッドとの
間隔が高々数百ミクロンメートルと短いことであり、こ
れによって高N、  A、  対物レンズが使えるとい
う利点が生じるものであもただし −ノjでは1ノンズ
のワーキングデイスタンスが短くなるため従来のように
記録膜を保護するノ、−めの厚い保護板が使えないとい
う課題があったすなわち、従来例においては光記録ヘッ
ドと媒体が衝突することを想定j7た場合の記録膜の機
械的な強度の不尽 ならびに外気と記録薄膜とを隔てる
役割をT、たしてきた保護板がないことによる耐湿ヤ1
の低Fが課題であっμ 従来例にはこれを解決するため
に 記録膜の表面に記録膜を構成する物jd、よりも硬
い数置ミクロンメートル以−トの物質層を設けることが
開示されている力(厚い保護層を作るためには真空蒸着
、スパッタリング等の方法では時111.コスト等の面
から実際的ではなく、スピンコードのような方法では膜
厚の制孤 表面の中”潤性の確保等が容易ではなかった
本発明は上述[7たように高密度光記録装置を実現する
十での課題を解決し、耐久@【 信頼性に優れた光記録
装置を提供すること目的とするものである。
It is said that the means to dramatically increase the recording density of the optical recording medium itself is to change the recording mechanism from conventional heat mode recording to photon mode recording.
Although wavelength multiplexing power distribution using PHB (photochemical hole burning) and multilayer film recording using photochromic materials have been proposed, the former requires use at extremely low temperatures, and the latter requires wavelength tunable lasers or wavelength The inventors believe that the development of semiconductor lasers is considered difficult because multiple lasers with different sensitivities are required, and the sensitivity is in the ultraviolet region. In view of this situation, we have already filed an application for a large-capacity optical recording device (Japanese Patent Application No. 1-9774).
No. 1). This (Yo) adopted a single-plate structure for the optical disk, adopted a structure in which the recording light is incident from the recording film side on both surfaces, and used a floating optical recording head. It enables the use of an objective lens (referred to as N, N) and enables higher density recording than conventional methods. This makes it possible to dramatically increase the capacity of the device.Furthermore, by enclosing it in an airtight box, it eliminates the influence of dirt and dust, and even if the protective layer of the recording medium is made thin, it is possible to dramatically increase the capacity of the device. It has already been disclosed that the recording medium can be made less susceptible to the influence.Furthermore, it has been disclosed that phase change materials are effective as recording media because they can be overwritten by a single laser beam. A characteristic of high-density optical recording devices that use a single-disk structure disk and a floating optical recording head is that the distance between the recording medium and the optical recording head is short, at most a few hundred micrometers. N, A. This has the advantage of being able to use an objective lens, but since the working distance of the 1-nons is shorter in the case of -j, a thicker protective plate can be used to protect the recording film as in the past. In other words, in the conventional example, the mechanical strength of the recording film was insufficient in the event of a collision between the optical recording head and the medium, and the role of separating the recording thin film from the outside air was Moisture resistance 1 due to the lack of a protective plate
In order to solve this problem, the conventional example discloses providing a layer of material on the surface of the recording film, which is harder than the material that constitutes the recording film, with a thickness of several tens of micrometers or more. In order to create a thick protective layer, methods such as vacuum evaporation and sputtering are impractical due to cost reasons, and methods such as spin cord are used to control the thickness of the film. The purpose of the present invention is to solve the problems in realizing a high-density optical recording device as described above, and to provide an optical recording device with excellent durability and reliability. That is.

課題を解決するための手段 本発明(社 上述の課題を解決するために L〕−ザ光
線の照射条件の変化に応じて検出可能な複数の状態間を
可逆的または非可逆的に変化する第1の物質を、光学的
に透明でかつ上記第1の物質に比較)〜で融点の高い第
2の物質中に微粒子として分散してなる情報記録薄膜を
単板基板の両面に備えた記録媒体を用1.X、前記記録
媒体を回転または移動させるための手段と、前記記録媒
体の両側の面にそれぞれ近接して配置さね、前記記録媒
体の回獣 移動に伴い周囲の環境ガスの抵抗によって所
定の距離を保ちつつ浮上(7前記記録媒体の各記録薄膜
上に情報に応じた記録を行なう光学的記録ヘッドとを少
なくとも備える光記録装置であ4また本発明は1.記情
報記録媒体を積み重ねた構造の積層記録媒体を用いた光
記録装置である。
Means for Solving the Problems The present invention (Company) In order to solve the above-mentioned problems. 1. A recording medium comprising an information recording thin film on both sides of a single substrate, which is formed by dispersing the material No. 1 as fine particles in a second material that is optically transparent and has a high melting point (compared to the first material above). Use 1. X. A means for rotating or moving the recording medium, and a means for rotating or moving the recording medium, disposed in close proximity to both sides of the recording medium, and rotating or moving the recording medium at a predetermined distance according to the resistance of surrounding environmental gas as the recording medium moves. (7) An optical recording device comprising at least an optical recording head for recording information in accordance with information on each recording thin film of the recording medium; This is an optical recording device using a laminated recording medium.

また本発明は上記記録媒(衣 積層記録媒体を気密ボッ
クス中に格納した光記録装置である。
The present invention also provides an optical recording device in which the above recording medium (layered recording medium) is stored in an airtight box.

作用 光学的特性の変化を実質的に支配する相変化材料を融点
の高い別の物質中に分散することによって外気の影響を
遮断することが可能となり保護層を薄くJること、さら
には保護層の不要な記録媒体を構成することが可能にな
る。保護層を薄くする、または不要化することで記録層
の光学的平滑性を向上することができ信号品質を向上す
ることができる。同時番へ 光記録ヘッドと記録媒体と
の間隔が広がり衝突の危険性を低減することができる。
By dispersing the phase change material that substantially controls the changes in the optical properties in another substance with a high melting point, it becomes possible to block the influence of the outside air, making it possible to make the protective layer thinner, and furthermore, to make the protective layer thinner. This makes it possible to configure unnecessary recording media. By making the protective layer thinner or making it unnecessary, the optical smoothness of the recording layer can be improved and signal quality can be improved. To the same number The distance between the optical recording head and the recording medium is increased, reducing the risk of collision.

また 記H媒体を単板化することで積層構造が実用的な
厚さで構成できる。総合して信頼性の高い記録特性に優
れた光記録装置が実現できる。
Furthermore, by making the medium described in H into a single plate, a laminated structure can be constructed with a practical thickness. Overall, an optical recording device with high reliability and excellent recording characteristics can be realized.

また父密ボックスに格納することで外気の影響のない安
定な動作が可能になる。
Also, by storing it in a sealed box, stable operation is possible without being affected by outside air.

実施例 以−F、図面を参照(7ながら本発明の光記録装置の一
実施例を説明ずも 第1図は本発明の光記録装置の構成図である。
Embodiments 1-F, with reference to the drawings (7) Although one embodiment of the optical recording apparatus of the present invention will not be described, FIG. 1 is a block diagram of the optical recording apparatus of the present invention.

記録媒体部4は回転軸6を介してモーター5に固定され
 高速に 例えば1800−540Orpm程度の回転
数で回転駆動される。記録媒体部の両側の一トにはスラ
イダー7と対物レンズ8とミラー9あるいは偏向プリズ
ム9からなる小型の光学的記録ヘッド10が配備され 
媒体部の回転に伴って一定の高さに浮上するしくみにな
っている。
The recording medium section 4 is fixed to a motor 5 via a rotating shaft 6, and is driven to rotate at high speed, for example, at a rotation speed of about 1800-540 rpm. A small optical recording head 10 consisting of a slider 7, an objective lens 8, and a mirror 9 or a deflection prism 9 is disposed on one side of the recording medium section.
The mechanism is such that it floats to a certain height as the medium section rotates.

前記ミラーまたは偏向プリズム部には媒体部の外周部に
りもさらに外側に設置された1ノーザー(図面省略)か
ら放出されたレーザー光11が供給され 対物レンズに
よって記録層2へと絞り込まれ記録再生書き換えを等を
行なう。浮上量は一定の高さに決定されることからレー
ザー光を記録媒体部上にフォーカッシングすることがで
きる。
The mirror or deflection prism section is supplied with a laser beam 11 emitted from a noser (not shown) installed further outside the outer periphery of the medium section, and focused by an objective lens onto the recording layer 2 for recording and reproduction. Perform rewriting, etc. Since the flying height is determined to be a constant height, the laser beam can be focused onto the recording medium section.

本発明の第1のポイントは記録媒体部の構造ならびに記
録層の種類の選定にある。記録媒体部4は基板lの両側
の表面上に記録層2を設(す、さらに本発明においては
必ずしも必要ではない力(必要に応じて保護層3を形成
17た構成をとも 第2図に記録層の基本構成を示す。
The first point of the present invention lies in the structure of the recording medium section and the selection of the type of recording layer. The recording medium section 4 has a structure in which a recording layer 2 is provided on both surfaces of the substrate 1 (and a protective layer 3 is formed as needed (17), which is not necessarily required in the present invention). The basic configuration of the recording layer is shown.

記録層2はいわゆるマトリクス構造ともいえる構造にな
っていもすなわち本発明においては記録薄膜と17で1
ノーザ光線の照射条件の変化に応じて、検出可能な複数
9− 0− の状態間を可逆的または非可逆的に変化する第1の物質
19を、光学的に透明でかつ上記第1の物質に比較して
融点の高い第2の物質18中に微粒子として分散してな
る情報記録薄膜を適用する。
Although the recording layer 2 has a structure that can be called a so-called matrix structure, in other words, in the present invention, the recording thin film and 17
The first substance 19 that changes reversibly or irreversibly between a plurality of detectable states 9-0- according to changes in the irradiation conditions of the norther beam is optically transparent and the first substance described above. An information recording thin film formed by dispersing fine particles in a second substance 18 having a higher melting point than that of the second substance 18 is applied.

実質的に情報の記録に寄与する第1の物質19を融点の
高い第2の物質18中に封鎖してしまうことで特別に保
護層を用いずとL 第1の物質19を外気から遮断する
効果を得ることができ、記録媒体全体の厚さを低減する
ことができも 記録層2そのものの厚さは高々500ナ
ノメートル程度であって従来の保護層を含めた厚さ(数
百ミクロンメートル)に比較して3桁も薄くすることが
可能であa もちろん更に耐湿性を向上するという目的
で先の特許出願(特願平1−97741)に開示したよ
うな保護層 耐摩耗層を追加しでも差し支えなし℃ た
だしこの場合にも記録層全体の厚さは数十ミクロンメー
トルと従来より1桁程度薄く、かつ十分な効果が期待で
きる。
By sealing the first substance 19, which substantially contributes to information recording, in the second substance 18 with a high melting point, the first substance 19 can be shielded from the outside air without using a special protective layer. However, the thickness of the recording layer 2 itself is approximately 500 nanometers at most, and the thickness including the conventional protective layer (several hundred micrometers) ), it is possible to make it three orders of magnitude thinner than the previous patent application (Japanese Patent Application No. 1-97741), and of course, to further improve moisture resistance, a protective layer and a wear-resistant layer are added as disclosed in the previous patent application (Japanese Patent Application No. 1-97741). However, even in this case, the thickness of the entire recording layer is several tens of micrometers, which is about an order of magnitude thinner than the conventional one, and a sufficient effect can be expected.

基板1は表面が光学的に平滑なこと、反り、歪等ができ
るだけ少ないことが大切であって、例え11 ば反りの大きさは最大50ミクロンメートル以下、でき
れば10ミクロンメートル以下であることが望ましい。
It is important for the substrate 1 to have an optically smooth surface and to have as little warp, distortion, etc. as possible. .

また表面荒さとしては50ナノメートル以下、より安定
なドライブのためには10ナノメートル以下であること
が望ましい。材質としてはガラス板、銅板、アルミニウ
ム板等の金属板、PMMA板 ポリカーボネイト板、塩
化ビニール板等の樹脂板等を用いることができる。ただ
し本発明は単板で構成することが根本であるた八 強度
や剛性が必要という理由からガラス板 金属板が好まし
く℃ 厚さは従来の光ディスクのように1゜2mmにこ
だわる必要は全くなくできるだけ薄くすることで全体の
大きさを小さくできるし やや厚くすることで安定な回
転を確保することもできも 金属板 樹脂板であれば0
.3mmから5mへ ガラス板であれば0.5mmから
5mm程度が適当である。基板表面には記録再生時に記
録光再生光のトラッキングを行なう目的でスパイラル焦
 同心円状の源 信号ピット列をあらかじめ設けておく
。 トラッキングの方法は従来の光ディス2− クドライブに用いられている方法を適用することができ
も 第1図には代表的に溝12を形成した場合を記載し
ていも 溝12が基板1表面に直接形成可能という点か
らは金属板に比較して樹脂板ガラス板が優れていも 金
属板の場合には2P法によって溝を形成することができ
も 単板両面構造にするのは2枚を張り合わせるよりも
全体の厚さを薄くすることができるという理由からであ
り、後述するように積層記録体を用いる場合には装置の
小型4K 実用化という面から特に重要な構成要件とな
ム 第2図において記録層2を形成する第1の物質18とし
ては形状変化が伴わない記録ができへ光磁気記録のよう
にバイアス磁界を必要とせず光のみを用いて記録再生が
できることから両面の同時使用が可能にな4 他の物質
中に分散しても連続体の場合と同様の効果が期待できる
といういくつかの観点から特に相変化材料が有効である
。レーザー光線の照射条件によって例えばアモルファス
相と結晶相の間アモルファス相と準安定な結晶相との肌
 結晶相と別の結晶相との間で相変化を生じる薄膜であ
ってGe−Te、 Ge−Te−3n、 Ge−Te−
8b、 Ge5b−Te−Pd、 Ge−Te−B1.
 Ge−Te−3b−3e、 Bi −3b−Te−3
e、 Ge−Te−3n−Au、 Ge−8e−Te、
 5b−3e、 5b−3e−Te、 In−Te、 
5b−Te、 In−8e、 5b−8e、 In−8
e−Tl、 In−3e−Tl−Co、 Ga−Te−
8e、Te−0−Ge−8n、 Te−0−Ge−3n
−Au、 In−Te−Au等のテルノにセレンをベー
スとする薄[I  Ga−8b、In−8b、Au−3
b。
Further, the surface roughness is desirably 50 nanometers or less, and for a more stable drive, 10 nanometers or less. As the material, metal plates such as glass plates, copper plates, and aluminum plates, resin plates such as PMMA plates, polycarbonate plates, and vinyl chloride plates can be used. However, since the basic principle of the present invention is to use a single plate, it is preferable to use a glass plate or a metal plate because of the need for strength and rigidity.There is no need to stick to a thickness of 1.2 mm, as is the case with conventional optical discs. By making it thinner, you can reduce the overall size, and by making it a little thicker, you can ensure stable rotation. Metal plate If it is a resin plate, it is 0.
.. From 3mm to 5m If it's a glass plate, about 0.5mm to 5mm is appropriate. Spiral concentric source signal pit rows are provided in advance on the substrate surface for the purpose of tracking the recording and reproducing light during recording and reproducing. As for the tracking method, the method used in conventional optical disk drives can be applied. Although a resin plate glass plate is superior to a metal plate in that it can be directly formed on a metal plate, grooves can be formed using the 2P method in the case of a metal plate, but a single-sided double-sided structure is achieved by laminating two sheets together. This is because the overall thickness can be made thinner than when using a multilayer recording medium, and as will be described later, when using a stacked recording medium, this is an especially important component from the perspective of practical use of compact 4K devices. In the figure, the first material 18 that forms the recording layer 2 can record without changing its shape. Unlike magneto-optical recording, it does not require a bias magnetic field and can record and reproduce using only light, so both sides can be used simultaneously. 4. Phase change materials are particularly effective from several points of view, such as the fact that even when dispersed in other substances, the same effects as in the case of a continuum can be expected. A thin film that undergoes a phase change depending on the laser beam irradiation conditions, for example, between an amorphous phase and a crystalline phase, between an amorphous phase and a metastable crystalline phase, or between a crystalline phase and another crystalline phase, such as Ge-Te, Ge-Te. -3n, Ge-Te-
8b, Ge5b-Te-Pd, Ge-Te-B1.
Ge-Te-3b-3e, Bi-3b-Te-3
e, Ge-Te-3n-Au, Ge-8e-Te,
5b-3e, 5b-3e-Te, In-Te,
5b-Te, In-8e, 5b-8e, In-8
e-Tl, In-3e-Tl-Co, Ga-Te-
8e, Te-0-Ge-8n, Te-0-Ge-3n
- Selenium-based thin [I Ga-8b, In-8b, Au-3
b.

Ge−8b、 Cu−3b、 B1−3b、 Zn−3
b、 Ag−3b等のアンチモンをベースとする薄1艮
Ag−Zn等金属−金属間でのバンド構造の変化による
反射率の差を利用する薄膜等が用いられる。とりわ法 
単一レーザビームによるオーバライトの可能なものとし
て、GeTe、 Ge5bTe、In5bTe、In5
eTICc4 5bSa、  GaSbの8栗 なかで
もGe5bTe系が効果的である。上記相変化物質を分
散する第2の物質18としては上記第1の物質19の融
点よりも高い融点を有し 沸点が高く、かつ使用光源の
波長に対して光学的に透明なもへ さらには硬度が高い
系を選属 第1の物質19はその融点が高々800℃で
あることを考慮すれば第2の物質の融点はそれ以上に設
定すべきであって13− 14− 以下のものが使用できる。−4なわち、5i02. T
iO2゜A 1203. ZrO2,GeO2,Ta2
05等の酸化悦 AIN、 SiN、 BN等の窒化1
扱ZnS、Zn5e等のカルコゲン化悦SiC等の炭化
1勿、  DLC(タゞイアモンドライクカーホ゛ン)
 月tJ、   cBN(4ユービフク窒化ボロン)膜
およびこれらの混合物を用いることができる。保護層を
採用する場合には上記第2の物質18をそのまま使うこ
とが可能である。
Ge-8b, Cu-3b, B1-3b, Zn-3
Thin films based on antimony, such as Ag-3b and Ag-3b, and thin films that utilize the difference in reflectance due to changes in metal-to-metal band structure, such as Ag-Zn, are used. Toriwa method
Overwriting possible with a single laser beam includes GeTe, Ge5bTe, In5bTe, In5
eTICc4 5bSa, GaSb 8 Chestnut Among them, Ge5bTe system is effective. The second substance 18 for dispersing the phase change substance has a melting point higher than that of the first substance 19, has a high boiling point, and is optically transparent to the wavelength of the light source used. Select a system with high hardness Considering that the melting point of the first substance 19 is at most 800°C, the melting point of the second substance should be set higher than that, and the one below 13-14- Can be used. -4, that is, 5i02. T
iO2°A 1203. ZrO2, GeO2, Ta2
Oxidation of 05 etc. Nitridation of AIN, SiN, BN etc. 1
Chalcogenization of ZnS, Zn5e, carbonization of SiC, DLC (diamond-like carbon)
Moon tJ, cBN (4-ubiquitous boron nitride) films and mixtures thereof can be used. When a protective layer is employed, the second material 18 can be used as is.

本発明の第2のポイントは記録媒体4の各面に浮−]−
型の光学的記録ヘッド10を配置する点にある。前記光
学的記録ヘッドlOはスライダー7と対物レンズ8とミ
ラー9とから構成され前記記録媒体4が高速回転するこ
とによって記録媒体の表面」−に数ミクロンメートルか
ら数十ミクロンメートルの空気層を介して浮上すること
になる。半導体レーザ等のレーザ光源を発【7たレーザ
光線11はコリメーターレンズを通じて平行ビームにな
りミラーあるいはプリズム9を介して対物レンズに至り
、記録面、]−に絞りこまれ記録が行なわれもこの場合
、スライダー7に搭載されるレーザ光線5− 11を絞り込むための対物レンズ8は記録媒体の表面ま
での間隔が最小数ミクロン程度にすることができるので
絞りレンズの口径を限界まで小さくすることができる、
同様の理由で従来の0. 5程度から0.6〜0.9程
度N、  A、の大きい対物レンズ8を用いることが可
能になり記録密度の向上を図ることができる。
The second point of the present invention is to float on each surface of the recording medium 4.
The point is to place a type of optical recording head 10. The optical recording head IO is composed of a slider 7, an objective lens 8, and a mirror 9, and as the recording medium 4 rotates at high speed, an air layer of several micrometers to several tens of micrometers is formed on the surface of the recording medium. It will float to the surface. A laser beam 11 emitted from a laser light source such as a semiconductor laser passes through a collimator lens, becomes a parallel beam, reaches an objective lens via a mirror or prism 9, and is focused onto a recording surface, where recording is performed. In this case, the distance from the objective lens 8 mounted on the slider 7 to narrow down the laser beam 5-11 to the surface of the recording medium can be reduced to a minimum of several microns, so the aperture of the aperture lens can be made as small as possible. can,
For the same reason, the conventional 0. It becomes possible to use the objective lens 8 with a large N, A of about 5 to about 0.6 to 0.9, and it is possible to improve the recording density.

スライダー7の材質はある程度の硬度があって軽いこと
という条件から磁気記録に置けるフライングヘッドに用
いられているもの例えば亜鉛をベスとする合金を用いる
ことができるがレンズと同質の材料で形成する、つまり
対物レンズ8とスライダー7を一体のものとして整形す
ることでスライダー7に対するレンズの取り付は精度を
どう確保するかというような問題をクリアーすることが
できる。材質はガラスもしくはプラスチックを用いるこ
とができる力(プラスチックのように比較的摩耗しやす
いものを使う場合には第4図に示したようにスライダー
7の表面に上記DLC膜等の耐摩耗層16を形成するこ
とができる。
The material of the slider 7 can be made of the same material as the lens, such as those used in flying heads for magnetic recording, such as a zinc-based alloy, as it must have a certain degree of hardness and be light. In other words, by forming the objective lens 8 and the slider 7 as one unit, it is possible to solve the problem of how to ensure precision in attaching the lens to the slider 7. As for the material, glass or plastic can be used (if a material that is relatively easily abraded such as plastic is used, a wear-resistant layer 16 such as the above-mentioned DLC film is applied to the surface of the slider 7 as shown in FIG. 4). can be formed.

6− 光記録ヘッドの浮上量(媒体表面とヘッドとの間隔)は
ヘッドと媒体との間の相対的な速度で決定される。従っ
である回転の速度(線速度という見方で)を与えた場合
にはレンズと媒体との間隔は一義的に決定されフォー力
ッシングの必要な(記録 消去、再生を行わすことも可
能となる。線速度を・定に保つ手段としてはいわゆるC
LV方式が有力な方法である。第1図においては光記録
装置として当然必要なトラッキング桟板 記録媒体の輸
送機構等を省略しているがこれらの機構が必要であるこ
とはいうまでもなl、% 本発明の第3のポイントは記録媒体部4と光学的記録ヘ
ッド10を積層した系をコンパクトに構成できる点であ
って、これにより装置の容量が飛躍的に大きくなる。第
3図に積層構造を採用して構成した本発明の記録装置の
概略図を示九 口部14は4枚の記録媒体で構成したス
タック構造の記録体の構成例である。記録媒体1枚の厚
さは0゜5〜2ミリメー1− )l/、  各媒体間の
間隔は3へ・5ミリメートル程度に選ぶことができるの
でいわゆるハーフハイド (42ミリメートル)と呼ば
れる高さの装置の中に4枚〜lO枚程度、フルハイド(
84ミリメートル)の場合には8枚〜20枚程度の記録
媒体を有するスタック構造の記録体を備えることができ
、装置としての容量が10倍以上に一気に増大する。記
録層の各面にそれぞれ独立した前記光学的記録ヘッド1
0を配置することで、各面を同時にアクセスすることが
可能である。
6- The flying height of the optical recording head (the distance between the medium surface and the head) is determined by the relative speed between the head and the medium. Therefore, when a certain rotational speed (in terms of linear velocity) is given, the distance between the lens and the medium is uniquely determined, and it becomes possible to perform the necessary force-shinging (recording, erasing, and reproducing). .As a means of keeping the linear velocity constant, the so-called C
The LV method is an effective method. Although FIG. 1 omits the tracking plate, recording medium transport mechanism, etc. that are naturally necessary for an optical recording device, it goes without saying that these mechanisms are necessary. The point is that the system in which the recording medium section 4 and the optical recording head 10 are stacked can be constructed compactly, and the capacity of the apparatus can thereby be dramatically increased. FIG. 3 shows a schematic diagram of a recording apparatus according to the present invention constructed using a laminated structure. The mouth portion 14 is an example of a recording body having a stacked structure composed of four recording media. The thickness of one recording medium is 0.5 to 2 mm (1-) l/, and the spacing between each medium can be selected to be about 3 to 5 mm, so the height is so-called half-hide (42 mm). Approximately 4 to 10 sheets of full hide (
84 mm), it is possible to have a stacked recording medium having about 8 to 20 recording media, and the capacity of the device increases at once by more than 10 times. The optical recording head 1 is provided independently on each side of the recording layer.
By arranging 0, each surface can be accessed simultaneously.

記録体は周囲の環境による影像 例え(L ゴミ、埃風
  湿気等の影響から隔離するために全体を気密13ボ
ツクスの中に格納して使用することができる。気密ボッ
クス13は外気と完全に遮断し窒泰 アルゴン等の希ガ
スを充填することもできるし フィルターを通じて清浄
な空気を循環させることもできる。特に前者の構造の場
合には記録媒体の湿度劣イし 酸化等の心配が小さいの
で保護層を薄くするまたは除去することができる等の相
乗効果を生し 媒体設計の自由度が広がる。
The recording medium can be used by storing the entire body in an airtight box 13 to isolate it from the effects of dust, dust, wind, humidity, etc. The airtight box 13 is completely isolated from the outside air. It is possible to fill the storage with a rare gas such as argon, or to circulate clean air through a filter.Especially in the case of the former structure, the humidity of the recording medium is low and there is little concern about oxidation, so it is protected. This creates a synergistic effect, such as the ability to thin or remove layers, increasing flexibility in media design.

第5図に本発明の記録装置に用いる記録媒体の構造を示
す。各図において同じ模様の部分は等し7 8 い構成要素を示している。口部 AIは基板1の両面に
記録層2を設けただけの最も簡単な構造である。記録層
は第2の物質18の連続体中に相変化物質すなわち第1
の物質微粒子19が分散された構造である。
FIG. 5 shows the structure of a recording medium used in the recording apparatus of the present invention. In each figure, parts with the same pattern indicate equal components. Mouth part AI has the simplest structure in which recording layers 2 are provided on both sides of a substrate 1. The recording layer includes a phase change material, i.e. a first material, in a continuum of second material 18.
It has a structure in which fine material particles 19 are dispersed.

B1は基板1と各記録層2との間に記録層2よりも融点
の高い物質凰 例えば誘電体層15を設けた構ム C1
は記録層2の両側に同様の層を設けた構ADIは記録層
2の表面だけに誘電体層15を設けた構造である。記録
膜の上部に設ける場合には透明であることが要求される
。Elは記録層2と基板1との間に反射層20を設けた
構造H1はElの構造において表面に誘電体層15を形
成した構造例を示す。反射層20は記録層2における光
吸収効率を高める働きならびに発生した熱の拡散速度を
制御する働きをするもので、At、Au、 Pd、 C
u、 Ti、 Ni、 Cr、 Ge、 Si、 Fe
、 Sb、 Bi、 Sn、 Ta、 W等の金属を単
体またはこれらの間の合金として用いることができる。
B1 is a structure in which a material having a higher melting point than the recording layer 2, such as a dielectric layer 15, is provided between the substrate 1 and each recording layer 2.C1
ADI has a structure in which similar layers are provided on both sides of the recording layer 2. ADI has a structure in which a dielectric layer 15 is provided only on the surface of the recording layer 2. When provided above the recording film, it is required to be transparent. El has a structure in which a reflective layer 20 is provided between the recording layer 2 and the substrate 1. H1 shows an example of a structure in which a dielectric layer 15 is formed on the surface of the El structure. The reflective layer 20 functions to increase the light absorption efficiency in the recording layer 2 and to control the diffusion rate of the generated heat, and is made of At, Au, Pd, C.
u, Ti, Ni, Cr, Ge, Si, Fe
, Sb, Bi, Sn, Ta, W, and other metals can be used alone or as an alloy between them.

Flは反射層20と記録層2との間に誘電体層15を挟
んだ構造を、G1はFlの構造において記録層2の表面
にさらに誘電体層15を形成した構造を示す。記録層2
と反射層20の間に誘電体層15を設けることで記録層
2と、反射層20との距離を変えることが可能になり光
学的特性とともに熱的特性をも最適化することが可能に
なる。 A2〜H2はそれぞれAl−Hlの構造に対し
て前記保護層3を設けた構成例を示している。
Fl shows a structure in which a dielectric layer 15 is sandwiched between a reflective layer 20 and a recording layer 2, and G1 shows a structure in which a dielectric layer 15 is further formed on the surface of the recording layer 2 in the structure of Fl. Recording layer 2
By providing the dielectric layer 15 between the recording layer 2 and the reflective layer 20, it becomes possible to change the distance between the recording layer 2 and the reflective layer 20, making it possible to optimize not only the optical properties but also the thermal properties. . A2 to H2 each show an example of a structure in which the protective layer 3 is provided in an Al--Hl structure.

以下、さらに具体的な実施例をもって本発明を詳述する
The present invention will be described in detail below with more specific examples.

実施例1 記録媒体部4を5層のスタック構造とし九 基板1はそ
れぞれ直径130mm、  厚さ1mmのガラス板で両
面に深さ72ナノメートル、幅0.6ミクロンメートル
のトラッキング用の溝が1.5ミクロンピッチでスパイ
ラル状に形成されている。
Example 1 The recording medium section 4 has a stacked structure of five layers.The substrates 1 are glass plates each having a diameter of 130 mm and a thickness of 1 mm, and have one tracking groove on both sides with a depth of 72 nm and a width of 0.6 micrometers. It is formed in a spiral shape with a pitch of .5 microns.

スパイラルの回転方向は板の上面と下面とでは反対方向
とし九 これによって各媒体の上面と下面をパラレルに
アクセスすることが容易になる。各記録層2は前記第2
の物質18の酸化亜鉛と二酸9− 一旬− 化シリコンの混合物中に前記第1の物質19として5b
2Tes微粒子を分散した系で互いの体積比を50%=
 50%とじへ 第2の物質18で成るターゲット上に
5b2Tesの板をならペ アルゴンガス雰囲気中でス
パッタリングによって約1100nの厚さに形成しk 
記録薄膜はアモルファス状態で形成されてい九 各記録
媒体部4を4mmの面間隔でモーターの回転軸にネジ止
めし5#10面の積層記録媒体部を構成し九 各記録面
上には前記スライダー7とN、 ん 0. 6の対物レ
ンズ部及び偏向プリズム部から成る光学的記録ヘッドを
配置した 光源には波長780ナノメートルのレーザー
ダイオードを用いた 記録装置全体の厚さは25mmと
コンパクトな記録装置となっ九 容量は記録面数で比較
して、少なくとも10倍以上となった 上記記録媒体部
につながるモーターを毎分1800rpmの速度(記録
径100mmの位置で)で回転させたところ各ヘッドは
約20ミクロンメートルの高さに浮き上がり、以下に説
明する手順で記録再生書換えが行なえ九l)レーザーの
記録面でのパワーを10mWとし連続的に照射を行なっ
たところ照射部は結晶化し反射率の高いトラックが形成
され九 2)レーザーを20mWと10mWの間で5MHzの周
波数で変調して前記反射率の高くなったトラックに照射
したところ高いパワーで照射された部分はアモルファス
化して反射率が低下し記録が行なわれ島 照射パワーを
ImWとして記録部を再生したところ50dBの再生信
号が得られ九3)レーザーを20mWと10mWの間で
2MHzの周波数で変調して前記反射率の高くなったト
ラックに照射したとこへ やはり高いパワーで照射され
た部分はアモルファス化して反射率が低下し 低パワー
で照射された部分は結晶化して反射率が上昇し 情報の
書換えが行なわれ九 照射パワーをImWとして書換え
部を再生したところ5MHz成分は30dB低下1.、
 2MHz成分では50dBの記録が行なわれているこ
とが確かめられた 21 22− 実施例2 実施例1に示17だ記録装置を気密ボックス中に格納(
7た装置を用意しμ 気密ボックス中には窒素ガスを充
填1.た、実施例1の装置と共にこの装置を摂氏80取
 相対湿度80%の環境下に保持し100時間旬に書換
えテストを行なったとこへ実施例1の装置では2000
時間後の書換え動作でややCN比の低下が見られたのに
対して、実施例2の装置は5000時間後もまったく同
様の記録自生占換え動作が行なわれることを確認でき九
本発明と比較するために記録媒体の記録層として5b2
Teaの均一な層を設りた装置(気密ボックスなシ2)
を試作(、同様の実験を行なったところ約500助間で
すでに特性の低下が見られ九以上 実施例によって述べ
l、−ようiQ  N、  んの大きい対物1ノンズを
搭載した浮上型の光学的記録ヘッドと、各種単板両面構
造の記録媒体を構成する記録層と(7て7トリクス構造
の記録薄膜を用いることで、埋板 レーザ光線の照射条
件の変化に応じ検出可能な複数の状態間を可逆的または
非−沼− 可逆的に変化する第1の物質を、光学的に透明でかつ上
記第1の物質に比較して融点の高い第2の物質中に微粒
子として分散してなる情報記録薄膜を採用することで従
来の光デイスク装置に比較l−で同じ装置サイズで1桁
以上大きい容量を実現でき、かつ高い信頼性の得られる
ことが示されノラ発明の効果 本発明の光記録装置によって現在の光記録装置が更なる
人界量化に際して直面しているいくつかの課題が克服さ
れl、、3  すなわち、従来においては光記録ヘッド
と記録媒体が衝突する、:、とを想定(7た場合の記録
膜の機械的強度の不足による耐久性の間皿 および外気
と記録薄膜とを隔てる役目をWたしてきた保護板が無い
ことによる耐湿性の低下の問題等を、気密ボックスに多
数楔入られる様にすること、及び相変化する光記録材を
保護成分で混在させ、マトリクス構造化することで解決
(−本発明によって信頼性に優れた大容量光記録装置が
実現できれ 一%
The direction of rotation of the spiral is opposite on the top and bottom surfaces of the plate.9 This makes it easy to access the top and bottom surfaces of each medium in parallel. Each recording layer 2 has the second
5b as the first substance 19 in a mixture of zinc oxide of the substance 18 and silicon diacid 9-
In a system in which 2Tes fine particles are dispersed, the volume ratio of each other is 50% =
To achieve 50% binding, a 5b2Tes plate is formed on a target made of the second material 18 to a thickness of about 1100 nm by sputtering in a peirgon gas atmosphere.
The recording thin film is formed in an amorphous state. 9. Each recording medium section 4 is screwed to the rotating shaft of a motor at a spacing of 4 mm to form a laminated recording medium section with 5 #10 surfaces. 9. On each recording surface, the slider 7 and N, 0. A laser diode with a wavelength of 780 nanometers is used as the light source.The overall thickness of the recording device is 25 mm, making it a compact recording device. The number of heads was at least 10 times larger. When the motor connected to the recording medium section was rotated at a speed of 1800 rpm (at a recording diameter of 100 mm), each head had a height of about 20 micrometers. When the recording surface is irradiated continuously with a laser power of 10 mW, the irradiated area crystallizes and a track with high reflectance is formed.92 ) When a laser was modulated between 20 mW and 10 mW at a frequency of 5 MHz and irradiated onto the track with high reflectance, the area irradiated with high power became amorphous, the reflectance decreased, and recording was performed. When the recording section was reproduced with the power set to ImW, a reproduced signal of 50 dB was obtained.93) When the laser was modulated at a frequency of 2 MHz between 20 mW and 10 mW and irradiated on the track with the high reflectance, the result was still high. The part irradiated with high power becomes amorphous and the reflectance decreases, and the part irradiated with low power becomes crystallized and the reflectance increases, and the information is rewritten.9 When the rewritten part was played back with the irradiation power set to ImW, it was 5MHz. component is reduced by 30dB1. ,
It was confirmed that recording of 50 dB was performed for the 2 MHz component.21 22- Example 2 The recording device shown in Example 1 was stored in an airtight box (
7 Prepare a device and fill the airtight box with nitrogen gas 1. In addition, this device was kept in an environment of 80 degrees Celsius and 80% relative humidity, and a rewriting test was conducted for 100 hours, while the device of Example 1 was used for 2000 hours.
While a slight decrease in the CN ratio was observed in the rewrite operation after 5000 hours, it was confirmed that the device of Example 2 performs the same self-replacement rewriting operation even after 5000 hours, and compared with the present invention. 5b2 as the recording layer of the recording medium to
Equipment with a uniform layer of Tea (airtight box 2)
When we conducted a similar experiment, we found that the characteristics had already deteriorated after approximately 500 samples. By using a recording head that constitutes a recording head, a recording layer that constitutes a variety of single-plate double-sided recording media, and a recording thin film with a seven-trix structure, multiple states that can be detected according to changes in the irradiation conditions of the buried laser beam can be created. A first substance that changes reversibly or non-reversibly between the two is dispersed as fine particles in a second substance that is optically transparent and has a higher melting point than the first substance. It has been shown that by adopting an information recording thin film, compared to conventional optical disk devices, it is possible to achieve a capacity that is more than an order of magnitude larger with the same device size, and to obtain high reliability. The recording device overcomes some of the problems that current optical recording devices face as they become more compact.In other words, in the past, it was assumed that the optical recording head and the recording medium would collide. (7) The problem of reduced moisture resistance due to the lack of a durable intervening plate due to the lack of mechanical strength of the recording film and the lack of a protective plate that separates the recording thin film from the outside air, etc. This can be solved by creating a matrix structure by mixing phase-changing optical recording materials with a protective component (-The present invention makes it possible to realize a highly reliable, large-capacity optical recording device. one%

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光記録装置の1実施例の基本構成を示
す構成1匁 第2図は本発明の光記録装置に適用する記
録層の構造を示すは 第3図は本発明の他の実施例を示
す構成は 第4図は本発明を構成する光記録ヘッド部の
スライダーと対物レンズを一体化した構成の1実施例を
示ずは 第5図は本発明を構成する光記録媒体の構造を
示す断面図である。 l・・一基板、 2・・・記録層 3・・・保護服 4
・・・記録媒体を散 5・・・モーター 6・・・回転
$+h、  7・・・スライダー、 8・・・対物レン
ズ、 9・・・ミラー(偏向プリズム)、 10・・・
光学的記録ヘラ1人 ll・・・レーザー光 12・・
・溝、 13・・・気密ポック入14・・・スタック構
造記録(& 15・・・誘電体層16・・・耐摩耗層、
 17・・・媒体表献 18・・・第2物質、 19・
・・第1物質(相変化物質)、 2o・・・反射監
FIG. 1 shows the basic structure of one embodiment of the optical recording device of the present invention. FIG. 2 shows the structure of a recording layer applied to the optical recording device of the present invention. Fig. 4 shows an embodiment of the structure in which the slider of the optical recording head part of the present invention and the objective lens are integrated. Fig. 5 shows the optical recording medium of the present invention. FIG. l...One substrate, 2...Recording layer 3...Protective clothing 4
...Disperses the recording medium 5...Motor 6...Rotation $+h, 7...Slider, 8...Objective lens, 9...Mirror (deflection prism), 10...
Optical recording spatula 1 ll...laser light 12...
・Groove, 13... Airtight pocket 14... Stack structure record (& 15... Dielectric layer 16... Wear-resistant layer,
17... Media description 18... Second substance, 19.
...First substance (phase change material), 2o...Reflection monitor

Claims (8)

【特許請求の範囲】[Claims] (1)レーザ光線の照射条件の変化に応じて、検出可能
な複数の状態間を可逆的または非可逆的に変化する第1
の物質を、光学的に透明でかつ上記第1の物質に比較し
て融点の高い第2の物質中に微粒子として分散してなる
情報記録薄膜を単板基板の両面に備えた記録媒体と、前
記記録媒体を回転または移動させるための手段と、前記
記録媒体の両側の面にそれぞれ近接して配置され、前記
記録媒体の回転、移動に伴い周囲の環境ガスの抵抗によ
って所定の距離を保ちつつ浮上し前記記録媒体の各記録
薄膜上に情報に応じた記録を行なう光学的記録ヘッドと
を備えたことを特徴とする光記録装置。
(1) A first state that changes reversibly or irreversibly between a plurality of detectable states according to changes in laser beam irradiation conditions.
A recording medium comprising, on both sides of a single substrate, an information recording thin film formed by dispersing a substance as fine particles in a second substance that is optically transparent and has a higher melting point than the first substance; a means for rotating or moving the recording medium; and means disposed close to both sides of the recording medium, while maintaining a predetermined distance by resistance of surrounding environmental gas as the recording medium rotates or moves. An optical recording device comprising: an optical recording head that flies and records information on each recording thin film of the recording medium according to information.
(2)レーザ光線の照射条件の変化に応じて、検出可能
な複数の状態間を可逆的または非可逆的に変化する第1
の物質を、光学的に透明でかつ上記第1の物質に比較し
て融点の高い第2の物質中に微粒子として分散してなる
情報記録薄膜を単板基板の両面に備えた記録媒体を複数
枚積層した積層記録媒体と、前記積層記録媒体を回転ま
たは移動させるための手段と、前記記録媒体の両側の面
にそれぞれ近接して配置され、前記記録媒体の回転移動
に伴い周囲の環境ガスの抵抗によって所定の距離を保ち
つつ浮上し前記記録媒体の各記録薄膜上に情報に応じた
記録を行なう光学的記録ヘッドとを備えたことを特徴と
する光記録装置。
(2) The first state changes reversibly or irreversibly between a plurality of detectable states in response to changes in laser beam irradiation conditions.
A plurality of recording media each having an information recording thin film on both sides of a single substrate formed by dispersing a substance as fine particles in a second substance that is optically transparent and has a higher melting point than the first substance. A stacked recording medium, a means for rotating or moving the stacked recording medium, and a means for rotating or moving the stacked recording medium, each disposed close to both sides of the recording medium, and a means for rotating or moving the stacked recording medium, and a means for rotating or moving the stacked recording medium; An optical recording device comprising: an optical recording head that flies while maintaining a predetermined distance by a resistor and records information on each recording thin film of the recording medium according to information.
(3)記録媒体と、前記記録媒体を回転または移動させ
るための手段と、光学的記録ヘッドとを、これらを外部
環境の変化から隔離するための気密ボックスの中に備え
たことを特徴とする請求項1または2記載の光記録装置
(3) A recording medium, a means for rotating or moving the recording medium, and an optical recording head are provided in an airtight box for isolating them from changes in the external environment. The optical recording device according to claim 1 or 2.
(4)開口数0.6以上の対物レンズを搭載したことを
特徴とする請求項1または2記載の光記録装置。
(4) The optical recording device according to claim 1 or 2, further comprising an objective lens having a numerical aperture of 0.6 or more.
(5)記録媒体を一定の線速度で移動または回転させる
ことを特徴とする請求項1または2記載の光記録装置。
(5) The optical recording device according to claim 1 or 2, wherein the recording medium is moved or rotated at a constant linear velocity.
(6)第1の物質としてレーザ光線の照射条件に応じて
平衡相と非平衡相間、または非平衡相と別の非平衡相間
の可逆的相変化現象を生じる物質を用い、相変化に伴う
光学的特性の変化を信号として検出することによって書
き換え可能な記録を行なうことを特徴とする請求項1ま
たは2記載の光記録装置。
(6) Using a substance that causes a reversible phase change phenomenon between an equilibrium phase and a nonequilibrium phase, or between a nonequilibrium phase and another nonequilibrium phase depending on the laser beam irradiation conditions as the first substance, optical 3. The optical recording apparatus according to claim 1, wherein rewritable recording is performed by detecting changes in optical characteristics as signals.
(7)各記録面に対しては単一のレーザ光線の照射強度
を変化させるだけでオーバライトすることを特徴とする
請求項1または2記載の光記録装置。
(7) The optical recording apparatus according to claim 1 or 2, wherein each recording surface is overwritten by simply changing the irradiation intensity of a single laser beam.
(8)各記録面は記録再生手段としての光をガイドする
ためのスパイラル状の連続溝、またはスパイラル状にな
らんだピット列を有し、かつその巻き方向が媒体の上面
と下面とで各々反対方向としたことを特徴とする請求項
1または2記載の光記録装置。
(8) Each recording surface has a spiral continuous groove or a spiral pit row for guiding light as a recording and reproducing means, and the winding direction is opposite on the top and bottom surfaces of the medium. The optical recording device according to claim 1 or 2, characterized in that the optical recording device has a direction.
JP1296531A 1989-07-28 1989-11-15 Optical recording device Pending JPH03157817A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1296531A JPH03157817A (en) 1989-11-15 1989-11-15 Optical recording device
US07/555,639 US5255260A (en) 1989-07-28 1990-07-23 Optical recording apparatus employing stacked recording media with spiral grooves and floating optical heads
KR1019900011248A KR950001234B1 (en) 1989-07-28 1990-07-24 Optical recording apparatus
DE69022792T DE69022792T2 (en) 1989-07-28 1990-07-25 Optical recording device.
EP94202946A EP0639830B1 (en) 1989-07-28 1990-07-25 Optical recording apparatus
EP90308112A EP0410704B1 (en) 1989-07-28 1990-07-25 Optical recording apparatus
DE69030960T DE69030960T2 (en) 1989-07-28 1990-07-25 Optical recording device
CA002022005A CA2022005C (en) 1989-07-28 1990-07-26 Optical recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1296531A JPH03157817A (en) 1989-11-15 1989-11-15 Optical recording device

Publications (1)

Publication Number Publication Date
JPH03157817A true JPH03157817A (en) 1991-07-05

Family

ID=17834736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1296531A Pending JPH03157817A (en) 1989-07-28 1989-11-15 Optical recording device

Country Status (1)

Country Link
JP (1) JPH03157817A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214468A (en) * 1984-04-11 1985-10-26 Pioneer Electronic Corp Automatic loading disc player
JPS6132233A (en) * 1984-07-23 1986-02-14 Nec Home Electronics Ltd Additional recording type optical head
JPS63224027A (en) * 1987-03-13 1988-09-19 Nippon Telegr & Teleph Corp <Ntt> Optical recording/reproducing device
JPS63241701A (en) * 1987-03-27 1988-10-07 Fujitsu Ltd Information processing method for disk substrate
JPS6476430A (en) * 1987-09-18 1989-03-22 Mitsubishi Electric Corp Focusing error detector
JPH01118231A (en) * 1987-06-22 1989-05-10 Energy Conversion Devices Inc Apparatus and method for storing data
JPH01173335A (en) * 1987-12-26 1989-07-10 Toshiba Corp Optical information processor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214468A (en) * 1984-04-11 1985-10-26 Pioneer Electronic Corp Automatic loading disc player
JPS6132233A (en) * 1984-07-23 1986-02-14 Nec Home Electronics Ltd Additional recording type optical head
JPS63224027A (en) * 1987-03-13 1988-09-19 Nippon Telegr & Teleph Corp <Ntt> Optical recording/reproducing device
JPS63241701A (en) * 1987-03-27 1988-10-07 Fujitsu Ltd Information processing method for disk substrate
JPH01118231A (en) * 1987-06-22 1989-05-10 Energy Conversion Devices Inc Apparatus and method for storing data
JPS6476430A (en) * 1987-09-18 1989-03-22 Mitsubishi Electric Corp Focusing error detector
JPH01173335A (en) * 1987-12-26 1989-07-10 Toshiba Corp Optical information processor

Similar Documents

Publication Publication Date Title
KR950001234B1 (en) Optical recording apparatus
US5871881A (en) Multilayer optical information medium
KR100506553B1 (en) Optical information recording medium, recording and reproducing method therefor and optical information recording and reproduction apparatus
EP0810590B1 (en) Optical data storage system with multiple rewritable phase-change recording layers
KR100746263B1 (en) Optical information medium having separate recording layers
JPH11195243A (en) Multilayered optical disk and recording and reproducing device
JPH09212917A (en) Optical recording medium with two information surfaces
US20060141202A1 (en) Information recording medium and manufacturing method thereof
JP4892549B2 (en) Information recording medium and manufacturing method thereof
JP5148629B2 (en) Information recording medium, manufacturing method thereof, and recording / reproducing apparatus
US4879205A (en) Information storage medium and a method of manufacturing the same
JPH0362321A (en) Optical recording device
JPH0575595B2 (en)
JPH04134643A (en) Optical information recording medium
JPH03157817A (en) Optical recording device
US6855479B2 (en) Phase-change optical recording media
JP5437793B2 (en) Information recording medium and manufacturing method thereof
JPH05205316A (en) Rewritable optical information recording medium
JPH0822614B2 (en) Optical recording medium
JPH04102227A (en) Initialization method for phase change type optical disk
JPS63167440A (en) Method for recording or recording and erasing information
JP2913521B2 (en) Optical recording medium, sputtering target for optical recording medium, and method of manufacturing the same
JP2592239B2 (en) Information recording medium and information recording and erasing method
JPH04103029A (en) Method for initializing phase change type optical disk
JPS63241701A (en) Information processing method for disk substrate