JPH0315741A - Near infrared spectrochemical analysis - Google Patents

Near infrared spectrochemical analysis

Info

Publication number
JPH0315741A
JPH0315741A JP1151422A JP15142289A JPH0315741A JP H0315741 A JPH0315741 A JP H0315741A JP 1151422 A JP1151422 A JP 1151422A JP 15142289 A JP15142289 A JP 15142289A JP H0315741 A JPH0315741 A JP H0315741A
Authority
JP
Japan
Prior art keywords
sample
light
absorbance
infrared
wavelengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1151422A
Other languages
Japanese (ja)
Other versions
JP2757021B2 (en
Inventor
Toshihiko Satake
佐竹 利彦
Masanori Matsuda
真典 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP15142289A priority Critical patent/JP2757021B2/en
Publication of JPH0315741A publication Critical patent/JPH0315741A/en
Application granted granted Critical
Publication of JP2757021B2 publication Critical patent/JP2757021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make always stable analysis by determining a quadratic curve by absorbance of arbitrary 3 wavelengths among the respective absorbances obtd. from at least >=3 wavelengths of near IR rays past plural pieces of narrow band filters. CONSTITUTION:The light which is emitted from a light source 31 and is made into collimated beams of light is passed through the narrow band filter 33, by which the light is made into the near IR light of the specific wavelength; thereafter, the direction thereof is changed toward a lighting window 36 by a reflecting mirror 32. The near IR light is reflected by the reflecting mirror 32 and is admitted into an integrating sphere 34 via the lighting window 36, and a sample 55 in a sample container 52 is irradiated with the near IR light from right above. While the diffused and reflected light from the sample 55 is reflected in the integrating sphere 34, the light arrives finally at a pair of detectors 35a, 35b disposed in the positions symmetrical with a measuring part 37 as a center. The intensity of the reflected light is measured in this way. A sensor 79 to measure the temp. of the container 52 is provided in a sample container mounting box 5 in the lower part of the container 52 to correct the analysis value by the sample temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複数個の狭帯域フィルターを透過した複数個の
近赤外線により得られる吸光度により試料の成分値また
は品質を分析する近赤外線分光分析方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a near-infrared spectroscopic analysis method for analyzing the component values or quality of a sample based on the absorbance obtained by a plurality of near-infrared rays transmitted through a plurality of narrow band filters. Regarding.

〔従来の技術〕[Conventional technology]

従来の近赤外線分光分析方法において、特に狭帯域フィ
ルターを用いた、いわゆる固定式フィルターの近赤外線
分光分析装置は、l00Qnm〜2600nrAの波長
を連続的に照射するスキャニング式の近赤外線分光分析
装置に比較して、狭帯域フィルターにより限定された波
長のみを照射するため、分析時間も短時間で終了すると
いう特徴があった。
In conventional near-infrared spectroscopy methods, so-called fixed-filter near-infrared spectrometers that use narrow band filters are compared to scanning-type near-infrared spectrometers that continuously irradiate wavelengths from 100 Qnm to 2600 nrA. Since only a limited wavelength is irradiated using a narrow band filter, the analysis time can be completed in a short time.

つまり、分析する試料の品質の違いによる吸光度の変化
は、特定の波長域に限られ、特に試料の品質の違いが顕
著に現れる波長または波長域は複数個に限定されること
が多い。したがって、常時同一種の試料を分析する場合
、試料の品質差が吸光度の差として顕著に現れる波長の
みを透過する狭帯域フィルターを設けた近赤外線分光分
析装置により、必要とされる波長域の吸光度のみを測定
し、求める試料の成分または品質を短時間に分析するこ
とができる。
In other words, changes in absorbance due to differences in the quality of samples to be analyzed are limited to a specific wavelength range, and in particular, the wavelengths or wavelength ranges in which differences in sample quality are particularly noticeable are often limited to a plurality of wavelengths. Therefore, when constantly analyzing the same type of sample, a near-infrared spectrometer equipped with a narrow band filter that transmits only the wavelengths at which the difference in sample quality becomes noticeable as a difference in absorbance can be used to measure the absorbance in the required wavelength range. The components or quality of the sample can be analyzed in a short time.

また近赤外線分光分析装置には、複数個の狭帯域フィル
ターと、このフィルターを必要ニ応じて取り替える装置
があればよく、スキャニング式のように連続した照射波
長を作り出すための微細に且・つ連続的に調整する装置
を必要とせず、安価に製造することができた。
In addition, a near-infrared spectrometer only needs to have multiple narrow-band filters and a device to replace these filters as necessary, and can produce fine and continuous irradiation wavelengths like a scanning type. It did not require any adjustment equipment and could be manufactured at low cost.

ところで近赤外線を使った分析において現在最も問題と
されているのは、試料の粉砕粒度と温度である。試料の
温度は、試料中の水分に直接影響する。また測定を行な
う環境温度は、近赤外線分光分析機の光学的および電気
的ノイズの発生と、ドリフトとを大きくして分析値の精
度を大きく低下させる原因となる。
By the way, the most important issues at present in analysis using near-infrared rays are the pulverized particle size and temperature of the sample. The temperature of the sample directly affects the moisture content in the sample. Furthermore, the environmental temperature at which the measurement is performed increases the generation of optical and electrical noise and drift of the near-infrared spectroscopy analyzer, causing a significant decrease in the accuracy of analytical values.

更に、試料の粒度、粒径は小さいほど試料の表面反射率
は増加し、吸光度は小さくなる。逆に、粒度、粒径が大
きいほど試料の表面反射率は低下し、吸光度は大きくな
るものであった。
Furthermore, as the particle size of the sample becomes smaller, the surface reflectance of the sample increases and the absorbance decreases. Conversely, the larger the particle size, the lower the surface reflectance of the sample and the higher the absorbance.

この問題点に対し、先のスキャニング式近赤外線分光分
析においては、ほぼ連続した波長(2nm間隔)により
吸光度を分析するため、その結果は連続スペクトルとし
て表現でき、たとえばこの連続スペクトルは約2000
〜4000点に分割したデータの配列として記録される
ことになる。
To deal with this problem, in the scanning near-infrared spectroscopy described above, the absorbance is analyzed using almost continuous wavelengths (2 nm intervals), so the results can be expressed as a continuous spectrum. For example, this continuous spectrum is about 2000
It will be recorded as an array of data divided into ~4000 points.

この多くのデータ利用して、まずスペクトル中のノイズ
の影響を消去する平均化処理、数学的演算処理を容易に
する収縮処理等の様々な処理が行なわれ、こうして得ら
れた値を試料の或分値または品質との重回帰式の変数に
使うことで高い精度の分析値を求めることが可能である
Using this large amount of data, various processes are first performed, such as averaging processing to eliminate the effects of noise in the spectrum, and shrinkage processing to facilitate mathematical calculations, and the values obtained in this way are used to calculate the It is possible to obtain highly accurate analytical values by using it as a variable in a multiple regression equation with minute values or quality.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、固定式近赤外線分光分析においては分析装置
から得られる吸光度は連続的でなく任意複数個の特定波
長に対する吸光度だけである。したがって、先のスキャ
ニング式近赤外線分光分析のような連続的スペクトルを
得ることができないために、スキャニング式のものと同
様に吸光度を扱うことができない。したがって、周辺機
器による環境、試料温度の安定化と試料の粉砕粒度の管
理を行なわなければならないという問題点があった。
However, in fixed-type near-infrared spectroscopy, the absorbance obtained from the analyzer is not continuous, but only at a plurality of arbitrary specific wavelengths. Therefore, since it is not possible to obtain a continuous spectrum as in the scanning type near-infrared spectroscopy described above, absorbance cannot be handled in the same way as in the scanning type. Therefore, there is a problem in that it is necessary to stabilize the environment and sample temperature and control the pulverized particle size of the sample using peripheral equipment.

つまり本発明においては、塗料の粉砕粒度・粒径と試料
温度、および環境温度等の影響を受けることなく、常に
安定した近赤外線分光分析方法を見い出すことを技術的
課題とするものである。
In other words, the technical objective of the present invention is to find a method for near-infrared spectroscopic analysis that is always stable without being affected by the pulverized particle size/particle size of paint, sample temperature, environmental temperature, etc.

〔問題を解決するための手段〕[Means to solve the problem]

本発明によると、試料に対して近赤外線光を照射したと
き、試料の品質差が吸光度差として顕著に現れる波長の
みを透過する少なくとも3個以上の狭帯域フィルターを
備えた近赤外線分光分析装置による近赤外線分光分析方
法であって、前記複数個の狭帯域フィルターを通過した
少なくとも3波長以上の近赤外線より得られるそれぞれ
の吸光度の内、任意の3波長の吸光度によりそれぞれ二
次曲線を求め、該二次曲線を二次微分して得られるそれ
ぞれの値を重回帰式の説明変数として重回帰分析を行な
い、前記試料の品質を分析する近赤外線分光分析方法に
より前記技術的課題を解決するための手段とした。
According to the present invention, when a sample is irradiated with near-infrared light, a near-infrared spectrometer is used that is equipped with at least three narrow band filters that transmit only wavelengths at which differences in quality of the sample become noticeable as differences in absorbance. A near-infrared spectroscopic analysis method, in which quadratic curves are obtained from the absorbances of arbitrary three wavelengths among the respective absorbances obtained from near-infrared rays of at least three wavelengths that have passed through the plurality of narrow band filters, and the In order to solve the above-mentioned technical problem by a near-infrared spectroscopic analysis method that analyzes the quality of the sample by performing multiple regression analysis using each value obtained by quadratic differentiation of the quadratic curve as an explanatory variable of the multiple regression equation. It was used as a means.

〔作 用〕[For production]

本発明によると、試料に対して近赤外線光を照射したと
き、試料の品質差が吸光度差として顕著に現れる波長の
みを透過する少なくとも3波長以上の近赤外線より得ら
れる吸光度の内、任意の3波長の吸光度の値により一意
的に求められる二次曲線を二次微分した値は、試料の粒
度・粒径または試料とその周辺との温度影響を受けるこ
となく求めることができる。
According to the present invention, when a sample is irradiated with near-infrared light, any three of the absorbances obtained from near-infrared light of at least three wavelengths that transmit only those wavelengths in which the difference in quality of the sample is noticeable as a difference in absorbance are transmitted. The value obtained by second-order differentiation of a quadratic curve that is uniquely determined by the value of the absorbance of a wavelength can be determined without being affected by the particle size of the sample or the temperature between the sample and its surroundings.

3波長の吸光度より求められる二次曲線を二次微分する
と2乗の項のみが残り、一次関数で求められる粒度・粒
径、温度の影響による吸光度の変化は、先の3波長によ
り求めた二次曲線を二次微分した値に含まれることはな
い。
When the quadratic curve obtained from the absorbance of the three wavelengths is differentiated to the second order, only the square term remains, and the change in absorbance due to the influence of particle size, particle size, and temperature, which is obtained by the linear function, is calculated by the quadratic curve obtained from the three wavelengths. It is not included in the value obtained by second-order differentiation of the following curve.

したがって、二次微分した値は、任意の3波長の吸光度
の二次曲線より一時的に求められるものであり試料の粒
度・粒径、温度の影響を受けない、重回帰式の説明係数
として作用し、既知の試料の品質または成分値との重回
帰分析により、品質評価係数または成分換算係数などの
特定係数を求め、未知の試料を固定式フィルターの近赤
外線分光分析装置により分析した値と先の係数との演算
により求めた値は、環境又は試料の粒度・粒径、温度の
影響を受けない値であり、固定式フィルターにおいても
本発明の近赤外線分光分析方法により、安定した外乱を
受けない分析を行なうことが可能となった。
Therefore, the quadratic differential value is temporarily determined from the quadratic curve of absorbance at any three wavelengths, and is not affected by sample particle size, particle diameter, or temperature, and acts as an explanatory coefficient of the multiple regression equation. Then, specific coefficients such as quality evaluation coefficients or component conversion coefficients are determined by multiple regression analysis with the quality or component values of known samples, and the results are compared with the values obtained by analyzing the unknown sample with a near-infrared spectrometer with a fixed filter. The value obtained by calculation with the coefficient of It has become possible to perform analysis without

〔実施例〕〔Example〕

以下、本発明による近赤外線分光分析方法に係る近赤外
線分光分析装置の実施例を、添付図面第1図ないし第3
図を参照しながら説明する。
Hereinafter, embodiments of a near-infrared spectroscopic analyzer according to the near-infrared spectroscopic analysis method according to the present invention will be described with reference to FIGS. 1 to 3 of the accompanying drawings.
This will be explained with reference to the figures.

第1図は本発明に係る近赤外線分光分析装置1を正面か
ら見たときの既略図である。キャビネット2の内部には
、その詳細な構成は次の第2図を参照して説明する近赤
外分光分析装置3及び制御装置4が配設される。キャビ
ネット2の前面パネルには、被測定試料を入れる試料容
器(試料配置部)を装着するための試料容器装着箱5、
装置の操作手順や演算結果等を可視表示する発光ダイオ
ード又はCRT形式の表示装置6、操作用プッシュボタ
ン7及び演算結果のハードコピーを可能とするプリンタ
ー8が配設される。制御装置4は、近赤外線分光分析装
置3の光源、検出器、表示装置6、操作用プッシュボタ
ン7、プリンター8等に接続され各種信号を処理するた
めの入出力信号処理装置4!と、成分又は品質評価値を
計算するために試料の成分又は品質ごとに個別に設定さ
れた特定係数、入力装置(キーボード)9を介入して入
力される諸条件となそ成分又は品質別の価額、各種補正
及び各種制御手順等を記憶するための記憶装置4bと、
近赤外分光分析装置3により得られる測定値と前記特定
係数とに基づき試料の成分又は品質評価値等を演算する
ための演算装置4Cとから成る。なお、試料の成分又は
品質評価値ごとに個別に設定される特定係数や必要な補
正値が、記憶装置4b内の読み出し専用のメモリ(以下
、ROMと言う)に予め記憶されている。また、プリン
ター8は内蔵型に限られず、外部接続型であっても構わ
ない。
FIG. 1 is a schematic diagram of a near-infrared spectroscopic analyzer 1 according to the present invention viewed from the front. Inside the cabinet 2, a near-infrared spectrometer 3 and a control device 4, the detailed configuration of which will be explained with reference to FIG. 2 below, are disposed. On the front panel of the cabinet 2, there is a sample container mounting box 5 for mounting a sample container (sample placement section) into which a sample to be measured is placed.
A display device 6 in the form of a light emitting diode or CRT for visually displaying the operation procedure of the apparatus, calculation results, etc., push buttons 7 for operation, and a printer 8 for making a hard copy of the calculation results are provided. The control device 4 is connected to the light source, detector, display device 6, operation push button 7, printer 8, etc. of the near-infrared spectrometer 3, and is an input/output signal processing device 4 for processing various signals! and specific coefficients set individually for each component or quality of the sample in order to calculate the component or quality evaluation value, the various conditions entered through the input device (keyboard) 9, and the specific coefficients for each component or quality. a storage device 4b for storing prices, various corrections, various control procedures, etc.;
It consists of a calculation device 4C for calculating the components or quality evaluation values of the sample based on the measurement values obtained by the near-infrared spectrometer 3 and the specific coefficients. Note that specific coefficients and necessary correction values that are individually set for each sample component or quality evaluation value are stored in advance in a read-only memory (hereinafter referred to as ROM) in the storage device 4b. Further, the printer 8 is not limited to a built-in type, and may be an externally connected type.

ところで、試料に照射される近赤外線が試料に吸収され
るのは分子を構成する原子の連鎖が熱エネルギーにより
振動するために起こる現象であり、原子の種類と連鎖状
態により固有振動数が異なるために、近赤外線の波長域
で振動の大きさが変化して熱吸収を生じる。また、試料
が初期に持っている熱エネルギーが少ない場合(m度が
低い場合)には、振動が小さいために分子構造の違いに
よる吸収量が正確に測定されないので温度の補正をする
必要が生じる。通常、20℃以上の場合は補正を要しな
い。
By the way, near-infrared rays irradiated onto a sample are absorbed by the sample because the chain of atoms that make up the molecule vibrates due to thermal energy, and the natural frequency differs depending on the type of atoms and the chain state. In addition, the magnitude of vibration changes in the near-infrared wavelength region, causing heat absorption. In addition, if the sample initially has little thermal energy (low m degrees), the amount of absorption due to differences in molecular structure cannot be measured accurately due to small vibrations, so it is necessary to correct the temperature. . Normally, no correction is required when the temperature is 20°C or higher.

温度設定器77は近赤外分光分析装置1を恒温に調整す
るもので、低温の場合加温装置78を動作させ通常25
℃に設定する。これは、前記試料温度の変化を防止する
ためと、電気回路の温度による誤差をなくする目的を有
するものである。
The temperature setting device 77 adjusts the near-infrared spectrometer 1 to a constant temperature, and when the temperature is low, it operates the heating device 78 and normally
Set to ℃. This has the purpose of preventing changes in the sample temperature and eliminating errors due to the temperature of the electric circuit.

第2図は、キャビネット2の内部に配設される近赤外線
分光分析装置3の一例の要部断面図である。図示される
近赤外線分光分析装置3は反射式のものであり、主なる
構成部品として、光源31、反射鏡32、狭帯域通過フ
ィルタ33、積分球34及び検出器35g,35bを有
する。光源31から発せられ、適当な光学系(図示せず
)を通って平行光線となった光は、狭帯域通過フィルタ
ー33を通過することにより特定波長の近赤外光となっ
た後、傾斜角度を自由に変え得るように構成された反射
鏡32により、積分球34の上部を開口して設けられた
採光窓36に向けて方向を変えられる。反射鏡32で反
射し、積分球34の採光窓36を介して積分球34の内
部に入った近赤外光は、積分球34の底部を開口して設
けられた測定部37、従って試料容器装着箱5の後方所
定位置に記載される試料容器52内の試料55に真上か
ら照射される。試料55からの拡散反射光は、積分球3
4の内部に反射しながら、最終的には、測定部37を中
心に対象な位置に配設される一対の検出器35m,35
bに到達し、これにより反射光の強度が測定される。な
お、前記試料容器52下部の試料容器装着箱5には試料
容器の温度を測定するセンサー79を設け、前記温度設
定器77について詳述した通り試料温度により分析値を
補正するものである。また図示実施例では、光学的な対
称性を修正し、試料55からの反射光を効率良く受光す
るために検出器は一対、即ち参照番号35aと35bで
示される二個が設けられているが、その数は二個に限ら
れることなく、一個であっても又は三個以上の検出器で
あっても構わない。
FIG. 2 is a sectional view of a main part of an example of the near-infrared spectrometer 3 disposed inside the cabinet 2. As shown in FIG. The illustrated near-infrared spectrometer 3 is of a reflection type, and has a light source 31, a reflecting mirror 32, a narrow band pass filter 33, an integrating sphere 34, and detectors 35g and 35b as main components. The light emitted from the light source 31 passes through an appropriate optical system (not shown) and becomes parallel light. After passing through the narrow band pass filter 33, the light becomes near-infrared light of a specific wavelength. A reflecting mirror 32 configured to freely change the direction of the integrating sphere 34 can be used to change the direction toward a lighting window 36 provided by opening the top of the integrating sphere 34. The near-infrared light reflected by the reflecting mirror 32 and entering the interior of the integrating sphere 34 through the lighting window 36 of the integrating sphere 34 is transmitted to the measuring section 37 provided by opening the bottom of the integrating sphere 34, and thus to the sample container. A sample 55 in a sample container 52 located at a predetermined rear position of the mounting box 5 is irradiated from directly above. The diffusely reflected light from the sample 55 is reflected by the integrating sphere 3.
4, a pair of detectors 35m, 35 are finally arranged at symmetrical positions centering on the measuring section 37.
b, from which the intensity of the reflected light is measured. The sample container mounting box 5 below the sample container 52 is provided with a sensor 79 for measuring the temperature of the sample container, and as described in detail regarding the temperature setting device 77, the analysis value is corrected based on the sample temperature. Further, in the illustrated embodiment, a pair of detectors, namely two detectors designated by reference numbers 35a and 35b, are provided in order to correct the optical symmetry and efficiently receive the reflected light from the sample 55. The number of detectors is not limited to two, and may be one or three or more.

ここで、光源31と反射鏡32との間に設けられ、光源
31から出た光がこれを通過することにより特定波長の
近赤外光となる狭帯域通過フィルター33の構成及びこ
れに要求される物理的特性等を説明する。狭帯域通過フ
ィルタ33は、それぞれが異なる主波長通過特性を有す
る任意複数個のフィルター(例えば、6個のフィルター
331〜33I)からなり、これらを回転円盤に取り付
けこれを適当角度づつ回動させることにより、光源31
と反射鏡32とを結ぶ線上に所望のフィルターが位置す
るように順次選択・交換できる構戊とする。なお、フィ
ルターの通過特性で主波長とは、フィルターの面に対し
て入射光軸が直角の時は透過する近赤外線のうちの最大
透過波長のことである。
Here, the configuration of the narrow band pass filter 33, which is provided between the light source 31 and the reflecting mirror 32, and through which the light emitted from the light source 31 becomes near-infrared light of a specific wavelength, and the requirements for this filter are explained. Explain the physical characteristics etc. The narrow band pass filter 33 is composed of a plurality of arbitrary filters (for example, six filters 331 to 33I) each having a different dominant wavelength pass characteristic, and these are attached to a rotating disk and rotated by an appropriate angle. Accordingly, the light source 31
The structure is such that a desired filter can be selected and replaced in sequence so that it is located on the line connecting the filter and the reflecting mirror 32. Note that in the transmission characteristics of a filter, the dominant wavelength refers to the maximum transmission wavelength of near-infrared rays that are transmitted when the incident optical axis is perpendicular to the filter surface.

次に、狭帯域通過フィルター33に要求される物理的特
性を第3図に基づき説明する。第3図は、異なる試料に
対して波長が連続的に変化する近赤外線光を照射したと
きの、照射波長と吸光度との関係を示すグラフ(吸光度
曲線)である。吸光度logIo/Iは、基準照射光量
(全照射光量)10に対する試料からの反射光量■の比
の逆数の常用対数である。前記各成分の含有量の多少が
吸光度差として顕著に現れていることが容易に理解でき
る。本発明はこの現象を利用して任意波長における試料
の吸光度を測定するものであるため、測定のために試料
に照射される近赤外光の波長としては、波長領域110
0〜2500nmのうち試料の成分又は品質により吸光
度曲線上特異的なピークが見られる(本実施例ではP.
am,P2nm−P6nmとする)波長帯で吸光度を測
定する。従って、狭帯域通過フィルター33が備える各
フィルター331〜33tは、試料に含まれる或分又は
品質評価値の演算に適した前記各波長の近赤外光を作る
べく、前記各波長を特定通過特性、即ち主波長として持
つことが要求される。
Next, the physical characteristics required of the narrow band pass filter 33 will be explained based on FIG. 3. FIG. 3 is a graph (absorbance curve) showing the relationship between irradiation wavelength and absorbance when different samples are irradiated with near-infrared light whose wavelength changes continuously. The absorbance logIo/I is the common logarithm of the reciprocal of the ratio of the amount of reflected light from the sample (■) to the reference amount of irradiated light (total irradiated light amount) 10. It can be easily understood that the amount of content of each of the above components is clearly expressed as a difference in absorbance. Since the present invention utilizes this phenomenon to measure the absorbance of a sample at an arbitrary wavelength, the wavelength of the near-infrared light irradiated onto the sample for measurement is in the wavelength range 110.
Depending on the component or quality of the sample, specific peaks can be seen on the absorbance curve between 0 and 2500 nm (in this example, P.
The absorbance is measured in the wavelength range (am, P2nm-P6nm). Therefore, each of the filters 331 to 33t included in the narrow band pass filter 33 has a specific pass characteristic for each of the wavelengths in order to produce near-infrared light of each of the wavelengths suitable for calculating the amount or quality evaluation value contained in the sample. , that is, it is required to have it as the dominant wavelength.

次に、上記構成を有する本発明に係る赤外線分光分析装
置の具体的動作を説明する。まず、操作用プッシュボタ
ン7の操作により光源31を点灯させ、光源31から発
せられた光に基づく測定部37に到達する特定波長の近
赤外光が安定するまで、近赤外分光分析装置3の全体を
加温装置78等で予熱する。予熱のための所定時間が経
過したら、試料容器装着箱5を装置のキャビネット2か
ら一旦引き出し、粉砕した試料の試料55を充填した試
料容器52を所定位置に載置させた後、キャビネット2
内に挿入することにより測定準備を完了する。このとき
試料容器装置箱5の温度センサー79は試料容器52の
温度を測定する。なお、試料55は、測定値に誤差が生
じないようにするために、その粒子の大きさが約50ミ
クロン以下に粉砕されていることが望ましいが、必ずし
も粉砕しなければならないものではない。また、乱反射
による光のロスを少な《する為に、粉砕された試料55
は、その表面が平坦面となるような状態で試料容器52
に充填されること、さらに、透明ガラス板で多少圧力を
加えながらその表面を覆うことが好ましい。
Next, the specific operation of the infrared spectrometer according to the present invention having the above configuration will be explained. First, the light source 31 is turned on by operating the operating push button 7, and the near-infrared spectrometer 3 The entire area is preheated using a heating device 78 or the like. After a predetermined period of time for preheating has elapsed, the sample container mounting box 5 is pulled out from the cabinet 2 of the apparatus, and the sample container 52 filled with the crushed sample 55 is placed in a predetermined position.
Complete the measurement preparation by inserting the At this time, the temperature sensor 79 of the sample container device box 5 measures the temperature of the sample container 52. Note that, in order to avoid errors in the measured values, it is desirable that the sample 55 be pulverized to a particle size of about 50 microns or less, but it is not necessarily necessary to be pulverized. In addition, in order to reduce the loss of light due to diffuse reflection, the sample 55
The sample container 52 is placed in such a state that its surface becomes a flat surface.
It is preferable that the surface be filled with a transparent glass plate and that the surface be covered with a transparent glass plate while applying some pressure.

前記測定準備作業が完了したら、次に、最初にP.nm
を主波長として持つフィルター33Aが光源31と反射
鏡32とを結ぶ線上に来るように選択され、波長Pln
mの近赤外光を試料55に対して照射したときの反射吸
光度の測定作業に入る。反射吸光度の測定作業は、試料
55に対して照射される全照射量、即ち基準光量の測定
と、試料55に対して前記基準照射光量を照射した時に
試料55で実際に反射される反射光量の測定との2つの
測定からなる。1つのフィルターについてこれから2つ
の測定のどちらかを先に実施しても構わないが、以下の
説明では、基準照射光量の測定の方が先に実施されるも
のとして説明する。基準照射光量の測定は、傾斜角度が
可変に構成された反射鏡32の傾斜角度を、これからの
反射光が積分球34の内壁に直接当たるような角度に、
電動機等を用いた回動手段(図示せず)により変えた状
態で実施される。こうすることにより、積分球34の内
壁に直接当てられた反射鏡32からの光は、内壁を多方
向に拡散反射しながら最終的には検出器351,35b
に到達し、基準照射光量として検出される。一方試料5
5からの反射光量の測定は、反射鏡32の傾斜角度が第
2図に示す元の位置に戻された後、前述した原理により
行われる。なお、測定準備完了後の最初のフィルターの
選択、基準照射光量の測定及び反射光量の測定までの各
実行は、制御装置4の記憶装置4b内のROMに手順プ
ログラムを記憶させ、そのプログラムに従って自動的に
行えるようにできることは言うまでもない。また、1つ
のフィルターについての前述基準照射光量及び反射光量
の各測定をそれぞれ複数回実施し、測定値としてそれら
の平均を採れるようにすることも測定精度を上げるのに
役立つ。検出器35I,35bによって検出された基準
照射光量及び試料55からの反射光量に基づく各測定値
は、制御装置4に連絡され、記憶装置4b内の書き込み
可能なメモリ(以下、RAMと言う)に一旦記憶される
When the measurement preparation work is completed, first P. nm
The filter 33A having a main wavelength of Pln is selected to be on the line connecting the light source 31 and the reflecting mirror 32, and
Then, the work begins to measure the reflected absorbance when the sample 55 is irradiated with near-infrared light of m. The measurement work of reflection absorbance involves measuring the total amount of irradiation irradiated onto the sample 55, that is, the reference amount of light, and measuring the amount of reflected light actually reflected by the sample 55 when the sample 55 is irradiated with the reference amount of irradiation light. It consists of two measurements. Although it is possible to perform either of the two measurements on one filter first, in the following explanation, it is assumed that the measurement of the reference irradiation light amount is performed first. The reference irradiation light amount is measured by setting the inclination angle of the reflecting mirror 32 whose inclination angle is variable so that the reflected light directly hits the inner wall of the integrating sphere 34.
It is carried out in different states using a rotating means (not shown) using an electric motor or the like. By doing this, the light from the reflecting mirror 32 that is directly applied to the inner wall of the integrating sphere 34 is diffusely reflected on the inner wall in multiple directions, and finally reaches the detectors 351, 35b.
reaches and is detected as the reference irradiation light amount. On the other hand, sample 5
Measurement of the amount of reflected light from reflector 5 is performed according to the above-described principle after the inclination angle of reflector 32 is returned to the original position shown in FIG. In addition, each execution from the selection of the first filter after the measurement preparation is completed to the measurement of the reference irradiation light amount and the measurement of the reflected light amount is performed automatically according to the program by storing a procedure program in the ROM in the storage device 4b of the control device 4. Needless to say, there are many things you can do to make it more practical. Furthermore, it is also useful to measure the reference irradiation light amount and reflected light amount for one filter a plurality of times, and to take the average of the measurements as the measured value. Each measurement value based on the reference irradiation light amount and the reflected light amount from the sample 55 detected by the detectors 35I and 35b is communicated to the control device 4 and stored in a writable memory (hereinafter referred to as RAM) in the storage device 4b. Once it is memorized.

照射波長P,nmにおける吸光度の測定が終了したら、
次の照射波長、即ち本実施例の場合P2 nmでの吸光
度の測定に移行する。ここでも、基準照射光量の測定及
び反射光量の測定が、前述P+flfflでのときと同
じ方法及び手順で実施される。各測定値は、前回と同様
に、実測データとして制御装置4に連絡され、記憶装置
4b内のRAMに一時記憶される。以下同様に、残りの
各吸光度測定、即ち、波長P3 nm,  P4 nm
,p,nm,  P6 nmでの吸光度測定が順次行わ
れ、各測定値は、実測データとして制御装置4に連絡さ
れ、RAMに記憶される。なお、ある特定波長での吸光
度測定が終わり次の特定波長での吸光度測定への移行に
伴う狭帯域通過フィルター33の各フィルター331〜
331の交換・選択動作は、通常、制御装置4の記憶装
置4b内のROMに予め書き込まれている手順プログラ
ムに従い自動的に行われるが、本実施例の場合でも、必
ずしも上記6波長全てについて吸光度測定を行わなけれ
ばならない訳ではなく、測定の対象となる波長は、求め
る品質評価値に要求される精度或いは測定に係る所要時
間等を考慮して任意に選択することができ、その選択は
、操作用プッシュボタン7内の測定波長選択ボタンによ
り行うことができる。
After completing the measurement of absorbance at the irradiation wavelength P, nm,
The process moves on to measuring the absorbance at the next irradiation wavelength, ie, P2 nm in this example. Here again, the measurement of the reference irradiation light amount and the measurement of the reflected light amount are performed using the same method and procedure as in the case of P+flffl described above. As in the previous case, each measured value is communicated to the control device 4 as actual measurement data, and is temporarily stored in the RAM in the storage device 4b. Similarly, each remaining absorbance measurement, i.e., wavelength P3 nm, P4 nm
, p, nm, and P6 nm are sequentially measured, and each measured value is communicated to the control device 4 as actual measurement data and stored in the RAM. Note that each of the filters 331 to 33 of the narrow band pass filter 33 occurs when the absorbance measurement at a certain specific wavelength is completed and the transition is made to the absorbance measurement at the next specific wavelength.
Normally, the exchange and selection operation of 331 is performed automatically according to a procedure program written in advance in the ROM in the storage device 4b of the control device 4. However, even in the case of this embodiment, it is not necessary to change the absorbance for all of the above six wavelengths. It is not necessary to perform measurement, and the wavelength to be measured can be arbitrarily selected by considering the accuracy required for the desired quality evaluation value, the time required for measurement, etc. This can be done using the measurement wavelength selection button in the operation push button 7.

次に、制御装置4の演算装置4Cは、記憶装置4bのR
AMに記憶されている吸光度測定で得られた多数の実測
データ、即ち各測定波長における基準照射光量及び反射
光量の測定値の内、任意3波長の測定値から一意的に得
られる二次曲線の二次微分値と、記憶装置4bのROM
に予め記憶されている戊分又は品質評価値計算のための
特定係数値とに基づき、試料の成分又は品質評価値を計
算する。なお、記憶装置4bのROMに予め書き込まれ
るこの特定係数値は、多数の試料に対して例えば官能試
験等で得られた成分又は品質評価値と、検出器からの吸
光度測定値の二次微分値との重回帰分析法により求めら
れた定数である。
Next, the arithmetic unit 4C of the control device 4 executes R of the storage device 4b.
A quadratic curve uniquely obtained from the measured values of any three wavelengths among the large number of actual measured data obtained by absorbance measurements stored in the AM, that is, the measured values of the reference irradiation light amount and reflected light amount at each measurement wavelength. Second derivative value and ROM of storage device 4b
The component or quality evaluation value of the sample is calculated based on the pre-stored fraction or the specific coefficient value for calculating the quality evaluation value. Note that this specific coefficient value, which is written in advance in the ROM of the storage device 4b, is a component or quality evaluation value obtained, for example, in a sensory test for a large number of samples, and a second derivative value of the absorbance measurement value from the detector. This is a constant determined by multiple regression analysis method.

ここで本発明である特定係数を求める重回帰分析の説明
変数に用いる二次微分値について一例を示す。たとえば
6個のフィルターP + nm,P2nm,P3nm,
P4nm,P5nm,P6nmを使用した試料の検出器
による吸光度測定値を第4図に示す。
Here, an example will be shown of second-order differential values used as explanatory variables in multiple regression analysis for determining specific coefficients according to the present invention. For example, six filters P + nm, P2nm, P3nm,
FIG. 4 shows absorbance measurements using a detector for samples using P4 nm, P5 nm, and P6 nm.

第4図は横軸に近赤外線の波長と縦軸に吸光度とをとり
、各フィルターにより測定された吸光度をプロットした
ものであるが、同一試料で粉砕粒度の異なる試料A, 
 Bのそれぞれの波長に対する吸光度を求一めたもので
ある。
In Figure 4, the horizontal axis represents near-infrared wavelength and the vertical axis represents absorbance, and the absorbance measured by each filter is plotted.
The absorbance for each wavelength of B was determined.

このように同一試料であっても、粉砕粒度・粒径や、試
料温度、または環境温度により、各波長に対し求められ
る吸光度は変化する。しかも、その変化量は波長が長い
程大きくなり一般的に次式で表現される。
In this way, even for the same sample, the absorbance required for each wavelength varies depending on the pulverized particle size/particle size, sample temperature, or environmental temperature. Moreover, the amount of change increases as the wavelength becomes longer, and is generally expressed by the following equation.

変化量をΔr,波長をλとすると、 Δr=mλ+n・・・(1)  (m,  nは任意の
定数)ここで前述のごとく、スキャニング式の近赤外線
分光分析の処理と異なり、本発明においては次のように
処理する。
Letting the amount of change be Δr and the wavelength be λ, then Δr=mλ+n...(1) (m, n are arbitrary constants) Here, as mentioned above, unlike the scanning type near-infrared spectroscopy process, in the present invention is processed as follows.

第4図に求めた各波長に対する吸光度の任意の三点を選
択し、該任意三点により一意的に決まる二次曲線を求め
る。第4図のAから求めた二次曲線を第5図に示すが本
図においては隣り合った三点で二次曲線を求めた例を示
しているが本例に限らず任意3点であり、またプロット
したそれぞれの点が、いずれかの二次曲線にも必ず含ま
れるようにする。
Select three arbitrary points of the absorbance for each wavelength determined in FIG. 4, and obtain a quadratic curve uniquely determined by the three arbitrary points. The quadratic curve obtained from A in Fig. 4 is shown in Fig. 5. Although this figure shows an example in which the quadratic curve was obtained from three adjacent points, it is not limited to this example, and any three points can be used. , and ensure that each plotted point is included in one of the quadratic curves.

ここに形成された二次曲線A1〜A4の内A,に注目す
る。二次曲線A,の二次方程式S (Pi を次のよう
に仮定する。
Pay attention to A of the quadratic curves A1 to A4 formed here. Assume that the quadratic equation S (Pi) of the quadratic curve A is as follows.

S +pn=aP1+bp,+c−−−−−−(2)S
+p2+=aP2+bp2+c−−(3)S tpv,
=a Pi +b P3+ c・−−−−−(4)ここ
で、(2), (3), (4)をaについて解くとS
(p21  =2a となる。更に試料の粉砕粒度が異なる第4図中Bについ
て、A同様に考える。BにおいてもAと全く同様二次曲
線を仮定すると81の方程式は次のようになる。
S +pn=aP1+bp,+c---(2)S
+p2+=aP2+bp2+c−-(3)S tpv,
=a Pi +b P3+ c・------(4) Here, solving (2), (3), and (4) for a gives S
(p21 = 2a. Furthermore, regarding B in FIG. 4, where the sample has a different pulverized particle size, consider the same way as A. Assuming that B is a quadratic curve just like A, equation 81 becomes as follows.

S (Pll = S (p1》十m P + + n
 −−(e)S (P21 = S (P2+ +m 
P 2 十n−”{7)S tp3+ = S (P3
1 +m P 3 + n −”{8}ここで、mP+
nは(1)式により求めた粒度・粒径の影響を受けた変
化量であり、第4図中のAとBとの差である変化量Δr
をAに加え、Bにそれぞれ求められる二次曲線を仮定し
たちの?ある。
S (Pll = S (p1》10m P + + n
--(e)S (P21 = S (P2+ +m
P 2 10n−”{7)S tp3+ = S (P3
1 +m P 3 + n −”{8}Here, mP+
n is the amount of change influenced by the particle size/grain size determined by equation (1), and the amount of change Δr is the difference between A and B in Figure 4.
Adding to A and assuming the required quadratic curve for B? be.

ここで、B,の(6), (7), (8)をaについ
て解くと、(5)式の分子だけ次のようになる。
Here, when (6), (7), and (8) of B are solved for a, only the numerator of equation (5) becomes as follows.

(5)式の分子は、 (Pi −P+ ) (SLpo−Lp2+) +m(
P+ −P2 )−(PI −P2 ) (Lpi+−
St.,) ++e(P3−p, )となり、 =(P3−P+ ) (Stp+ビScp2l)−(1
 −P2 )  (Srps+−3pu)+m(P+ 
−F’2)  (P3−PI ) −m(P, −I1
2)  (P3−PI )(P3 −PI ) (Lp
n−Lp2,)−(P+ −P2 )  (Lpi+−
St■→となる。これは〈5〉式と同じで粒度・粒径の
影響による変化量 Δr=mP+1の項は存在しないことからS (P) 
 =2aの二次微分による値は粒度・粒径または、温度
等の影響を受けることはないと証明できる。つまり、任
意3点の吸光度から一意的に求められる二次曲線の二次
微分値は粒度・粒径または温度等の影響を受けない、後
に詳述する重回帰分析の説明変数として使用することが
可能であり、試料の成分又は品質を求める際の精度向上
に有効に作用するものである。
The molecule of formula (5) is (Pi −P+ ) (SLpo−Lp2+) +m(
P+ -P2)-(PI-P2)(Lpi+-
St. ,) ++e(P3-p, ), and =(P3-P+) (Stp+BiScp2l)-(1
-P2 ) (Srps+-3pu)+m(P+
-F'2) (P3-PI) -m(P, -I1
2) (P3-PI) (P3-PI) (Lp
n-Lp2,)-(P+-P2) (Lpi+-
St ■→. This is the same as equation <5>, and since there is no term for the amount of change Δr=mP+1 due to the influence of particle size, S (P)
It can be proven that the value obtained by the second derivative of =2a is not affected by particle size, particle size, temperature, etc. In other words, the quadratic differential value of the quadratic curve, which is uniquely determined from the absorbance at three arbitrary points, is not affected by particle size, particle diameter, temperature, etc., and can be used as an explanatory variable in the multiple regression analysis described in detail later. This is possible and effectively works to improve accuracy when determining the composition or quality of a sample.

次に上記説明変数、つまり二次微分値aを用いた重回帰
分析について説明する。
Next, multiple regression analysis using the above-mentioned explanatory variable, that is, the second-order differential value a, will be explained.

A1〜A4 (またはB)によりそれぞれ求められる二
次微分値をa,〜a4とする。このとき次の線型関係が
或立するものとする。
Let the second-order differential values obtained by A1 to A4 (or B), respectively, be a, to a4. At this time, it is assumed that the following linear relationship holds.

X=FO +F, a 1+ F2 a2+=・Fa 
a4+E r ”(9)このとき、X:既知の試料の成
分又は品質評価値 F:重回帰分析による特定係数値 a :A1〜A4から求められる二次微分値ε:誤差 である。
X=FO +F, a 1+ F2 a2+=・Fa
a4+E r '' (9) At this time, X: Known sample component or quality evaluation value F: Specific coefficient value a by multiple regression analysis: Secondary differential value ε obtained from A1 to A4: Error.

同様にしてn個の試料について吸光度分析を行い(9)
式の重回帰式に代入すると、 X1=Fot+Flx’ aI1+−F2% a2,十
−+F4w” 841 + εH X2 =Fax十F1% a+x+”’F2x” a2
x+”’+ F 4W ’  a 42十 5 2X+
t =Fax十F+% a1n+−F2xs a2n+
−・・+F4%  a..n+ε. となり、上記n個の重回帰式により重回帰分析を行いF
。8〜F 4wの特定係数値を求めるとX=Fo,+F
+za a,+F2xm a,+−F4t#4・・・・
・・・・・・旧・・・・・・・・・・・・・・([1)
となり、試料の成分又は品質評価値と吸光度測定値から
求めた二次微分値との関係式が成立する。
In the same way, absorbance analysis was performed on n samples (9)
Substituting into the multiple regression equation, X1=Fot+Flx' aI1+-F2% a2, 10-+F4w" 841 + εH
x+”'+ F 4W ' a 42 ten 5 2X+
t =Fax 10F+% a1n+-F2xs a2n+
-...+F4% a. .. n+ε. Then, multiple regression analysis is performed using the above n multiple regression equations and F
. 8~F When calculating the specific coefficient value of 4w, X=Fo, +F
+za a, +F2xm a, +-F4t#4...
・・・・・・Old・・・・・・・・・・・・・・・([1)
Therefore, a relational expression between the component or quality evaluation value of the sample and the second-order differential value obtained from the measured absorbance value is established.

ところで、前記P1〜P6のフィルターは、実施例を示
したものであり、正確を期するための最適フィルターの
選定は、前記回帰分析を110θnm〜250flnm
の波長域で細分化した波長域、たとえば2+++n間隔
で得た吸光度を用いて行列的に全てを組み合わせて見い
出すのである。
By the way, the filters P1 to P6 are shown as examples, and to ensure accuracy, the optimal filters are selected by performing the regression analysis at 110θnm to 250flnm.
The wavelength range is subdivided into wavelength ranges, for example, absorbances obtained at intervals of 2+++n are used to find out by combining all of them in a matrix manner.

また6個のフィルターを用いて他の成分又は品質評価値
についても検出器でn個の試料の吸光度測定を行い前記
同様成分又は品質評価値を求める次の重回帰式が成立す
る。
In addition, using six filters, the absorbance of n samples is measured with a detector for other components or quality evaluation values, and the following multiple regression equation is established to obtain the same components or quality evaluation values as described above.

Y=Fo,+F,,a a,+F2,・a2+−十F4
F−a4 以上のごとく各成分において同様に重回帰分析を行い試
料の特定係数を求めて、戊分又は品質評価値を検出器の
吸光度測定で求める。つまり、試料の各成分又は品質評
価値ごとの特定係数を求めると、分析する任意試料の吸
光度値がら求めた二次微分値を、たとえばく功式のa1
〜a4に代入して、先に求めた特定係数値との演算によ
り、戊分又は品質評価値を算出するものである。
Y=Fo, +F,,a a,+F2,・a2+-tenF4
F-a4 As described above, multiple regression analysis is similarly performed for each component to determine the specific coefficient of the sample, and the fraction or quality evaluation value is determined by absorbance measurement with a detector. In other words, when determining the specific coefficient for each component or quality evaluation value of a sample, the second derivative value determined from the absorbance value of any sample to be analyzed can be calculated using the formula a1
~ a4 and calculates the fraction or quality evaluation value by calculating with the specific coefficient value obtained previously.

ところで試料に含有する水分は、粉砕時の粉砕粒度また
は近赤外線分光分析時の吸光度等に影響することは明ら
かなため、試料の吸光度により二次微分値と特定係数と
の演算の際、前記試料の水分値を補正値として演算に加
入するものである。
By the way, it is clear that the moisture contained in a sample affects the pulverized particle size during pulverization or the absorbance during near-infrared spectroscopic analysis, so when calculating the second derivative value and specific coefficient based on the absorbance of the sample, The moisture value is added to the calculation as a correction value.

この水分値も前述の吸光度測定値により求めることがで
きる。つまり水の分子式からその固有振動数は明らかで
、波長で1940nmとされていることから、この波長
域で求められる吸光度測定値を基に、記憶装置の水分換
算係数との演算により水分値を求めるものである。この
水分換算係数も、前記吸光度測定値と化学分析等による
水分測定値との関係式から、先の特定係数よりも単純に
求めることができる。
This moisture value can also be determined by the absorbance measurement described above. In other words, the natural frequency of water is clear from the molecular formula, and the wavelength is 1940 nm, so based on the absorbance measurement value obtained in this wavelength range, the moisture value is calculated by calculation with the moisture conversion coefficient in the storage device. It is something. This moisture conversion coefficient can also be determined more simply than the above specific coefficient from the relational expression between the absorbance measurement value and the moisture measurement value obtained by chemical analysis or the like.

上記求められた品質評価特定係数と吸光度による二次微
分値の計算式で計算された成分又は品質評価値は、演算
装置4cでの計算終了と同時に、表示装置6に可視表示
されると共に、自動的に又は操作用プッシュボタン7へ
の指令に基づきプリンター8からハードコピーとして繰
り出される。また、戊分又は品質評価値を求める途中の
過程で求められた水分等を、成分又は品質評価値と基に
表示装置6に同時に可視表示させてもよい。
The component or quality evaluation value calculated by the formula of the second derivative value based on the quality evaluation specific coefficient and absorbance obtained above is visually displayed on the display device 6 and automatically The hard copy is delivered from the printer 8 automatically or based on a command to the operation push button 7. Further, the moisture and the like determined during the process of determining the fraction or quality evaluation value may be visually displayed on the display device 6 at the same time based on the components or the quality evaluation value.

以上により求められた成分又は品質評価値を総合的に評
価する総合評価値を求めることができる。
A comprehensive evaluation value that comprehensively evaluates the components or quality evaluation values determined above can be determined.

たとえばそれぞれの品質評価値の評価方法を10点満点
評価し、各品質評価値の合計点数を総合評価値とすると
か、各品質評価値の総合評価に対する関与度をそれぞれ
変えてより細かく好みに応じた評価ができるようにした
ものと、様々にその形態は考えられ、最終的に総合評価
としてこの試料は、その分野においてこのランクに属す
る等の評価値を算定することが可能となり、その基本と
なる前記成分又は品質評価値は本発明により短時間でし
かも人間的要因に左右されない公正な判定とすることが
できる。
For example, you can evaluate the evaluation method for each quality evaluation value out of 10 points and use the total score of each quality evaluation value as the overall evaluation value, or you can change the degree of involvement of each quality evaluation value in the overall evaluation to more precisely match your preferences. Various forms can be considered, such as those that can be evaluated in a certain field, and ultimately, as a comprehensive evaluation, this sample will be able to calculate an evaluation value such as belonging to this rank in the field, and it will be possible to calculate the evaluation value that belongs to this rank in the field. According to the present invention, the above components or quality evaluation values can be determined fairly in a short time and not influenced by human factors.

本品質評価装置により計算された各試料の成分又は品質
評価値は、フロッピーディスク等の磁気媒体を用いた外
部記憶装置にデータとして記憶しておくことができ、ま
た、上記複数種類の試料のブレンド比率の計算時等では
、外部記憶装置からデータを本装置内の記憶装置4bの
RAMに読み込んで、これに基づき必要な計算を行うこ
とも可能である。
The components or quality evaluation values of each sample calculated by this quality evaluation device can be stored as data in an external storage device using a magnetic medium such as a floppy disk. When calculating a ratio, etc., it is also possible to read data from an external storage device into the RAM of the storage device 4b in this device and perform necessary calculations based on this data.

さて前記品質評価装置による試料の分析には該試料を粉
砕して分析するが、この試料の粉砕には、金網内で高速
回転する粉砕翼からなる、いわゆる遠心型の試料粉砕装
置等が用いられる。
Now, in order to analyze a sample using the above-mentioned quality evaluation device, the sample is pulverized and analyzed, and a so-called centrifugal type sample pulverizer, etc., which consists of pulverizing blades that rotate at high speed within a wire mesh, is used for pulverizing the sample. .

上述実施例の品質評価装置では、試料に特定波長の近赤
外光を照射したときの吸光度の測定を、試料からの反射
光の強度を測定することにより行う反射式の近赤外分光
分析装置を用いたが、試料を透過してきた透過光の強度
を測定することにより行う透過式の近赤外分光分析装置
を用いることもでき、さらには、反射光及び透過光の両
方に基づき吸光度の測定を行う、より精密な近赤外分光
分析装置とすることもできる。
The quality evaluation device of the above embodiment is a reflective near-infrared spectrometer that measures the absorbance when a sample is irradiated with near-infrared light of a specific wavelength by measuring the intensity of reflected light from the sample. However, it is also possible to use a transmission-type near-infrared spectrometer that measures the intensity of transmitted light that has passed through the sample, and it is also possible to measure absorbance based on both reflected light and transmitted light. It is also possible to create a more precise near-infrared spectrometer that performs this.

〔発明の効果〕〔Effect of the invention〕

以上本発明によると、スキャニング式の連続スペクトル
を用いた近赤外線分光分析でしか得られなかった、試料
の粉砕粒度・粒径と温度または環境温度の影響の消去を
固定式近赤外線分光分析において可能とし、今までの周
辺機器による環境、試料温度の安定化と、試料の粉砕粒
度・粒径の管理等は必要とせず、人的・外的要因に左右
されない精度の高い近赤外線分光分析を固定式において
も実現でき、構造が簡単であることから、安価な測定機
器であっても、スキャニグ式のものと同等の精度を得る
ことが可能となった。
As described above, according to the present invention, in stationary near-infrared spectroscopy, it is possible to eliminate the influence of the pulverized particle size and particle size of the sample and temperature or environmental temperature, which could only be obtained with near-infrared spectroscopy using continuous scanning spectra. This eliminates the need for conventional peripheral equipment to stabilize the environment and sample temperature, and to control sample crush particle size and particle size, allowing for highly accurate near-infrared spectroscopic analysis that is unaffected by human or external factors. It can also be realized using a formula, and because the structure is simple, it has become possible to obtain the same accuracy as a scanning type even with an inexpensive measuring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による実施例の品質評価装置の正面概略
図、第2図は第1図の品質評価装置に用いられる近赤外
線分光分析装置の要部側断面図、第3図は異なる試料に
対する近赤外線照射波長と吸光度との関係を示すグラフ
(吸光度曲線)、第4図は本実施例の吸光度を表わす図
、第5図は第4図の吸光度より求めた二次曲線である。 図において、1・・・コーヒー豆の品質評価装置、2・
・・キャビネット、3・・・近赤外分光分析装置、4・
・・制御装置、4a・・・入出力信号処理装置、4b・
・・記憶装置(ROM,RAM) 、4 c・・・演算
装置、5・・・試料容器装着箱、6・・・表示装置、7
・・・操作用プッシュボタン、8・・・プリンター、9
・・・入力装置(キーボード)、31・・・光源、32
・・・反射鏡、33・・・狭帯域通過フィルター、33
a〜33f・・・フィルター、34・・・積分球、35
a,35b・・・検出器、36・・・採光窓、37・・
・測定部、52・・・試料容器、55・・・試料(コー
ヒー豆)、77・・・温度設定器、78・・・加温装置
、79・・・温度センサー
FIG. 1 is a schematic front view of a quality evaluation device according to an embodiment of the present invention, FIG. 2 is a sectional side view of the main part of a near-infrared spectrometer used in the quality evaluation device of FIG. 1, and FIG. 3 is a diagram showing different samples. FIG. 4 is a graph (absorbance curve) showing the relationship between the near-infrared irradiation wavelength and absorbance for a given sample, FIG. 4 is a graph showing the absorbance of this example, and FIG. 5 is a quadratic curve obtained from the absorbance in FIG. 4. In the figure, 1... coffee bean quality evaluation device, 2...
...Cabinet, 3...Near-infrared spectrometer, 4.
...Control device, 4a...Input/output signal processing device, 4b.
...Storage device (ROM, RAM), 4 c...Arithmetic device, 5...Sample container mounting box, 6...Display device, 7
...Push button for operation, 8...Printer, 9
... Input device (keyboard), 31 ... Light source, 32
...Reflector, 33...Narrow band pass filter, 33
a~33f...filter, 34...integrating sphere, 35
a, 35b...detector, 36...lighting window, 37...
・Measurement part, 52... Sample container, 55... Sample (coffee beans), 77... Temperature setting device, 78... Warming device, 79... Temperature sensor

Claims (1)

【特許請求の範囲】[Claims] 試料に対して近赤外線光を照射したとき、試料の品質差
が吸光度差として顕著に現れる波長のみを透過する少な
くとも3個以上の狭帯域フィルターを備えた近赤外線分
光分析装置による近赤外線分光分析方法であって、前記
複数個の狭帯域フィルターを通過した少なくとも3波長
以上の近赤外線より得られるそれぞれの吸光度の内、任
意の3波長の吸光度によりそれぞれ二次曲線を求め、該
二次曲線を二次微分して得られるそれぞれの値を重回帰
式の説明変数として重回帰分析を行ない、前記試料の品
質を分析することを特徴とする近赤外線分析方法。
A near-infrared spectroscopic analysis method using a near-infrared spectrometer equipped with at least three or more narrow band filters that transmit only wavelengths at which the difference in quality of the sample is noticeable as a difference in absorbance when a sample is irradiated with near-infrared light. Among the respective absorbances obtained from near-infrared rays of at least three wavelengths that have passed through the plurality of narrowband filters, a quadratic curve is obtained from the absorbance at any three wavelengths, and the quadratic curve is A near-infrared analysis method, characterized in that the quality of the sample is analyzed by performing multiple regression analysis using each value obtained by second-order differentiation as an explanatory variable in a multiple regression equation.
JP15142289A 1989-06-13 1989-06-13 Near infrared spectroscopy Expired - Fee Related JP2757021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15142289A JP2757021B2 (en) 1989-06-13 1989-06-13 Near infrared spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15142289A JP2757021B2 (en) 1989-06-13 1989-06-13 Near infrared spectroscopy

Publications (2)

Publication Number Publication Date
JPH0315741A true JPH0315741A (en) 1991-01-24
JP2757021B2 JP2757021B2 (en) 1998-05-25

Family

ID=15518277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15142289A Expired - Fee Related JP2757021B2 (en) 1989-06-13 1989-06-13 Near infrared spectroscopy

Country Status (1)

Country Link
JP (1) JP2757021B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560685A (en) * 1991-09-03 1993-03-12 Iseki & Co Ltd Temperature estimation method and protein content estimation method by means of near infrared spectral analysis
JP2010175403A (en) * 2009-01-29 2010-08-12 Satake Corp Method for computing absorbance by approximate expression
WO2013125612A1 (en) * 2012-02-21 2013-08-29 株式会社明治 Simple method for measuring median particle size of lactic food
CN109975239A (en) * 2019-04-15 2019-07-05 北京市农林科学院 Near-infrared spectrometers
JP2019148607A (en) * 2019-06-12 2019-09-05 Jfeテクノリサーチ株式会社 Inspection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560685A (en) * 1991-09-03 1993-03-12 Iseki & Co Ltd Temperature estimation method and protein content estimation method by means of near infrared spectral analysis
JP2010175403A (en) * 2009-01-29 2010-08-12 Satake Corp Method for computing absorbance by approximate expression
WO2013125612A1 (en) * 2012-02-21 2013-08-29 株式会社明治 Simple method for measuring median particle size of lactic food
CN109975239A (en) * 2019-04-15 2019-07-05 北京市农林科学院 Near-infrared spectrometers
JP2019148607A (en) * 2019-06-12 2019-09-05 Jfeテクノリサーチ株式会社 Inspection device

Also Published As

Publication number Publication date
JP2757021B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
KR910004140B1 (en) Rise quality valuation device
RU2400715C2 (en) Spectrometre calibration method
Sudduth et al. Portable, near-infrared spectrophotometer for rapid soil analysis
US7868296B2 (en) Spectroscopy having correction for broadband distortion for analyzing multi-component samples
Peirs et al. Temperature compensation for near infrared reflectance measurement of apple fruit soluble solids contents
Xie et al. Applications of near-infrared systems for quality evaluation of fruits: A review
EP1792653A1 (en) Apparatus and method for spectrophotometric analysis
Armstrong et al. Comparison of dispersive and Fourier-transform NIR instruments for measuring grain and flour attributes
Rodgers et al. Near infrared measurement of cotton fiber micronaire by portable near infrared instrumentation
JPH0315741A (en) Near infrared spectrochemical analysis
Niskanen et al. A multifunction spectrophotometer for measurement of optical properties of transparent and turbid liquids
Stark et al. NIR instrumentation technology
Workman et al. Commercial NIR instrumentation
Cui et al. Hyperspectral reflectance imaging for water content and firmness prediction of potatoes by optimum wavelengths
JP2745025B2 (en) Rice quality evaluation method
CN202710470U (en) Array type semiconductor laser unit near infrared spectroscopy analysis meter
JP2757005B2 (en) Quality evaluation method of coffee beans
Delwiche Basics of spectroscopic analysis
JP2904796B2 (en) Method and apparatus for mixing coffee beans based on taste management
Jee 23 Near-infrared spectroscopy
JPS63235849A (en) Evaluation of quality of rice
JP2878377B2 (en) Quality evaluation method of cooked rice
Swarbrick Near‐infrared spectroscopy and its role in scientific and engineering applications
JPS63175747A (en) Instrument for measuring content of amylose or amylopectin of rice
Ou et al. Spectral sensing using a Handheld NIR module based on a fully integrated sensor chip

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees