JPH0315720Y2 - - Google Patents

Info

Publication number
JPH0315720Y2
JPH0315720Y2 JP12221584U JP12221584U JPH0315720Y2 JP H0315720 Y2 JPH0315720 Y2 JP H0315720Y2 JP 12221584 U JP12221584 U JP 12221584U JP 12221584 U JP12221584 U JP 12221584U JP H0315720 Y2 JPH0315720 Y2 JP H0315720Y2
Authority
JP
Japan
Prior art keywords
horizontal
struts
members
support
diagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12221584U
Other languages
Japanese (ja)
Other versions
JPS6137352U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12221584U priority Critical patent/JPS6137352U/en
Publication of JPS6137352U publication Critical patent/JPS6137352U/en
Application granted granted Critical
Publication of JPH0315720Y2 publication Critical patent/JPH0315720Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は貯水池に設ける表層水の取水用シリ
ンダゲート用の独立塔式の取水塔に関するもので
ある。
[Detailed description of the invention] [Industrial application field] This invention relates to an independent tower-type water intake tower for a cylinder gate for intake of surface water provided in a reservoir.

〔従来の技術〕[Conventional technology]

上記のような取水塔はダムに沿つて設けるもの
と、ダムから独立させて設ける独立塔型式のもの
とがある。
There are two types of water intake towers as described above: those installed along the dam, and those installed independently from the dam.

この独立塔の場合、従来では第6図、第7図の
ように基礎1上に6本の支柱2を正6角形の各頂
角となる位置に鉛直に立て、この各支柱2を適用
間隔で配置した複数の水平材3により連結すると
ともに、支柱2と水平材3の連結部に斜材4を固
定し、支柱2の内側のガイド柱5に設けたガイド
レール6にシリンダゲート7の各摺動管に設けた
腕8の先端のローラなどを係合させ、各支柱2で
支えた上端の操作室9内の巻上機によりロープ1
0を介してシリンダゲート7を伸縮させるように
なつている。
In the case of this independent tower, conventionally, as shown in Figures 6 and 7, six pillars 2 are vertically erected on the foundation 1 at positions corresponding to the apex angles of a regular hexagon, and each pillar 2 is placed at an appropriate interval. At the same time, a diagonal member 4 is fixed to the connecting part between the support column 2 and the horizontal member 3, and each of the cylinder gates 7 is connected to a guide rail 6 provided on a guide column 5 inside the support column 2. The rope 1 is moved by a hoisting machine in the operation chamber 9 at the upper end supported by each support 2 by engaging the rollers at the tip of the arm 8 provided on the sliding tube.
The cylinder gate 7 is expanded and contracted through the cylinder 0.

〔考案が解決しようとる問題点〕[Problem that the idea aims to solve]

上記のような従来の独立塔の場合、その全高を
座屈長Lとすることから、各部材を長い座屈長に
対応できるだけの強度を有する大きな断面のもの
にする必要があり、このようなものを用いての骨
組構造とすることは経済的に不利である。また、
維持面において、塔体はしばしば塗装を行なわな
ければならないが、表面積が大であること、塔体
が水中構築物であることなどから維持管理が大変
である。このためステンレス鋼材などを使用する
ことも考えられるがきわめて高価であるなどの問
題がある。
In the case of the conventional independent tower described above, its total height is the buckling length L, so each member needs to have a large cross section with enough strength to accommodate the long buckling length. It is economically disadvantageous to construct a frame structure using materials. Also,
In terms of maintenance, tower bodies often have to be painted, but maintenance is difficult because they have a large surface area and are underwater structures. For this reason, it is conceivable to use a material such as stainless steel, but this poses problems such as being extremely expensive.

そこで、この考案は前記のような従来のものの
もつ欠点を排除することができる選択取水用シリ
ンダゲートの塔体を提供することを技術的課題と
するものである。
Therefore, the technical object of this invention is to provide a tower body for a cylinder gate for selective water intake which can eliminate the drawbacks of the conventional ones as described above.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するために講じた技術的手
段は、複数の外支柱を多角形の頂角となる位置に
それぞれ配置し、この多角形の対角線の交点位置
に複数の内支柱を配置し、これらの各外支柱およ
び内支柱を多段状に配置した水平材により連結し
て各段の水平面毎に多数のトラスを組合せた構成
とし、外側支柱の上下の水平材間には斜材を配置
し、外側支柱、内側支柱、水平材、斜材の全てお
よびそれらの交叉部をコンクリート層により完全
に被覆し、内支柱の所要のものにはシリンダゲー
トの各摺動管を案内するガイドレールを設けたこ
とである。
The technical measures taken to solve the above problems are to place multiple outer columns at the apex angles of the polygon, and to place multiple inner columns at the intersections of the diagonals of the polygon. , these outer and inner columns are connected by horizontal members arranged in multiple stages, creating a structure in which a large number of trusses are combined for each horizontal plane of each step, and diagonal members are placed between the horizontal members above and below the outer supports. All of the outer struts, inner struts, horizontal members, diagonal members, and their intersections are completely covered with a concrete layer, and the necessary inner struts are equipped with guide rails to guide each sliding pipe of the cylinder gate. This is what we have set up.

〔作用〕[Effect]

この考案は上記の構成であり、座屈長L′を小さ
くしたトラス構造の塔体の中でシリンダゲートは
内支柱の所要のものに固定したガイドレールを案
内として伸縮し、その上端の取水口から貯水池の
表層水を取水する。
This idea has the above-mentioned structure. Inside the tower body, which has a truss structure with a small buckling length L', the cylinder gate expands and contracts using guide rails fixed to the required inner columns as a guide, and the water intake at the upper end of the cylinder gate expands and contracts. The surface water of the reservoir is taken from the reservoir.

〔実施例〕〔Example〕

つぎに実施例について説明すれば、第1図、第
2図の11は基礎1上に設けた6本の外支柱で、
この外支柱11を多段状に配置した多数の水平材
12により連結して各段毎に6角形とする。
Next, to explain an example, 11 in FIGS. 1 and 2 are six external supports provided on the foundation 1,
These outer supports 11 are connected by a large number of horizontal members 12 arranged in multiple stages, so that each stage has a hexagonal shape.

13は前記各外支柱11と水平材12で構成さ
れた6角形の内側に配置した6本の内支柱で、こ
の各内支柱13も各段の水平材12と同一の水平
面において、水平材14で連結して6角形となつ
ている。
Reference numeral 13 denotes six inner columns arranged inside the hexagon formed by the outer columns 11 and the horizontal members 12, and each of the inner columns 13 also has a horizontal member 14 in the same horizontal plane as the horizontal members 12 of each stage. are connected to form a hexagon.

また、内支柱13は外支柱11の間に位置して
おり、この外支柱11と内支柱13を水平材1
2,14と同一の平面において、水平材16によ
り連結してある。
In addition, the inner support 13 is located between the outer support 11, and the outer support 11 and the inner support 13 are connected to the horizontal member 1.
2 and 14 are connected by a horizontal member 16 on the same plane.

こうして各支柱11,13を水平材12,1
4,16により多段状に連結し、さらに各外支柱
11と各水平材12の交点を斜材17により対角
線状に結合する。
In this way, each support 11, 13 is connected to the horizontal member 12, 1.
4 and 16, and the intersections of each outer support 11 and each horizontal member 12 are diagonally connected by diagonal members 17.

20はシリンダゲートで、周知のように大小径
の異なる複数の摺動管で構成したもので、この各
摺動管の外側に3本の腕21を設け、前記内支柱
13の所定のものの内側に固定したガイドレール
22に、前記各腕21の先端のローラなどを係合
させる。
Reference numeral 20 denotes a cylinder gate, which, as is well known, is composed of a plurality of sliding tubes with different diameters. Three arms 21 are provided on the outside of each sliding tube, and the cylinder gate is provided with three arms 21 on the outside of each of the sliding tubes. A roller or the like at the tip of each arm 21 is engaged with a guide rail 22 fixed to the guide rail 22 .

23は各支柱11で支えた上端の操作室で、そ
の内部の巻上機によつてロープ24を介してシリ
ンダゲート20を伸縮させることは公知のシリン
ダゲートと同じである。
Reference numeral 23 denotes an operation chamber at the upper end supported by each pillar 11, and the cylinder gate 20 is expanded and contracted by a hoisting machine inside the chamber via a rope 24, which is the same as a known cylinder gate.

第3図は外支柱11の断面を示すもので、鋼管
25の外側にコンクリート層26を設けたもので
ある。鋼管25にはコンクリート層26との結合
をよくし、かつ強度を増大させるために任意形状
の多数の補強材27を溶接してある。また、鋼管
25にはガセツトプレート28を溶接してある。
FIG. 3 shows a cross section of the outer support 11, in which a concrete layer 26 is provided on the outside of the steel pipe 25. A large number of reinforcing members 27 of arbitrary shapes are welded to the steel pipe 25 in order to improve the connection with the concrete layer 26 and increase the strength. Further, a gusset plate 28 is welded to the steel pipe 25.

内支柱13も第4図のように同様の構造で鋼管
29に補強材30とガセツトプレート31を溶接
したものにコンクリート層32を巻いたものであ
る。
The inner support 13 has a similar structure as shown in FIG. 4, and is made by welding a reinforcing material 30 and a gusset plate 31 to a steel pipe 29, and wrapping a concrete layer 32 around it.

第5図は外支柱11と水平材12と斜材17の
結合部を示すもので、水平材12と斜材17の骨
格となる型鋼33,34の外側をコンクリート層
35,36で被覆したもので、型鋼33,34は
ガセツトプレート28にリベツト、溶接などの手
段で固定する。
Fig. 5 shows the joint between the outer support 11, the horizontal member 12, and the diagonal member 17, in which the outside of the shaped steel 33, 34, which forms the frame of the horizontal member 12 and the diagonal member 17, is covered with concrete layers 35, 36. The shaped steels 33 and 34 are fixed to the gusset plate 28 by means of rivets, welding, or the like.

外支柱11、内支柱13、水平材12、斜材1
7などのコンクリート層26,32,35,36
の形成は工場により行なうのが適当であるが、こ
の場合、外支柱11のガセツトプレート28の取
付部や水平材12、斜材17の型鋼33,34の
両端部はコンクリート層を形成せず、現地にて塔
を組立てたのち、これらの結合部の外側に第5図
のようにコンクリート層を設けるとよい。
Outer support 11, inner support 13, horizontal member 12, diagonal member 1
Concrete layer 26, 32, 35, 36 such as 7
It is appropriate to form this in a factory, but in this case, a concrete layer is not formed at the attachment part of the gusset plate 28 of the outer support 11 and at both ends of the shaped steels 33 and 34 of the horizontal member 12 and diagonal member 17. After assembling the tower on-site, it is recommended to provide a concrete layer on the outside of these joints as shown in Figure 5.

ただし、コンクリート層の全てを現場にて形成
してもよいことは勿論である。
However, it goes without saying that all of the concrete layers may be formed on site.

また、図示省略してあるが、水平材14,16
も前記水平材12と同様に型鋼にコンクリートを
被覆したもので、それらの結合部も第5図と同様
である。
Also, although not shown, the horizontal members 14 and 16
Similarly to the horizontal member 12, the horizontal member 12 is a shaped steel coated with concrete, and the joints thereof are also the same as shown in FIG.

第1図、第2図の実施例は外支柱が6本で内支
柱も6本の場合を示しているが、外支柱を8本と
して8角形とし、内支柱を4本とする場合なども
ある。
The embodiments shown in Figures 1 and 2 show a case where there are 6 outer columns and 6 inner columns, but it is also possible to use an octagonal shape with 8 outer columns and 4 inner columns. be.

上記のように複数の外支柱11と内支柱13と
を同一水平面において、水平材12,14,16
により一体に結合して各段に2等辺3角形のトラ
スの組合せを構成するとともに外支柱11、内支
柱13、水平材12,14,16および斜材17
の全てをコンクリート層により完全に覆う。
As described above, the plurality of outer columns 11 and inner columns 13 are placed on the same horizontal plane, and the horizontal members 12, 14, 16
are connected together to form a combination of isosceles triangular trusses in each stage, and the outer support 11, the inner support 13, the horizontal members 12, 14, 16, and the diagonal members 17.
completely covered with a concrete layer.

上記の実施例において、常時における巻上荷重
は縦方向の荷重であり、主として外支柱11と内
支柱13と外支柱11につながる水平材12と斜
材17により負担する。従つて垂直方向の水平材
12,14,16間の長さは座屈長L′と考えてよ
い。
In the above embodiment, the hoisting load at all times is a load in the vertical direction, and is mainly borne by the outer support 11, the inner support 13, and the horizontal member 12 and diagonal member 17 connected to the outer support 11. Therefore, the length between the horizontal members 12, 14, and 16 in the vertical direction can be considered as the buckling length L'.

また、地震時などの水平力は(水平震度)×(質
量)で求められるが、主としてシリンダゲート2
0の内外の水の質量が大きな比率を示す。この水
平力はシリンダゲート20の外側の腕21に取付
けられたローラよりガイドレール22を介して内
支柱13に加わり、さらに水平材16を介して外
支柱11へ、そして外支柱11、水平材12、斜
材17などで構成された外塔パネルに伝達され
る。
In addition, the horizontal force during an earthquake is calculated by (horizontal seismic intensity) x (mass), but mainly the cylinder gate 2
The mass of water inside and outside 0 shows a large ratio. This horizontal force is applied to the inner column 13 via the guide rail 22 from a roller attached to the outer arm 21 of the cylinder gate 20, and then to the outer column 11 via the horizontal member 16, and then to the outer column 11, the horizontal member 12 , and is transmitted to the outer tower panel made up of diagonal members 17 and the like.

〔効果〕〔effect〕

この考案の独立塔は上記のように、多角形の頂
角位置に外支柱を配し、各対角線の交点位置に内
支柱を配し、各交点を水平材で連結し、かつ、外
支柱間に斜材を配することによつて座屈長を短く
した強力なトラス構造を構成したので、外支柱や
内支柱あるいは水平材、斜材などの骨格となる鋼
管や型鋼の断面積を小さくできる。また、鋼管や
型鋼の外側を被覆するコンクリートは軽量骨材を
採用することが可能であり、この軽量骨材を用い
たコンクリートは鋼管や型鋼に比較して比重が相
当軽いので、コンクリート被覆を施しても従来の
鋼材のみによる同一規模の独立塔に比較しても総
重量が増すおそれはなく、材料費が節減できる利
点がある。さらに全ての部分をコンクリートにて
完全に被覆しているので、ステンレス鋼やクラツ
ド鋼材などのような高価な特殊鋼材を用いる必要
がなく、普通鋼のみで構成した場合のように年次
毎に銹び止め塗装を施す必要がなくなり、維持管
理が容易となるなどの効果がある。
As mentioned above, the independent tower of this invention has an outer support at the apex position of the polygon, an inner support at the intersection of each diagonal, and each intersection is connected with a horizontal member, and between the outer supports A strong truss structure with a shortened buckling length has been constructed by placing diagonal members in the structure, making it possible to reduce the cross-sectional area of the steel pipes and steel shapes that form the framework of the outer and inner supports, horizontal members, diagonal members, etc. . In addition, it is possible to use lightweight aggregate for the concrete covering the outside of steel pipes and shaped steel, and since concrete using this lightweight aggregate has a considerably lighter specific gravity than steel pipes and shaped steel, it is possible to use concrete to cover the outside of steel pipes and shaped steel. However, compared to conventional independent towers of the same scale made only of steel, there is no risk of the total weight increasing, and there is an advantage in that material costs can be reduced. Furthermore, since all parts are completely covered with concrete, there is no need to use expensive special steel materials such as stainless steel or clad steel, and unlike when the construction is made only of ordinary steel, it is not necessary to rust every year. This eliminates the need for anti-corrosion paint, making maintenance and management easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の独立塔の一実施例を示す正
面図、第2図は同上の拡大横断平面図、第3図、
第4図は外支柱と内支柱の拡大横断面図、第5図
は外支柱と水平材などの結合部の拡大断面図、第
6図は従来の独立塔の一例を示す正面図、第7図
は同上の横断平面図である。 11……外支柱、12,14,16……水平
材、13……内支柱、17……斜材、26,3
2,35,36……コンクリート層。
Fig. 1 is a front view showing an embodiment of the independent tower of this invention, Fig. 2 is an enlarged cross-sectional plan view of the same, Fig. 3,
Fig. 4 is an enlarged cross-sectional view of the outer support and inner support, Fig. 5 is an enlarged cross-section of the joint between the outer support and horizontal members, etc., Fig. 6 is a front view showing an example of a conventional independent tower, and Fig. 7 is an enlarged cross-sectional view of the outer support and the inner support. The figure is a cross-sectional plan view of the same as above. 11...Outer support, 12,14,16...Horizontal member, 13...Inner support, 17...Diagonal member, 26,3
2, 35, 36... concrete layer.

Claims (1)

【実用新案登録請求の範囲】 (1) 複数の外支柱を多角形の頂角となる位置にそ
れぞれ配置し、この多角形の対角線の交点位置
に複数の内支柱を配置し、これらの各外支柱お
よび内支柱を多段状に配置した水平材により連
結して各段の水平面毎に多数のトラスを組合せ
た構成とし、外側支柱の上下の水平材間には斜
材を配置し、外側支柱、内側支柱、水平材、斜
材の全ておよびそれらの交叉部をコンクリート
層により完全に被覆し、内支柱の所要のものに
はシリンダゲートの各摺動管を案内するガイド
レールを設けたシリンダゲート用の独立塔。 (2) 実用新案登録請求の範囲第1項記載のシリン
ダゲート用の独立塔において、外支柱を裾広が
り状となるように配置したもの。
[Claims for Utility Model Registration] (1) A plurality of outer supports are arranged at the apex angles of a polygon, a plurality of inner supports are arranged at the intersections of diagonals of the polygon, and each of these outer supports is arranged at the intersection of diagonals of the polygon. The struts and inner struts are connected by horizontal members arranged in multiple stages, and a large number of trusses are combined for each horizontal plane of each stage. Diagonal members are placed between the horizontal members above and below the outer struts, and the outer struts, For cylinder gates, all of the inner struts, horizontal members, diagonal members, and their intersections are completely covered with a concrete layer, and the required inner struts are equipped with guide rails to guide each sliding pipe of the cylinder gate. independent tower. (2) An independent tower for a cylinder gate as set forth in claim 1 of the utility model registration, in which the outer supports are arranged so as to spread out at the base.
JP12221584U 1984-08-08 1984-08-08 Independent tower for cylinder gate Granted JPS6137352U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12221584U JPS6137352U (en) 1984-08-08 1984-08-08 Independent tower for cylinder gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12221584U JPS6137352U (en) 1984-08-08 1984-08-08 Independent tower for cylinder gate

Publications (2)

Publication Number Publication Date
JPS6137352U JPS6137352U (en) 1986-03-08
JPH0315720Y2 true JPH0315720Y2 (en) 1991-04-05

Family

ID=30680975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12221584U Granted JPS6137352U (en) 1984-08-08 1984-08-08 Independent tower for cylinder gate

Country Status (1)

Country Link
JP (1) JPS6137352U (en)

Also Published As

Publication number Publication date
JPS6137352U (en) 1986-03-08

Similar Documents

Publication Publication Date Title
KR100898283B1 (en) Steel-frame for SRC-frame that steel reinforcement is pre-assembled and Steel-frame structure execution method by using the steel-frame
CN112482577B (en) Large-span space chord supporting wheel spoke type truss structure system and construction method
JPH0647839B2 (en) Construction method of structure
CN114575462A (en) Weave annular building structure
CN109424072B (en) Connecting joint for supporting reinforced concrete columns on steel beams and construction method
US4143502A (en) Method of erecting a structural arch support
JPH0315720Y2 (en)
CN110700109A (en) Construction process of concrete arch ring of steel pipe stiff skeleton of bridge
JP4996370B2 (en) Frame assembly method and building frame
JP6736226B2 (en) Structure and construction method of the structure constructed on the tower-shaped building
KR200358912Y1 (en) Connection structure for girder & column
CN212026601U (en) Rigid frame type supporting structure for bottom inclined leg of giant frame of super high-rise building
WO1990005220A1 (en) Adjustable space frames and trusses
CN106088708A (en) Hyperbola rod structure formed steel construction cooling tower
JP3681888B2 (en) Roof structure
CN205857841U (en) Hyperbola rod structure formed steel construction cooling tower
CN112227688A (en) Stiffening plate bearing type outer frame-free construction platform for residential building and construction method
CN115030317B (en) Large-span truss ceiling without prestress component
JPH073727A (en) Pedestal structure body and its construction
CN211006375U (en) Bridge steel pipe strength nature skeleton concrete encircles construction structures
CN115162534B (en) Construction method of large-span special-shaped truss ceiling
CN116971538B (en) Large-span arched beam structure and construction and installation method thereof
JPH01121427A (en) Large roof framework of long-sized span
CN220117452U (en) Assembled steel structure and low-rise assembled building
AU630127B2 (en) Adjustable space frames and trusses