JPH03157199A - Method for managing dissolved oxygen of pond - Google Patents

Method for managing dissolved oxygen of pond

Info

Publication number
JPH03157199A
JPH03157199A JP1298513A JP29851389A JPH03157199A JP H03157199 A JPH03157199 A JP H03157199A JP 1298513 A JP1298513 A JP 1298513A JP 29851389 A JP29851389 A JP 29851389A JP H03157199 A JPH03157199 A JP H03157199A
Authority
JP
Japan
Prior art keywords
oxygen
pond
water
dissolved oxygen
generators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1298513A
Other languages
Japanese (ja)
Inventor
Kiyotaka Yokoyama
清隆 横山
Toshiyuki Adachi
足立 利幸
Shoji Omura
大村 鉦次
Wataru Nagaya
長屋 渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Support Corp
Original Assignee
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Support Corp filed Critical Energy Support Corp
Priority to JP1298513A priority Critical patent/JPH03157199A/en
Publication of JPH03157199A publication Critical patent/JPH03157199A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE:To naturally clean org. materials and to prevent eutrophication by supplying oxygen to a pond with oxygen generators when the output values of oxygen sensors are reduced to below the min. threshold value and shutting off the oxygen generators when the output values reach the max. threshold value or above. CONSTITUTION:A monitoring device 4 drives the oxygen generators 7a to 7d in accordance with the detection signals of the oxygen sensors 2a to 2c provided in an artificial pond 1 and supplies the oxygen to aeration tanks 5a to 5d via supply pipes 8a to 8d. Water is aerated by the oxygen in the respective aeration tanks 5a to 5d and is discharged from respective drain pipes 6a to 6d to the artificial pond 1. The monitoring device 4 drives the oxygen generators 7a to 7d when the quantity of the dissolved oxygen is reduced below the min. threshold value in accordance with the detection signals of the oxygen sensors 2a to 2c. The monitoring device shuts off the oxygen generators 7a to 7d when the quantity of the dissolved oxygen reaches the max. threshold value or above. The quantity of the dissolved oxygen in the water in the artificial pond 1 is maintained always at the adequate value.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は野池、人工池等における水中の溶存酸素量を
管理する池の溶存酸素管理方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pond dissolved oxygen management method for managing the amount of dissolved oxygen in water in a field pond, an artificial pond, or the like.

[従来の技術] 従来、野池等を利用して魚釣りを楽しむ人達がいたが、
近年工業の発展に伴い野池等が少なくなっている。その
ため、最近は人工池等に魚を養殖し、養殖された魚を釣
る魚釣りに人気が出てきている。
[Conventional technology] In the past, there were people who enjoyed fishing using wild ponds, etc.
In recent years, with the development of industry, the number of field ponds has decreased. For this reason, fishing in which fish are cultivated in artificial ponds and the like and the cultivated fish are caught has recently become popular.

[発明が解決しようとする課題] ところが、これらの人工池は水中溶存酸素量の適切な調
整が行われていないため、水中の溶存酸素量が少なくな
ると酸欠状態となって水中の魚が死んでしまったり、有
機物質の自然浄化ができなくなり、アオコが発生して魚
の住みにくい環境となってしまう問題があり、また、水
中の溶存酸素量が多くなると水の富栄養化を招き、水中
のプランクトンが異常発生して魚が死んでしまうという
問題があった。その結果、養殖する上で大変管理が困難
であった。
[Problem to be solved by the invention] However, in these artificial ponds, the amount of dissolved oxygen in the water is not properly adjusted, so when the amount of dissolved oxygen in the water decreases, the fish in the water die due to oxygen deficiency. There is a problem that natural purification of organic substances becomes impossible and algal blooms occur, creating an environment that is difficult for fish to live in. Also, when the amount of dissolved oxygen in the water increases, it causes eutrophication of the water, causing water to become eutrophic. There was a problem in which fish died due to an abnormal abundance of plankton. As a result, it has been extremely difficult to manage the aquaculture.

本発明の目的は、水中の溶存酸素量を適正化して有機物
質の自然浄化を図るとともに、富栄養化を防止して魚に
適した生息環境を作り、魚を活性化する池の溶存酸素管
理方法を提供することにある。
The purpose of the present invention is to manage dissolved oxygen in ponds to optimize the amount of dissolved oxygen in water to naturally purify organic substances, prevent eutrophication, create a habitat suitable for fish, and revitalize fish. The purpose is to provide a method.

[課題を解決するための手段] 上記の目的を達成するために、本願発明は、池の少なく
とも一箇所に水中の溶存酸素を検出する酸素センサを設
け、この酸素センサの出力値が予め設定された最小しき
い値よりも下回ったときには酸素発生装置を駆動して池
に酸素を供給し、同酸素センサの出力値が最大しきい値
に達したときまたは上回ったとき前記酸素発生装置を停
止することをその要旨とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an oxygen sensor for detecting dissolved oxygen in water at at least one location in a pond, and an output value of this oxygen sensor is set in advance. When the output value of the oxygen sensor reaches or exceeds the maximum threshold value, the oxygen generator is activated to supply oxygen to the pond, and when the output value of the oxygen sensor reaches or exceeds the maximum threshold value, the oxygen generator is stopped. That is the gist of it.

[作用] 上記の構成により、酸素センサの出力値が予め設定され
た最小しきい値よりも水中の溶存酸素量が低下した場合
、酸素発生装置を駆動して水中に酸素を供給する。そし
て、酸素センサの出力値が予め設定された溶存酸素量の
最大しきい値に達したときまたは上回ったとき酸素発生
装置を停止する。
[Operation] With the above configuration, when the amount of dissolved oxygen in water is lower than the minimum threshold value set in advance by the output value of the oxygen sensor, the oxygen generator is driven to supply oxygen to the water. Then, when the output value of the oxygen sensor reaches or exceeds a preset maximum threshold for the amount of dissolved oxygen, the oxygen generator is stopped.

[実施例コ 以下、本発明を人工池に具体化した一実施例を図面に基
づいて説明する。
[Example 1] Hereinafter, an example in which the present invention is embodied in an artificial pond will be described based on the drawings.

図に示すように、■は釣り堀をする人工池であって、2
a〜2cは前記人工池1に所定間隔毎に複数個(本実施
例においては3個)配設された酸素センサである。この
酸素センサ2a〜2cによって人工池1における水中の
溶存酸素量を測定することができるようになっている。
As shown in the figure, ■ is an artificial pond used as a fishing pond, and 2
A to 2c are oxygen sensors arranged in plurality (three in this embodiment) in the artificial pond 1 at predetermined intervals. The amount of dissolved oxygen in the water in the artificial pond 1 can be measured by using the oxygen sensors 2a to 2c.

3a〜3Cは前記各酸素センサ2a〜2cに接続された
子局である。4は監視装置であって、前記各子局3a〜
3Cはこの監視装置4にそれぞれ接続されている。
3a to 3C are slave stations connected to each of the oxygen sensors 2a to 2c. 4 is a monitoring device, and each of the slave stations 3a to
3C are respectively connected to this monitoring device 4.

5a〜5dは人工池1の周辺に所定間隔毎に複数個(本
実施例においては4個)設けられた曝気槽であって、人
工池1の水を収集し、その収集した水を曝気するように
なっている。6a〜6dけ前記曝気槽5a〜5dにぞれ
ぞれ接続された排出管であって、人工池1の中央部付近
に所定間隔毎に設けられている。したがって、前記曝気
槽5a〜5dによって曝気された水が前記排出管6a〜
6dによって人工池1の中央部に排出されるようになっ
ている。
5a to 5d are aeration tanks provided at predetermined intervals around the artificial pond 1 (four in this example), which collect water from the artificial pond 1 and aerate the collected water. It looks like this. Discharge pipes 6a to 6d are connected to the aeration tanks 5a to 5d, respectively, and are provided near the center of the artificial pond 1 at predetermined intervals. Therefore, the water aerated by the aeration tanks 5a to 5d is discharged from the discharge pipes 6a to 6a.
6d, the water is discharged to the center of the artificial pond 1.

7a〜7dは前記曝気槽5a〜5dに供給パイプ8a〜
8dを介して接続された酸素発生装置である。この各酸
素発生装置7a〜7dは前記監視装置4に制御線を介し
てそれぞれ接続されている。
7a to 7d are supply pipes 8a to 7d to the aeration tanks 5a to 5d.
This is an oxygen generator connected via 8d. Each of the oxygen generators 7a to 7d is connected to the monitoring device 4 via a control line.

したがって、監視装置4は酸素センサ2a〜2Cの検出
信号に基づいて酸素発生装置7a〜7dを駆動し、供給
パイプ8a〜8dを介して酸素を曝気槽5a〜5dへ供
給するようになっている。そして、各曝気槽5a〜5d
内でこの酸素により水が曝気され、各排出管6a〜6d
から人工池1に排出されるようになっている。
Therefore, the monitoring device 4 drives the oxygen generators 7a to 7d based on the detection signals of the oxygen sensors 2a to 2C, and supplies oxygen to the aeration tanks 5a to 5d via the supply pipes 8a to 8d. . And each aeration tank 5a to 5d
The water is aerated with this oxygen within the respective discharge pipes 6a to 6d.
The water is then discharged into artificial pond 1.

本実施例においては酸素センサ2a〜2dの検出信号に
より溶存酸素量が単位体積当たり4ppm以下となった
とき、監視装置4は酸素発生装置7a〜7dを駆動する
ようになっており、同酸素センサ2a〜2dにより溶存
酸素量が単位体積当たり10ppmに達したときまたは
上回ったとき酸素発生装置7a〜7dを停止するように
なっている。
In this embodiment, when the amount of dissolved oxygen becomes 4 ppm or less per unit volume based on the detection signals from the oxygen sensors 2a to 2d, the monitoring device 4 drives the oxygen generators 7a to 7d, and the oxygen sensors 2a to 2d, the oxygen generators 7a to 7d are stopped when the amount of dissolved oxygen reaches or exceeds 10 ppm per unit volume.

また、各酸素センサ2a〜2cの出力値に基づいて平均
値を演算し、この演算結果よりも最小しきい値が下回っ
た場合、全ての酸素発生装置7a〜7dを駆動して酸素
を人工池1に供給することができるようになっている。
In addition, an average value is calculated based on the output values of each oxygen sensor 2a to 2c, and if the minimum threshold value is lower than this calculation result, all oxygen generators 7a to 7d are driven to supply oxygen to the artificial pond. 1 can be supplied.

さらに、エリア毎に監視を行い最小しきい値が下回った
エリアを担当する酸素発生装置7a〜7dのみを駆動し
、そのエリアの溶存酸素量を増加させることができるよ
うになっている。
Furthermore, it is possible to monitor each area and drive only the oxygen generators 7a to 7d in charge of the area where the minimum threshold value has fallen, thereby increasing the amount of dissolved oxygen in that area.

次に、この実施例の作用について説明する。Next, the operation of this embodiment will be explained.

所定時間毎、あるいは常時通常、酸素センサ2a〜2c
の検出信号を子局3a〜3cが監視装置4へ送信する。
Every predetermined time or always normally, oxygen sensors 2a to 2c
The slave stations 3a to 3c transmit the detection signals to the monitoring device 4.

この検出信号に基づいて監視装置4は各酸素センサ2a
〜2c付近の水中の溶存酸素量を算出する。そして、例
えば酸素センサ2b付近の溶存酸素量が4ppm以下に
なったことを監視装置4が判別すると、監視装置4は酸
素発生装置7b、7cを駆動して酸素を発生させる。
Based on this detection signal, the monitoring device 4 detects each oxygen sensor 2a.
Calculate the amount of dissolved oxygen in water around ~2c. For example, when the monitoring device 4 determines that the amount of dissolved oxygen near the oxygen sensor 2b has become 4 ppm or less, the monitoring device 4 drives the oxygen generators 7b and 7c to generate oxygen.

発生した酸素は供給パイプ8b、8cを介して曝気槽5
b、5cに供給され、曝気槽5b、5c内に収集された
人工池Iの水が酸素によって曝気・される。曝気された
水は排出管6b、6cによって人工池1の中央から排出
される。この繰り返しによって酸素センサ2b付近の水
の溶存酸素量が上昇する。
The generated oxygen is transferred to the aeration tank 5 via supply pipes 8b and 8c.
The water of the artificial pond I, which is supplied to tanks 5b and 5c and collected in aeration tanks 5b and 5c, is aerated with oxygen. The aerated water is discharged from the center of the artificial pond 1 through discharge pipes 6b and 6c. By repeating this process, the amount of dissolved oxygen in the water near the oxygen sensor 2b increases.

そして、この上昇した溶存酸素量を前記酸素センサ2b
、子局3bを介して監視装置4が検知し、監視装置4が
水中の溶存酸素量が10ppmに達したことをまたは上
回ったことを算出すると、その検出したエリアの酸素発
生装置7b、7cを停止させる。
Then, this increased amount of dissolved oxygen is detected by the oxygen sensor 2b.
, the monitoring device 4 detects via the slave station 3b, and when the monitoring device 4 calculates that the amount of dissolved oxygen in the water has reached or exceeded 10 ppm, the oxygen generators 7b, 7c in the detected area are make it stop.

この結果、人工池1における水中の溶存酸素量を常に適
正値にすることかできるため、魚を活性化することがで
き、魚をよく釣ることができる。
As a result, the amount of dissolved oxygen in the water in the artificial pond 1 can always be maintained at an appropriate value, so that the fish can be activated and fish can be caught frequently.

また、有機物質の自然浄化をすることができるため、ア
オコの発生を防止し魚に適した生息環境をを作ることが
できる。さらに、富栄養化を防止してプランクトン等の
異常発生を防止し、魚に適した生息環境を作ることがで
きる。
Additionally, organic substances can be naturally purified, preventing the growth of blue-green algae and creating a habitat suitable for fish. Furthermore, it is possible to prevent eutrophication, prevent the abnormal occurrence of plankton, etc., and create a habitat suitable for fish.

水中の曝気を行うことにより水中の溶存酸素量を上昇さ
せて水中の残餌、排泄物等の好気的酸化分解を促進させ
、さらには有害ガスの脱気炭酸ガスの供給など望ましく
ないガスバランスを好適な自然状態に近づけることがで
きる。
By aerating the water, the amount of dissolved oxygen in the water increases, promoting the aerobic oxidative decomposition of leftover food and excreta in the water, and further reducing undesirable gas balance such as degassing harmful gases and supplying carbon dioxide. can be brought closer to a suitable natural state.

また、酸素発生装置7a〜7dの内任意の酸素発生装置
7a〜7dを駆動することかできるため、部分的に溶存
酸素量が低下したエリアのみを曝気することができ経済
的である。
Moreover, since any one of the oxygen generators 7a to 7d can be driven, it is possible to aerate only the area where the amount of dissolved oxygen has partially decreased, which is economical.

さらに、本実施例においては監視装置4がしきい値以下
になったとき酸素発生装置7a〜7dを自動的に駆動し
たが、監視装置4によって警告を行い、手動操作によっ
て酸素発生装置7a〜7dを駆動するようにすることも
可能である。
Furthermore, in this embodiment, when the monitoring device 4 becomes below the threshold value, the oxygen generating devices 7a to 7d are automatically driven, but the monitoring device 4 issues a warning and the oxygen generating devices 7a to 7d are manually operated. It is also possible to drive the

なお、この発明は前記実施例に限定されるものではなく
、この発明の趣旨から逸脱しない範囲内で任意に変更す
ることは可能である。
It should be noted that this invention is not limited to the above-mentioned embodiments, and can be arbitrarily modified without departing from the spirit of the invention.

[発明の効果] 以上詳述したように、この発明によれば水中の溶存酸素
量を常に適正値にすることができるため、魚を活性化す
ることができ、魚をよく釣ることができるという効果が
ある。また、水中の曝気を行うことにより水中の溶存酸
素量を上昇させて水中の残餌、排泄物等の好気的酸化分
解を促進させ、さらには有害ガスの脱気炭酸ガスの供給
など望ましくないガスバランスを自然状態に近づけ、魚
に適した生息環境を作ることができるという効果がある
[Effects of the Invention] As detailed above, according to the present invention, the amount of dissolved oxygen in water can always be kept at an appropriate value, so fish can be activated and fish can be caught more frequently. effective. In addition, by aerating the water, the amount of dissolved oxygen in the water increases, promoting aerobic oxidative decomposition of leftover food, excrement, etc. in the water, and further undesirably degassing the harmful gas and supplying carbon dioxide. This has the effect of bringing the gas balance closer to its natural state and creating a habitat suitable for fish.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明にかかる構成図である。 ■・・・人工池、2a〜2C・・・酸素センサ、7a〜
7d・・・酸素発生装置。
The figure is a configuration diagram according to the present invention. ■...Artificial pond, 2a~2C...Oxygen sensor, 7a~
7d...Oxygen generator.

Claims (1)

【特許請求の範囲】[Claims] 1、池の少なくとも一箇所に水中の溶存酸素を検出する
酸素センサを設け、この酸素センサの出力値が予め設定
された最小しきい値よりも下回ったときには酸素発生装
置を駆動して池に酸素を供給し、同酸素センサの出力値
が最大しきい値に達したときまたは上回ったとき前記酸
素発生装置を停止することを特徴とする池の溶存酸素管
理方法。
1. An oxygen sensor that detects dissolved oxygen in the water is installed in at least one part of the pond, and when the output value of this oxygen sensor falls below a preset minimum threshold, an oxygen generator is activated to supply oxygen to the pond. A method for managing dissolved oxygen in a pond, characterized in that the oxygen generating device is stopped when the output value of the oxygen sensor reaches or exceeds a maximum threshold value.
JP1298513A 1989-11-16 1989-11-16 Method for managing dissolved oxygen of pond Pending JPH03157199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1298513A JPH03157199A (en) 1989-11-16 1989-11-16 Method for managing dissolved oxygen of pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1298513A JPH03157199A (en) 1989-11-16 1989-11-16 Method for managing dissolved oxygen of pond

Publications (1)

Publication Number Publication Date
JPH03157199A true JPH03157199A (en) 1991-07-05

Family

ID=17860694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1298513A Pending JPH03157199A (en) 1989-11-16 1989-11-16 Method for managing dissolved oxygen of pond

Country Status (1)

Country Link
JP (1) JPH03157199A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348950A (en) * 2013-07-25 2013-10-16 于海洪 Control method for aquaculture and controller
US9693538B2 (en) 2013-03-14 2017-07-04 Pentair Water Pool And Spa, Inc. Carbon dioxide control system for aquaculture
US9693537B2 (en) 2011-12-08 2017-07-04 Pentair Water Pool And Spa, Inc. Aquaculture pump system and method
US10219491B2 (en) 2013-03-15 2019-03-05 Pentair Water Pool And Spa, Inc. Dissolved oxygen control system for aquaculture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9693537B2 (en) 2011-12-08 2017-07-04 Pentair Water Pool And Spa, Inc. Aquaculture pump system and method
US9693538B2 (en) 2013-03-14 2017-07-04 Pentair Water Pool And Spa, Inc. Carbon dioxide control system for aquaculture
US10219491B2 (en) 2013-03-15 2019-03-05 Pentair Water Pool And Spa, Inc. Dissolved oxygen control system for aquaculture
CN103348950A (en) * 2013-07-25 2013-10-16 于海洪 Control method for aquaculture and controller

Similar Documents

Publication Publication Date Title
EP0796556B1 (en) Process for optimizing the growth of fish by controlled injection of oxygen
CN106455527A (en) Circulating fish culture method and circulating fish culture device
JP3665838B2 (en) Fish farming equipment
CN109467283A (en) Sewage disposal device suitable for more family sanitary sewage disposals
IL102568A (en) Method of raising fish
JPH03188999A (en) Water quality maintenance system of pond
CN110024735A (en) A kind of cultivation fish pond system
AU2019208276B1 (en) A circulating water purification system for aquaculture breeding
JP2020167950A (en) Culture system for shrimp cultivation
JP2017079628A (en) Method for controlling oxygen concentration dissolved in breeding water
KR101991169B1 (en) Robot for real time water quality observation and rapid water improvement
CN108516619A (en) ecological floating island
CN210726401U (en) Aquaculture intelligent monitoring system
JPH03157199A (en) Method for managing dissolved oxygen of pond
CN105867374A (en) Surface water restoring robot
CN211226813U (en) Unattended culture sewage treatment system
JP2009142231A (en) Method for using circulating recycled water by remote control of organic waste water treatment
KR20130047301A (en) Phosphate removal method & device using sequential dose of oxidation-coagulant
KR20000050209A (en) method for purificationing a waste water and apparatus for performing the same
CN103782941A (en) Demersal fish egg incubator
CN212292975U (en) Municipal sewage carbon source remote early warning and automatic dosing system
CN208471680U (en) Ecological floating island
CN210559634U (en) Automatic dissolved oxygen stabilization control system
CN210275547U (en) Beach is bred and is used net cage with circulating water function
CN208995353U (en) A kind of sewage disposal system with automatic control