JPH0315708B2 - - Google Patents

Info

Publication number
JPH0315708B2
JPH0315708B2 JP57061510A JP6151082A JPH0315708B2 JP H0315708 B2 JPH0315708 B2 JP H0315708B2 JP 57061510 A JP57061510 A JP 57061510A JP 6151082 A JP6151082 A JP 6151082A JP H0315708 B2 JPH0315708 B2 JP H0315708B2
Authority
JP
Japan
Prior art keywords
insulator
measured
capsule
semi
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57061510A
Other languages
Japanese (ja)
Other versions
JPS58178270A (en
Inventor
Takeshi Konno
Toshuki Kawaguchi
Takeshi Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP6151082A priority Critical patent/JPS58178270A/en
Publication of JPS58178270A publication Critical patent/JPS58178270A/en
Publication of JPH0315708B2 publication Critical patent/JPH0315708B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1245Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of line insulators or spacers, e.g. ceramic overhead line cap insulators; of insulators in HV bushings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】 本発明は送配電線における碍子の汚損度を現場
において簡便かつ迅速に測定することのできる可
搬式の碍子汚損度測定器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a portable insulator contamination degree measuring instrument that can easily and quickly measure the degree of contamination of insulators in power transmission and distribution lines on-site.

送電線または配電線等に使用されている碍子類
に汚損物が付着蓄積すると最悪の場合閃絡事故に
至る。また、閃絡に至らないまでも可視部部分放
電、可聴雑音、テレビ、ラジオ等に対する電波障
害を引き起こすこともある。このため、汚損の激
しい場所では定期的もしくは台風、海よりの強風
が吹いた場合等の急速汚損が考えられる時には汚
損度を測定管理し、汚損度がある一定の管理基準
以下に留まるようにしなければならない。碍子の
汚損度測定法としては筆洗法のように碍子表面の
汚損物を水で洗浄し、その洗浄水の抵抗率から等
価塩分付着密度を換算する方法が従来より広く用
いられてきたが、この方法では測定ごとに汚損物
を完全に洗い落す必要があり、累積汚損を随時測
定することはできなかつた。さらに、筆洗法は測
定時間がかなりかかるうえに測定に多少の熟練を
要する。また、筆洗法にかわる方法として自動的
に碍子を洗浄し汚損度を測定する装置や碍子表面
を人工的に湿潤させた上でその漏れ抵抗や漏れ電
流を測定して連続的に汚損度を求める装置も提案
されているが、前者は装置全体が大型となつて使
用個所が限定され、また、後者は導電性物質の電
解度がその吸湿条件に大きく依存するため、温
度、湿度等天候の影響を受けやすく、汚損量の正
確な測定が困難であるという問題があつた。
In the worst case scenario, if contaminants accumulate on insulators used in power transmission lines or distribution lines, it may lead to a flashover accident. Furthermore, even if it does not lead to flash flash, it may cause visible partial discharge, audible noise, and radio wave interference to televisions, radios, etc. For this reason, in areas with heavy pollution, the degree of pollution must be measured and managed periodically or when rapid pollution is likely to occur, such as when a typhoon or strong wind blows from the sea, to ensure that the degree of pollution remains below a certain control standard. Must be. Conventionally, the method of measuring the degree of contamination of insulators has been widely used, such as the brush-washing method, in which soiled objects on the insulator surface are washed with water, and the equivalent salt adhesion density is calculated from the resistivity of the washed water. In this method, it was necessary to completely wash off the contaminants after each measurement, and it was not possible to measure the cumulative contamination at any time. Furthermore, the brush washing method takes a considerable amount of time for measurement and requires some skill in measurement. In addition, as an alternative to the brush washing method, we have developed a device that automatically cleans the insulator and measures the degree of contamination, and a device that artificially moistens the surface of the insulator and measures its leakage resistance and leakage current to continuously determine the degree of contamination. Devices have also been proposed, but the former requires a large device and is limited in its use, while the latter is susceptible to weather influences such as temperature and humidity, as the electrolyte of the conductive material is highly dependent on its moisture absorption conditions. There was a problem in that it was easily contaminated and it was difficult to accurately measure the amount of contamination.

本発明は前記のような問題点を解決して実使用
碍子と同一の碍子を用い、現場において簡便に測
定できる碍子汚損度測定器を目的として完成され
たもので、以下、本発明を図示の実施例について
詳細に説明する。
The present invention has been completed with the aim of solving the above-mentioned problems and providing an insulator contamination measuring device that uses the same insulator as actually used insulators and can be used to easily measure on-site. Examples will be described in detail.

1は実使用碍子とほぼ同一形状の被測定碍子2
を内部に包蔵できる程度の大きさをした略円筒状
のカプセルで、該カプセル1はプラスチツク等の
高気密性材料からなる半筒状殻片3,4をその開
口縁の一側においてピン軸5により開閉自在に連
結するとともに他側は係止片6によつて気密に締
着される。この場合、半筒状殻片3,4はその各
接触面にゴム等の弾性物質を被着させて密着性を
よくすることが好ましい。そして、この半筒状殻
体3,4の内側には導電性ゴムを電極材料とした
電極7,7が好ましくは上部電極、中間部電極お
よび下部電極としてそれぞれ適宜の間隔をおいて
設けられ、この電極7は前記カプセル1を閉じた
ときに被測定碍子2と電気的に接触するもので、
好ましくは各半筒状殻片3,4の内壁に固着する
基部7aと被測定碍子2の外周形状とほぼ同等の
形状を内側に有した弧状の接触腕部7bとからな
つており、この基部7aと接触腕部7bは導電性
ゴム等の同材質で一体成形とするか、第2図に示
すようにこれらをFRP等の比較的剛性の高い材
料で形成したうえ該接触腕部7bの内面に導電性
ゴム7cを固定するようにしてもよく、要はカプ
セル1内に被測定碍子2を収容したときに弾性と
導電性を持つ導電性ゴムからなる電極面が碍子表
面と電気的に確実に接触する構造であればよい。
8はカプセル1の外側に吹出口9をカプセル1内
に連通して設けられる超音波式の加湿器でこの加
湿器8は第3図に示すように超音波振動子10に
より霧を発生される霧発生室11と、前記超音波
振動子10に高周波電力を供給する発振回路およ
び霧をカプセル1内に送り込むフアン12等より
構成され、霧発生室11に取り付けられた超音波
振動子10が高周波振動する際に霧霧発室11内
の水を霧化させ、その霧をフアン12により吹出
口9からカプセル1内に注入する。なお、加湿器
8に取付けられた吹出口9は、カプセル1内の被
測定碍子2の全表面を過不足なく均一に湿潤させ
るようにするため、少なくとも上、下2カ所設
け、また、その開口は碍子の笠裏面に向けてやや
上向きに一定の角度をもつて配設しておくことが
好ましい。13はカプセル1とケーブル14で電
気的に接続された表示部で、この表示部13はカ
プセル1内に配設された上部、中間部および下部
の電極7間にそれぞれ一定電圧を印加するための
電圧発生器および前記電極7間に流れる碍子表面
の漏れ電流を等価塩分付着量に換算表示する指針
あるいはデジタル式表示器を具備したものであ
る。なお、上記実施例では加湿器8とカプセル1
が一体構造となつたものについて説明したが、本
発明はこれだけに限定されるものではなく、例え
ば第4図に示すように加湿器8を表示部13側に
設けて、カプセル1と加湿器8との間をパイプ1
5で連結させたものとしてもよく、この場合、霧
の吹出口9をあらかじめカプセル1に設けてお
き、その吹出口9とパイプ15とを接続しておく
ものとする。また、カプセル1の形状は円筒形に
限定されるものではなく、内部に被測定碍子を気
密に収用できる筒状であればいかなる形状であつ
てもよい。
1 is an insulator to be measured 2 which has almost the same shape as the actually used insulator.
The capsule 1 has a semi-cylindrical shell piece 3, 4 made of highly airtight material such as plastic, and a pin shaft 5 on one side of its opening edge. The two sides are connected to each other so as to be openable and closable, and the other side is airtightly fastened by a locking piece 6. In this case, it is preferable that each contact surface of the semi-cylindrical shell pieces 3 and 4 be coated with an elastic material such as rubber to improve adhesion. Then, inside the semi-cylindrical shells 3, 4, electrodes 7, 7 made of conductive rubber are preferably provided as an upper electrode, an intermediate electrode, and a lower electrode at appropriate intervals, respectively. This electrode 7 is in electrical contact with the insulator 2 to be measured when the capsule 1 is closed.
Preferably, the base portion 7a is fixed to the inner wall of each semi-cylindrical shell piece 3, 4, and the arcuate contact arm portion 7b has an inner shape that is approximately the same as the outer peripheral shape of the insulator 2 to be measured. 7a and the contact arm portion 7b may be integrally molded from the same material such as conductive rubber, or as shown in FIG. The conductive rubber 7c may be fixed to the surface of the insulator.The point is that when the insulator 2 to be measured is housed in the capsule 1, the electrode surface made of conductive rubber having elasticity and conductivity is electrically securely connected to the insulator surface. It suffices if the structure is in contact with the
8 is an ultrasonic humidifier provided on the outside of the capsule 1 with an air outlet 9 communicating with the inside of the capsule 1, and this humidifier 8 generates mist by an ultrasonic vibrator 10 as shown in FIG. It consists of a fog generation chamber 11, an oscillation circuit that supplies high frequency power to the ultrasonic vibrator 10, a fan 12 that sends fog into the capsule 1, etc., and the ultrasonic vibrator 10 attached to the fog generation chamber 11 generates high frequency When vibrating, the water in the misting chamber 11 is atomized, and the mist is injected into the capsule 1 from the outlet 9 by the fan 12. In order to uniformly moisten the entire surface of the insulator 2 to be measured in the capsule 1, the air outlet 9 attached to the humidifier 8 is provided at least in two locations, upper and lower. It is preferable to arrange the insulator at a certain angle slightly upward toward the back surface of the shade. A display section 13 is electrically connected to the capsule 1 by a cable 14. It is equipped with a voltage generator and a pointer or digital display that converts and displays the leakage current on the insulator surface flowing between the electrodes 7 into an equivalent amount of salt deposited. In addition, in the above embodiment, the humidifier 8 and the capsule 1
Although the embodiment has been described in which the capsule 1 and the humidifier 8 are integrated, the present invention is not limited to this. For example, as shown in FIG. Pipe 1 between
In this case, a mist outlet 9 is provided in the capsule 1 in advance, and the outlet 9 and the pipe 15 are connected. Further, the shape of the capsule 1 is not limited to a cylindrical shape, but may be any shape as long as it can accommodate the insulator to be measured in an airtight manner.

このように構成されたものは、被測定碍子2を
カプセル1の内部に収容したうえ半筒状殻片3,
4を閉じると、該半筒状殻片3,4の内側に設け
られている電極7の導電性ゴムからなる接触面が
被測定碍子2に密着して電気的に接続されるか
ら、この状態で加湿器8の超音波振動子10に高
周波電圧を印加すると該超音波振動子10は水中
に向つて超音波を放射し、これにより水が微粒子
化して空気中に飛散されることにより霧が発生す
る。そしてこの霧はフアン12によつて起こされ
る気流に乗つて吹出口9からカプセル1内に注入
され、被測定碍子2の表面は過不足なく湿潤され
ることとなる。そこで、被測定碍子2の電極7,
7間に一定電圧を印加し、電極7,7間に流れる
電流を測定し、これを表示部13の等価塩分付着
量に換算目盛つた指針あるいはデジタル式表示を
読み取ることにより等価塩分付着量を得ることが
できる。なお、霧の発生量は内蔵の発振回路の出
力を調節して制御すればよい。このように本発明
では被測定碍子2を開閉自在なカプセル1内にお
いて超音波式の加湿器8をもつて強制湿潤させて
いるから、短時間のうちに被測定碍子の各部を適
確容易に湿潤させることができるうえにその作業
も安全性が増し、また、温度、湿度などの外部雰
囲気の影響を受けずに碍子表面全体を一定状態に
湿潤できる大きな特長がある。しかも、測定用に
特殊な形状の碍子や特殊加工を施した碍子を必要
とせず、通常実線路に用いられている碍子につい
て測定でき、また、電極7を上、中、下に配設す
れば碍子の笠上面、下面を分けて同時に測定でき
るうえにさらに電極7を増設することによりもつ
と細かい部分に分けで汚損度を同時に測定するこ
ともできることとなる。さらに、カプセル1が2
個の半筒状殻片3,4を連結した2分割式である
から碍子を腕金等から取外す必要がなく、軽量可
搬である点も含めて碍子を現場より取りはずして
測定し、その後再び取付けるという面倒な作業の
必要がなく、現場において簡便に等価塩分付着量
を測定出来る利点がある。
In this structure, the insulator 2 to be measured is housed inside the capsule 1, and the semi-cylindrical shell piece 3,
4 is closed, the contact surface made of conductive rubber of the electrode 7 provided inside the semi-cylindrical shell pieces 3, 4 is in close contact with the insulator 2 to be measured and electrically connected. When a high frequency voltage is applied to the ultrasonic vibrator 10 of the humidifier 8, the ultrasonic vibrator 10 emits ultrasonic waves into the water, which turns the water into fine particles and scatters them into the air, creating fog. Occur. Then, this mist is injected into the capsule 1 from the air outlet 9 on the airflow generated by the fan 12, and the surface of the insulator 2 to be measured is moistened in just the right amount. Therefore, the electrode 7 of the insulator 2 to be measured,
A constant voltage is applied between electrodes 7, the current flowing between electrodes 7 and 7 is measured, and this is converted to the equivalent salt adhesion amount on the display section 13. The equivalent salt adhesion amount is obtained by reading the graduated pointer or digital display. be able to. The amount of fog generated can be controlled by adjusting the output of the built-in oscillation circuit. In this way, in the present invention, the insulator to be measured 2 is forcibly moistened in the capsule 1 which can be opened and closed using the ultrasonic humidifier 8, so each part of the insulator to be measured can be accurately and easily wetted in a short time. In addition to being able to wet the insulator, it also increases the safety of the work, and has the great advantage of being able to wet the entire insulator surface in a constant state without being affected by the external atmosphere such as temperature and humidity. Furthermore, measurements can be made on insulators that are normally used for actual lines without the need for special shaped insulators or specially processed insulators. Not only can the upper and lower surfaces of the insulator cap be measured separately, but by adding an electrode 7, it is also possible to measure the degree of contamination in smaller parts at the same time. Furthermore, capsule 1 is 2
Since it is a two-part type in which two semi-cylindrical shell pieces 3 and 4 are connected, there is no need to remove the insulator from the armrest, etc., and it is lightweight and portable.The insulator can be removed from the site and measured, and then measured again. There is no need for troublesome installation work, and the advantage is that the equivalent salt adhesion amount can be easily measured on site.

本発明は前記実施例による説明から明らかなよ
うに、被測定碍子の周面に密着する電極を内側に
設けた開閉自在なカプセル内に超音波式の加湿器
をもつて人工霧を発生させて被測定碍子を強制湿
潤させ、該電極に接続された表示部をもつて被測
定碍子の表面汚損度を等価塩分付着量および密度
に換算表示するようにしたから、碍子の汚損度を
現場において簡便かつ迅速に測定することがで
き、在来の碍子汚損度測定器の問題点を解決した
ものとして業界の発展に寄与するところ極めて大
なものである。
As is clear from the description of the above embodiments, the present invention generates artificial fog by using an ultrasonic humidifier in a capsule that can be opened and closed and has an electrode inside that is in close contact with the circumferential surface of the insulator to be measured. The insulator to be measured is forcibly moistened, and the degree of surface contamination of the insulator to be measured is converted into equivalent salt adhesion amount and density and displayed using a display unit connected to the electrode, making it easy to measure the degree of contamination of the insulator on site. Moreover, it can perform measurements quickly, and as it solves the problems of conventional insulator contamination level measuring instruments, it will greatly contribute to the development of the industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す一部切欠斜視
図、第2図は同じく一部切欠平面図、第3図は加
湿器部分の一部切欠正面図、第4図は他の実施例
を示す一部切欠斜視図である。 1:カプセル、3,4:半筒状殻片、7:電
極、8:加湿器、13:表示部。
Fig. 1 is a partially cutaway perspective view showing an embodiment of the present invention, Fig. 2 is a partially cutaway plan view, Fig. 3 is a partially cutaway front view of the humidifier section, and Fig. 4 is another embodiment. It is a partially cutaway perspective view showing the. 1: capsule, 3, 4: semi-cylindrical shell piece, 7: electrode, 8: humidifier, 13: display section.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定碍子を内部に収納できる大きさの半筒
状殻片3,4を開閉自在に連結させたカプセル1
と、これらの半筒状殻片3,4の内側に設けられ
た少なくとも被測定碍子の周面に密着する部分を
導電性ゴムからなるものとした弧状の電極7と、
該カプセル1の内部に人工霧を発生させて前記被
測定碍子を強制湿潤させる超音波式の加湿器8
と、前記電極7に接続されて被測定碍子の表面汚
損度を等価塩分付着量および密度に換算表示する
表示部13とを備えたことを特徴とする碍子汚損
度測定器。
1 A capsule 1 in which the semi-cylindrical shell pieces 3 and 4 are connected to each other so as to be openable and closable and are large enough to store the insulator to be measured inside.
and an arc-shaped electrode 7, which is provided inside these semi-cylindrical shell pieces 3 and 4, and at least the portion that comes into close contact with the circumferential surface of the insulator to be measured is made of conductive rubber;
an ultrasonic humidifier 8 that generates artificial mist inside the capsule 1 to forcibly moisten the insulator to be measured;
and a display section 13 which is connected to the electrode 7 and which converts and displays the surface fouling degree of the insulator to be measured into equivalent salt adhesion amount and density.
JP6151082A 1982-04-13 1982-04-13 Apparatus for measuring contamination level of insulator ceramics Granted JPS58178270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6151082A JPS58178270A (en) 1982-04-13 1982-04-13 Apparatus for measuring contamination level of insulator ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6151082A JPS58178270A (en) 1982-04-13 1982-04-13 Apparatus for measuring contamination level of insulator ceramics

Publications (2)

Publication Number Publication Date
JPS58178270A JPS58178270A (en) 1983-10-19
JPH0315708B2 true JPH0315708B2 (en) 1991-03-01

Family

ID=13173152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6151082A Granted JPS58178270A (en) 1982-04-13 1982-04-13 Apparatus for measuring contamination level of insulator ceramics

Country Status (1)

Country Link
JP (1) JPS58178270A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2654517B1 (en) * 1989-11-13 1992-02-28 Electricite De France METHOD AND DEVICE FOR MEASURING POLLUTION OF ELECTRICAL INSULATORS.
CN102645618B (en) * 2012-04-16 2014-11-12 浙江清科电力科技有限公司 Intelligent detection method for contaminated insulator
JP6763131B2 (en) * 2015-12-07 2020-09-30 富士電機株式会社 Insulation characteristic measuring device, insulation characteristic measuring method using it, and remaining life diagnosis method
CN108333481A (en) * 2018-01-15 2018-07-27 淮阴师范学院 A kind of detection method of insulator
CN108254660A (en) * 2018-01-15 2018-07-06 淮阴师范学院 A kind of isolator detecting equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561170B2 (en) * 1977-02-18 1981-01-12

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928375Y2 (en) * 1979-06-18 1984-08-16 ニシム電子工業株式会社 Wetting device for measuring insulator staining

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561170B2 (en) * 1977-02-18 1981-01-12

Also Published As

Publication number Publication date
JPS58178270A (en) 1983-10-19

Similar Documents

Publication Publication Date Title
US2472214A (en) Pressure responsive electrical resistor
JPH0315708B2 (en)
JPH04184249A (en) Rotary type collation electrode
JP2883165B2 (en) Hair moisture content measuring device
JP2000356660A (en) Deteriorated state diagnosis method of insulator
JPH07120346A (en) Detecting sheet for absorption of water
JPH0862180A (en) Ion-capturing device for ion-amount measuring apparatus
Tomsky Regression models for detecting reliability degradation
CN204740050U (en) Radio -frequency card diaphragm type gas table
CN218496182U (en) Turbine flowmeter with automatic power-off function
CN216207130U (en) High-precision and anti-interference concrete electronic temperature measuring instrument for concrete detection
JPH02283313A (en) Hair brush
CN210038210U (en) Prediction forecasting device for atmospheric monitoring data
CN217639437U (en) Standby awakening tester
CN215263616U (en) Portable electricity measuring device
CN214097570U (en) Overhead transmission line on-line monitoring device based on non-contact power taking system
RU98111815A (en) DEVICE FOR RADIO PROBE MEASUREMENTS OF ATMOSPHERIC OZONE CONCENTRATION
JP3028052U (en) Batteries visible inside
JPH1119060A (en) Skin moisture content evaluation method
Watanabe et al. An experimental study on the dependence of local SARs on a human ear during exposure to MW from a cellular telephone
JPH0216053U (en)
JPS6130175Y2 (en)
JPS6214594Y2 (en)
GAINANOV et al. On the design of a meteorological radiosonde of the transistor type
SU1260910A1 (en) Device for measuring moisture content of building materials