JPH03156914A - Apparatus and method for exposure of graphic - Google Patents

Apparatus and method for exposure of graphic

Info

Publication number
JPH03156914A
JPH03156914A JP1295013A JP29501389A JPH03156914A JP H03156914 A JPH03156914 A JP H03156914A JP 1295013 A JP1295013 A JP 1295013A JP 29501389 A JP29501389 A JP 29501389A JP H03156914 A JPH03156914 A JP H03156914A
Authority
JP
Japan
Prior art keywords
exposure
exposed
resist
substrate
wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1295013A
Other languages
Japanese (ja)
Inventor
Hidenori Yamaguchi
山口 秀範
Osamu Suga
治 須賀
Fumio Murai
二三夫 村井
Shinji Okazaki
信次 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1295013A priority Critical patent/JPH03156914A/en
Publication of JPH03156914A publication Critical patent/JPH03156914A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate instability of a chemical-amplification resist material and to enhance stability and reproducibility by a method wherein an exposed and treated resist specimen is held in a dry atmosphere until it is baked. CONSTITUTION:Individual wafers 3 are generally housed inside a jig 2 or the like in the air until the required number of wafers (one batch) are all exposed and treated by using an aligner; during this time, a vapor contained in the air acts on a catalyst existing inside a resist and causes a change with the passage of time. When a desired graphic is formed on a substrate on which a radiation-sensitive material has been applied, the substrate which is being exposed or has been exposed is held in a dry atmosphere 15. Consequently, it is possible to avoid a change in a pattern size between wafers which is caused by a phenomenon of changes of the catalyst with the passage of timer which are peculiar to a chemical-amplification resist material whose sensitivity, resolution and dry-etching resistant property are high. Thereby, it is possible to powerfully promote a manufacturing operation of a semiconductor element and an ultrafine device such as a ULSI or the like which will be integrated more and more highly in the future.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はULST製造などにおけるリソグラフィ技術に
係り、特に化学増幅系レジストを用いた制御性・安定性
の高いリソグラフィープロセスを実現する図形露光装置
とその方法に関する。
The present invention relates to lithography technology in ULST manufacturing, and more particularly to a pattern exposure apparatus and method for realizing a lithography process using a chemically amplified resist with high controllability and stability.

【従来の技術1 ULSrの高集積・高密度化は3年に4倍の勢いで進め
られており、既に4メガビットdRAMの量産化および
16メガビツトdRAMの試作が為されている。これに
伴って微細加工に要求される寸法は0.8μmから0.
5μm、さらに0゜5μm以下へと益々微細化している
。 リソグラフィ技術にはこうした素子微細化を牽引する役
割りがある。リソグラフィー技術では光・Xa・電子線
等のエネルギー線を用い、これらエネルギー線を感光性
材料であるレジスト材料に選択的に照射することにより
、レジスト内に潜像を形成する。この後現像工程により
これら潜像を実像とすることによって下地月料を加二[
するレジストマスクを形成するのが通常である。従って
これに使用されるレジスト材料には、■高解像性、■高
感度、小)高加工耐性、等の性1Lが要求される。 ところが今までの一般のレジスト材料にはこれら3要素
を同時に高いレベルで満足するものがなく、用途に応じ
てレジスト材料を選択せざるをえず、いずれかを犠牲に
していた。 しかしながら最近、例えばジャーナル オブバキュー1
1  サイエンス アンド テクノロジー(J、 Va
c、 Scj、 Technol、)  86(1)、
 Jan/Feb ’88pp319−322.や、同
誌同号pp379−383に示されるような触媒の増感
反応を利用した化学増幅系レジストが考案された。 これはエネルギー線の照射によって触媒となる中間物質
が生成され、その後の加熱処理などでレジスト反応を効
率的に促進するという、新しい機構を有するレジスト材
料である。この結果、従来レジストの高解像度・高加工
耐性は保ったまま、高い感度を実現することができる。 これはりツクラフイーにとって理想的な材料である。ま
た将来的にもこうした化学増幅系レジストはレジスト材
料の主流としての位置付けがなされている。 1発明がI’l’?決しようとする課題】ところが−1
−記化学増幅系しシスト材料をU L S■等の製造工
程に用いたところ大量枚数のウェハ間で図形寸法の変動
(細り)が生じ、安定で制御性の高いリンクラフイープ
ロセスが実現できないことが判明した。以下第2図(a
)によりL記現象を詳細に説明する。 一般にn枚のウェハを格納したカセッ1へ2のウェハ#
]が図形露光部15に搬送される。次にウェハ#1上に
塗布されたレジストに所定の図形が露光処理される。こ
の後ウェハ#1は再びカセット2に搬送・格納される。 次にウェハ#2が選択され上記ウェハ#1と同様に一連
の処理がなされ=3 =4− る。これを繰返しウェハ#nまでの全ての処理が完了す
ることにより1バッチ単位の露光処理が終了する。この
後これらウェハ#1〜#nは第2図(b)のプロセスフ
ローに示す様に露光後ベーク・現像処理を経てレジスト
パターンが形成される。 ところがこのシーケンスにおいてウェハ#1とウェハ#
nとの間で大幅なパターン寸法変化が生じた。 第3図は各ウェハに露光した微細パターンの寸法設計値
からのズレ量を示したものである。図示したようにウェ
ハ間でパターン寸法に大きな違いがあることを見い出し
た。これは1通常の電子線露光装置が露光後のウェハを
大気雰囲気で保持すること、また、通常のステッパ等が
露光及び露光後のウェハの保持を大気中で行なうことに
関係する。このことは露光後からベーク処理までの時間
がウェハ#1〜#nで必然的に異なることになるため、
露光1こよってレジスト内に発生した触媒が大気にさら
された時間の長さの違いによる経時変化を生じることと
なる。化学増幅系レジストは感度・解像度などの点で極
めて高い性能を同時に実現できる理想的なレジストであ
るが、上記@象により安定性・再現性を問われるULS
I製造工程に適用できないという問題が生じた。 本発明は上記現象を踏まえ、上記化学増幅系レジスト材
料の不安定性を取り除き安定性・再現性の高いULSI
製造工程に導入することを目的とする。
[Conventional technology 1] High integration and high density of ULSr are progressing at a rate of four times in three years, and mass production of 4 megabit dRAM and prototype production of 16 megabit dRAM have already been carried out. Along with this, the dimensions required for microfabrication range from 0.8 μm to 0.8 μm.
It is becoming increasingly finer, from 5 μm to 0°5 μm or less. Lithography technology plays a role in driving this miniaturization of devices. In lithography technology, energy beams such as light, Xa, and electron beams are used, and a resist material, which is a photosensitive material, is selectively irradiated with these energy beams to form a latent image in the resist. After this, by developing these latent images into real images, the base material is added.
Normally, a resist mask is formed. Therefore, the resist material used for this is required to have properties such as (1) high resolution, (2) high sensitivity, and (2) high processing resistance. However, there is no conventional resist material that simultaneously satisfies these three elements at a high level, and resist materials must be selected depending on the application, at the expense of one or the other. However, recently, for example, Journal of Vacuum 1
1 Science and Technology (J, Va.
c, Scj, Technol, ) 86(1),
Jan/Feb '88pp319-322. A chemically amplified resist utilizing a catalytic sensitization reaction was devised as shown in the same issue of the same magazine, pp. 379-383. This is a resist material with a new mechanism in which an intermediate substance that serves as a catalyst is generated by irradiation with energy rays, and the resist reaction is efficiently promoted through subsequent heat treatment. As a result, high sensitivity can be achieved while maintaining the high resolution and high processing resistance of conventional resists. This is an ideal material for beams. Furthermore, such chemically amplified resists are positioned as mainstream resist materials in the future as well. 1 invention is I'l'? Problem to be solved] However, -1
- When chemically amplified cyst materials are used in manufacturing processes such as ULS■, variations in feature dimensions (thinness) occur among a large number of wafers, making it impossible to realize a stable and highly controllable link roughy process. It has been found. Figure 2 below (a
) will explain the L phenomenon in detail. Generally, wafer #2 is transferred to cassette 1 which stores n wafers.
] is transported to the figure exposure section 15. Next, a predetermined pattern is exposed to light on the resist coated on wafer #1. Thereafter, wafer #1 is transferred and stored in cassette 2 again. Next, wafer #2 is selected and subjected to a series of processes in the same manner as wafer #1. By repeating this process and completing all the processes up to wafer #n, the exposure process for one batch is completed. Thereafter, resist patterns are formed on these wafers #1 to #n through post-exposure baking and development processing as shown in the process flow of FIG. 2(b). However, in this sequence, wafer #1 and wafer #
A significant pattern dimension change occurred between the two. FIG. 3 shows the amount of deviation from the dimension design value of the fine pattern exposed on each wafer. As shown in the figure, we found that there were large differences in pattern dimensions between wafers. This is related to the fact that a typical electron beam exposure apparatus holds the exposed wafer in the atmosphere, and a typical stepper etc. performs exposure and holds the exposed wafer in the atmosphere. This means that the time from exposure to baking will necessarily differ for wafers #1 to #n.
As a result of exposure 1, the catalyst generated in the resist changes over time due to the difference in the length of time it is exposed to the atmosphere. Chemically amplified resists are ideal resists that can simultaneously achieve extremely high performance in terms of sensitivity and resolution, but ULS resists require stability and reproducibility due to the above phenomenon.
A problem arose in that it could not be applied to the I manufacturing process. Based on the above phenomenon, the present invention eliminates the instability of the chemically amplified resist material and provides ULSI with high stability and reproducibility.
The purpose is to introduce it into the manufacturing process.

【課題を解決するための手段】[Means to solve the problem]

上記目的は、露光処理したレジスト試料についてベーク
までの間を乾燥雰囲気に保持することにより達成される
The above object is achieved by maintaining the exposed resist sample in a dry atmosphere until it is baked.

【作用】[Effect]

一般に露光装置では所定ウェハ枚数(1バツチ)全てが
露光処理されるまで、各ウェハは大気中にて治具内等に
格納されている。筆者等は、この間に大気中に含まれる
水蒸気がレジスト内に存在する触媒に作用し、経時変化
を誘起していることを見出した。 第4図は大気中、真空中および水蒸気中さらに5 1くライ窒素中での露光からベーク処理までのレジスト
の経時変化を示す。経時変化は微細パターンの寸法で評
価した。これより明らかに水が経時変化の原因となって
いることがわかる。そこで第1図(8)に示すように露
光装W1に任意のドライガスに置換できるか、若しくは
同図(b)に示す真空排気できるようにした試料保持室
4を配す。露光直後の各ウェハを該保持室内に保持して
おけば各ウェハ毎のレジスト内触媒のL記水による経時
変化を停止できる。この結果ウェハ間パターン寸法変動
を解消し安定性・再現性の高い化学増幅系レジスト利用
のプロセスを実現できる。ここで、露光装置の中には窒
素等の雰囲気に置換しながら露光を行なうものが存在す
るがこれは露光中のレジストの感度を高めることを目的
としているものであり、レジスト特性の安定性・制御性
を目的にした本発明とは全く異なるものである。
Generally, in an exposure apparatus, each wafer is stored in a jig or the like in the atmosphere until a predetermined number of wafers (one batch) have all been exposed. The authors discovered that during this time, water vapor contained in the atmosphere acts on the catalyst present in the resist, inducing changes over time. FIG. 4 shows the change over time of the resist from exposure to baking in air, vacuum, water vapor, and nitrogen. Changes over time were evaluated based on the dimensions of the fine patterns. This clearly shows that water is the cause of the change over time. Therefore, as shown in FIG. 1(8), a sample holding chamber 4 which can be replaced with any dry gas or can be evacuated as shown in FIG. 1(b) is provided in the exposure apparatus W1. By holding each wafer immediately after exposure in the holding chamber, it is possible to stop the change over time of the catalyst in the resist of each wafer caused by the water. As a result, it is possible to eliminate pattern dimension variations between wafers and realize a process using a chemically amplified resist with high stability and reproducibility. Here, some exposure devices perform exposure while replacing the atmosphere with nitrogen or the like, but this is intended to increase the sensitivity of the resist during exposure, and the stability and stability of resist characteristics. This is completely different from the present invention, which aims at controllability.

【実施例】【Example】

以下、本発明を実施例を用いてさらに詳細に説閂遺る・ 〈実施例1〉 実施例1は電子線露光装置にドライ窒素に置換できるよ
うにした試料保持室4を設けた場合である。第5図に該
電子線露光装置の概要を示す。該電子線露光装置は加速
電圧30 k Vの可変成形ビーム型露光装置である。 露光試料には4インチSj基板上にネガ型化学増幅系レ
ジスト材料S A L601−ER7(シップレイ・マ
イクロエレクトロニクス社)を0.5μm膜厚で塗膜形
成した。露光子定の10枚金石の試料は第5図に示す試
料待機室12に設置され、1枚ずつ交換室14に搬送さ
れる。 該交換室14を〜1μT orr・以下の露光室11と
同程度の高真空状態にした後、露光ステージ5へ搬送・
固定し、照射量8 /LC/ c、 m ”で所定の微
細パターンを露光し、その潜像を形成した。露光済みの
該1枚目の試料は該保持室4に搬送・格納される。該保
持室4には常時1.5Q/minの相対湿度はぼ5%の
ドライ窒素ガスが流れ込むほうにし該雰囲気を保った。 2枚目以降1枚目と一 同様の手順で処理を行ない、露光子定の10枚金石の該
試料の処理が終了した後、試料保持室4から該全試料を
取り出し、ホットプレート式ベーク装置で110℃、2
分間ベーク処理を行なった。 次いで、現像液MF 312(シップレイ・マイクロエ
レクトロニクス社)にて現像することによりパターンを
形成した。このレジストパターンの寸法の評価を測長走
査型電子顕微鏡86000(日立)を用いて行なったと
ころ、ウェハ間寸法バラツキ0.02μm/10枚の良
好な値を得ることができた。 〈実施例2〉 実施例2は実施例1の保持室内に相対湿度はぼ5%のド
ライ酸素ガスを流入した。本実施例においても、実施例
1と同様の結果を得ることができた。 〈実施例3) 実施例3は電子線露光装置に真空に排気できるようにし
た試料保持室を設けた。真空度を10μTorr以下と
したことでこの場合も実施例1と同様のレジスト特性の
経時変化抑制の改善効果を認めた。 〈実施例4〉 実施例4は波長248nmのKrFエキシマレーザ光に
よる光学式露光装置にドライエアーに置換できるように
した試料保持室を設けた。相対湿度はぼ5%のドライエ
アーの流量を1..5Q/minと重露光後の試料を保
持したところこの場合も実施例1と同様の改善効果を認
めた。 〈実施例5〉 実施例5は波長248nmのK r Fエキシマレーザ
光による光学式露光装置に雰囲気を冷却できるようにし
た試料保持室を設けた。該保持室の雰囲気温度を一15
℃程度とし、相対湿度を10%以下にすることで実施例
1と同様の改善効果を認めた。 【発明の効果) 本発明によれば、高感度・高解像度・高ドライエツチン
グ耐性を有する化学増幅系レジスト材料固有の触媒の経
時変化現象に起因するウェハ間パ0− ターン寸法変動を回避することができる。このため今後
益々高集積化するULSI等の半導体素子や超微細デバ
イスの製造を強力に推進するものとなる。
Hereinafter, the present invention will be explained in more detail using Examples. <Example 1> Example 1 is a case in which an electron beam exposure apparatus is provided with a sample holding chamber 4 that can be replaced with dry nitrogen. FIG. 5 shows an outline of the electron beam exposure apparatus. The electron beam exposure apparatus is a variable shaped beam type exposure apparatus with an accelerating voltage of 30 kV. For the exposure sample, a negative chemically amplified resist material S A L601-ER7 (Shipley Microelectronics Co., Ltd.) was coated with a film thickness of 0.5 μm on a 4-inch SJ substrate. A 10-piece goldstone sample with a fixed exposure rate is placed in a sample waiting room 12 shown in FIG. 5, and transported one by one to an exchange room 14. After the exchange chamber 14 is brought to a high vacuum state of ~1 μT orr or less, which is comparable to that of the exposure chamber 11, it is transported to the exposure stage 5.
A predetermined fine pattern was exposed with a radiation dose of 8/LC/c, m'' to form a latent image.The exposed first sample was transported and stored in the holding chamber 4. Dry nitrogen gas with a relative humidity of approximately 5% was constantly flowed into the holding chamber 4 at a rate of 1.5 Q/min to maintain the same atmosphere.The second and subsequent sheets were processed in the same manner as the first sheet. After completing the processing of the 10-piece goldstone sample with a fixed exposure rate, all the samples were taken out from the sample holding chamber 4 and heated at 110°C for 20 minutes using a hot plate baking device.
A baking process was performed for a minute. Next, a pattern was formed by developing with developer MF 312 (Shipley Microelectronics). When the dimensions of this resist pattern were evaluated using a length-measuring scanning electron microscope 86000 (Hitachi), a good value of 0.02 μm/10 wafers in dimensional variation between wafers was obtained. <Example 2> In Example 2, dry oxygen gas with a relative humidity of approximately 5% was flowed into the holding chamber of Example 1. In this example as well, the same results as in Example 1 were able to be obtained. <Example 3> In Example 3, an electron beam exposure apparatus was provided with a sample holding chamber that could be evacuated to a vacuum. By setting the degree of vacuum to 10 μTorr or less, the same improvement effect in suppressing changes in resist properties over time as in Example 1 was observed in this case as well. <Example 4> In Example 4, an optical exposure apparatus using KrF excimer laser light with a wavelength of 248 nm was provided with a sample holding chamber that could be replaced with dry air. The flow rate of dry air with a relative humidity of approximately 5% is 1. .. When the sample was held after heavy exposure at 5Q/min, the same improvement effect as in Example 1 was observed in this case as well. <Example 5> In Example 5, an optical exposure apparatus using K r F excimer laser light with a wavelength of 248 nm was provided with a sample holding chamber capable of cooling the atmosphere. The atmospheric temperature of the holding chamber is -15
C. and the relative humidity was 10% or less, the same improvement effect as in Example 1 was observed. [Effects of the Invention] According to the present invention, it is possible to avoid wafer-to-wafer pattern size variations caused by the aging phenomenon of a catalyst inherent in a chemically amplified resist material having high sensitivity, high resolution, and high dry etching resistance. Can be done. Therefore, the manufacturing of semiconductor elements such as ULSI and ultrafine devices, which will become increasingly highly integrated, will be strongly promoted in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は露光周辺部に露光後の試料を保持するた
めに、任意ドライガスで置換できる試料保持室を設けた
場合を説明する図、第1図(b)は露光周辺部に露光後
の試料を保持するために、真空に排気できるようにした
試料保持室を設けた場合を説明する図、第2図(a)は
露光部と試料特機部からなる通常の露光装置の図、第2
図(b)は通常の露光装置を用いた場合のレジストプロ
セスフローを示す図、第3図は各ウェハに露光した微細
パターンの寸法設計値からのズレ量を示す図、第42・
・カセット、3・・試料(ウェハ)、4・・・試料保持
室、5・・・ステージ、6・・・光源、7・・・減圧弁
、8・バルブ、9・・・真空ポンプ、10・・ゲージ、
11・・・電子線露光部、12・・・試料特機部、13
・・・電子銃、14・・・試料交換室、15・・図形露
光部きるようにした試料保持室を設けた場合の図である
。 符号の説明 第 2 0(b) 第 4 図
Figure 1(a) is a diagram illustrating a case where a sample holding chamber that can be replaced with any dry gas is provided to hold the sample after exposure in the exposed peripheral area, and Figure 1(b) is a diagram illustrating a case in which a sample holding chamber is provided in the exposed peripheral area to hold the sample after exposure. A diagram explaining a case where a sample holding chamber that can be evacuated to vacuum is provided to hold the sample after exposure. Figure 2 (a) shows a typical exposure apparatus consisting of an exposure section and a special sample section. Figure, 2nd
Figure (b) is a diagram showing the resist process flow when a normal exposure device is used, Figure 3 is a diagram showing the amount of deviation from the dimension design value of the fine pattern exposed on each wafer, and Figure 42
・Cassette, 3. Sample (wafer), 4. Sample holding chamber, 5. Stage, 6. Light source, 7. Pressure reducing valve, 8. Valve, 9. Vacuum pump, 10. ··gauge,
11... Electron beam exposure section, 12... Sample special equipment section, 13
. . electron gun, 14 . . . sample exchange chamber, 15 . . . sample holding chamber that allows the figure exposure section to be opened. Explanation of symbols No. 2 0(b) Fig. 4

Claims (1)

【特許請求の範囲】 1、電子線あるいはX線若しくは光を用いて所望の図形
を感放射線性材料が被着された基板上に形成する図形露
光装置において、露光中若しくは露光後の該基板を乾燥
雰囲気に保持することを特徴とする図形露光装置。 2、上記特許請求範囲第1項において該露光装置に露光
後の該基板を保持しておくための基板保持室を設け、任
意のガスで置換、若しくは真空に排気することを特徴と
する図形露光装置。 3、上記特許請求範囲第2項において、上記任意ガスは
、該ガスは相対湿度10%以下のドライガスであること
を特徴とする図形露光装置。 4、上記特許請求範囲第2項において上記雰囲気の温度
を−25〜25℃とすることを特徴とする図形露光装置
。 5、上記特許請求範囲第1項において上記感放射線性材
料として化学増幅系レジストを用いることを特徴とする
図形露光方法。 6、上記特許請求範囲第1項において上記基板をウェハ
、若しくはマスク、若しくはレチクルとすることを特徴
とする図形露光方法。
[Claims] 1. In a pattern exposure apparatus that uses electron beams, X-rays, or light to form desired patterns on a substrate coated with a radiation-sensitive material, the substrate is exposed during or after exposure. A figure exposure device characterized by being maintained in a dry atmosphere. 2. Graphical exposure according to claim 1 above, characterized in that the exposure apparatus is provided with a substrate holding chamber for holding the substrate after exposure, and is replaced with an arbitrary gas or evacuated to a vacuum. Device. 3. The graphic exposure apparatus according to claim 2, wherein the optional gas is a dry gas with a relative humidity of 10% or less. 4. A graphic exposure apparatus according to claim 2, characterized in that the temperature of the atmosphere is -25 to 25°C. 5. A pattern exposure method according to claim 1, characterized in that a chemically amplified resist is used as the radiation-sensitive material. 6. A pattern exposure method according to claim 1, characterized in that the substrate is a wafer, a mask, or a reticle.
JP1295013A 1989-11-15 1989-11-15 Apparatus and method for exposure of graphic Pending JPH03156914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1295013A JPH03156914A (en) 1989-11-15 1989-11-15 Apparatus and method for exposure of graphic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1295013A JPH03156914A (en) 1989-11-15 1989-11-15 Apparatus and method for exposure of graphic

Publications (1)

Publication Number Publication Date
JPH03156914A true JPH03156914A (en) 1991-07-04

Family

ID=17815207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1295013A Pending JPH03156914A (en) 1989-11-15 1989-11-15 Apparatus and method for exposure of graphic

Country Status (1)

Country Link
JP (1) JPH03156914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140299A (en) * 1992-10-27 1994-05-20 Matsushita Electric Ind Co Ltd Pattern forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140299A (en) * 1992-10-27 1994-05-20 Matsushita Electric Ind Co Ltd Pattern forming method

Similar Documents

Publication Publication Date Title
US6020107A (en) Pattern forming method through combined electron beam and light exposure utilizing multiple heat steps
US20080292991A1 (en) High fidelity multiple resist patterning
US6087076A (en) Method of manufacturing semiconductor devices by performing coating, heating, exposing and developing in a low-oxygen or oxygen free controlled environment
JP3020523B2 (en) Figure exposure apparatus and method
EP1842100A1 (en) Exposure method, method for forming projecting and recessed pattern, and method for manufacturing optical element
JP3187581B2 (en) X-ray apparatus, X-ray exposure apparatus, and semiconductor device manufacturing method
JPH03156914A (en) Apparatus and method for exposure of graphic
JPH0572747A (en) Pattern forming method
JPH07142356A (en) Resist pattern forming method and resist pattern forming system used therefor
EP2024987A1 (en) Temperature control method for photolithographic substrate
JP2005123651A (en) Resist film processing apparatus and method of forming resist pattern
US4588675A (en) Method for fine pattern formation on a photoresist
Okino et al. Investigation of proximity effect correction in electron projection lithography (EPL)
US20080160455A1 (en) Exposure Method, Method for Forming Projecting and Recessed Pattern, and Method for Manufacturing Optical Element
US4954424A (en) Pattern fabrication by radiation-induced graft copolymerization
JP2966127B2 (en) Method of forming resist pattern
JP2000100710A (en) Pattern-forming method
JP4202962B2 (en) Substrate processing method and semiconductor device manufacturing method
JP2001230175A (en) Pattern formation method and electron beam exposure system
JP3517563B2 (en) Semiconductor exposure apparatus and semiconductor device manufacturing process using the same
JPH11340127A (en) Etching method
JP3035535B1 (en) Pattern forming method and pattern forming apparatus
JPS63304250A (en) Formation of fine resist pattern
JPH09312247A (en) Formation of pattern and pattern forming device
JPS60165723A (en) Forming method for fine pattern