JPH03156881A - High-frequency heating device - Google Patents

High-frequency heating device

Info

Publication number
JPH03156881A
JPH03156881A JP29664689A JP29664689A JPH03156881A JP H03156881 A JPH03156881 A JP H03156881A JP 29664689 A JP29664689 A JP 29664689A JP 29664689 A JP29664689 A JP 29664689A JP H03156881 A JPH03156881 A JP H03156881A
Authority
JP
Japan
Prior art keywords
magnetron
voltage
semiconductor switching
switching element
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29664689A
Other languages
Japanese (ja)
Inventor
Koji Hishiyama
菱山 弘司
Ryozo Sunaga
須永 良三
Takashi Sato
隆志 佐藤
Kazuhiro Kameoka
和裕 亀岡
Hiroyuki Mesaki
目崎 宏行
Hidehiko Sugimoto
英彦 杉本
Masahiro Kimata
政弘 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP29664689A priority Critical patent/JPH03156881A/en
Publication of JPH03156881A publication Critical patent/JPH03156881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To reduce the loss at the time of switching and improve reliability by switching the nonconductive period of a semiconductor switching element to separate lengths when a magnetron is started and when it is stabilized. CONSTITUTION:When positive voltage is applied across the base and emitter of a semiconductor switching element 5, the element 5 is turned on, and the magnetron 9 is driven by a magnetron driving circuit 8 serving as a half-wave double-voltage circuit. When negative voltage is applied across the base and emitter of the element 5, the element 5 is turned off, the electromagnetic energy stored in the exciting circuit of a transformer 3 is discharged into a snubber circuit 4 constituted of a diode 18, a capacitor 17 and a resistor 16, and the magnetic flux of the transformer 3 is reset. The off-period of the element 5 is set by optionally setting the reverse bias period outputted from a driving circuit 2. The off-period value of the element 5 is switched to separate nonconductive periods of different lengths by automatically judging the states when the magnetron 9 is started and when it is stabilized. The voltage between the collector and emitter of the element 5 is selected to the optimum low value, and the loss at the time of switching can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は高周波加熱装置、特にマグネトロンの駆動に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high frequency heating device, particularly to driving a magnetron.

〔従来の技術〕[Conventional technology]

第7図は例えば特開昭81−279094号公報に示さ
れた従来の高周波加熱装置に示された制御回路図であり
1図において(26)は直流電源、(ロ)は平滑コンデ
ンサ、(3)ばマグネトロン駆動用変圧器、 (27)
は変圧器(3)に並列に接続された共振コンデンサ、(
5)は変圧器(3)に直列接続された半導体スイッチン
グ素子、・(■は半導体スイッチング素子(5)に並列
接続された転流ダイオードであり、変圧器(3)、共振
コンデンサ(27) 、半導体スイッチング素子(5)
と共にインバータ回路を構成する。変圧器(3)の2次
側の第1の巻線には高圧コンデンサ■が接続され、高圧
ダイオード(21)と共に半波倍電圧整流回路によるマ
グネトロン駆動回路(8)を構成する。また、変圧器(
3)の2次側の第2の巻線にはダイオード(28) 。
FIG. 7 is a control circuit diagram of a conventional high-frequency heating device disclosed in, for example, Japanese Unexamined Patent Publication No. 81-279094. In FIG. 1, (26) is a DC power supply, (B) is a smoothing capacitor, (3) ) Magnetron drive transformer, (27)
is a resonant capacitor connected in parallel to the transformer (3), (
5) is a semiconductor switching element connected in series to the transformer (3), (■ is a commutating diode connected in parallel to the semiconductor switching element (5), the transformer (3), the resonant capacitor (27), Semiconductor switching element (5)
Together with this, an inverter circuit is constructed. A high-voltage capacitor (2) is connected to the first winding on the secondary side of the transformer (3), and together with a high-voltage diode (21), constitutes a magnetron drive circuit (8) using a half-wave voltage doubler rectifier circuit. In addition, a transformer (
3) A diode (28) is installed in the second winding on the secondary side.

コンデンサ(29)が接続され、マグネトロン(91ヘ
フイラメント電圧を供給している。
A capacitor (29) is connected to supply filament voltage to the magnetron (91).

従来の高周波加熱装置は上記のように構成され。A conventional high-frequency heating device is configured as described above.

その動作を第8図に示す制御タイミング波形図を用いて
説明する。
The operation will be explained using the control timing waveform diagram shown in FIG.

半導体スイッチング素子(5)のベースエミッタ間に第
8図h)に示す正の電圧(30)を加えると半導体スイ
ッチング素子(5)がONし、変圧器(3)には第8図
(b)に示すVdcなる直流電圧(31)が加わり、第
8図(e)に示す電流(32)が変圧器(3)に流れる
。 このとき半導体スイッチング素子(5)のコレクタ
電流IC,コレクターエミッタ間電圧Veeはそれぞれ
第8図(eL(d)に示す(33) 、 (34)のよ
うになる。半導体スイッチング素子(5)のベースエミ
ッタ間に正の電圧(30)が加わる期間、゛即ち半導体
スイッチング素子(5)がONLでいる期間に変圧M 
(31の1次側に発生する直流電圧Vdcを変圧器(3
)にて昇圧して2次側のglの巻線に数千にVの高圧を
発生させる。
When a positive voltage (30) shown in Fig. 8 (h) is applied between the base and emitter of the semiconductor switching element (5), the semiconductor switching element (5) turns on and the voltage shown in Fig. 8 (b) is applied to the transformer (3). A DC voltage (31) of Vdc shown in FIG. 8(e) is applied, and a current (32) shown in FIG. 8(e) flows through the transformer (3). At this time, the collector current IC and collector-emitter voltage Vee of the semiconductor switching element (5) are as shown in (33) and (34), respectively, shown in FIG. 8 (eL(d)).The base of the semiconductor switching element (5) During the period when a positive voltage (30) is applied between the emitters, that is, when the semiconductor switching element (5) is ONL, the transformation M
(DC voltage Vdc generated on the primary side of
) to generate a high voltage of several thousand V in the GL winding on the secondary side.

この高電圧を高圧コンデンサ12LD、高圧ダイオード
(21)からなる半波倍電圧整流であろマグネトロン駆
動回路(8)によりマグネトロン(9)を駆動させるの
に必要な半波倍電圧に変換しマグネトロン(9)に電流
を流し駆動させる。
This high voltage is converted into the half-wave voltage doubler required to drive the magnetron (9) by a magnetron drive circuit (8), which may be a half-wave voltage doubler rectifier consisting of a high-voltage capacitor 12LD and a high-voltage diode (21). ) to drive it.

次に、半導体スイッチング素子(5)のベースエミッタ
間に第8図(a)に示す負の電圧(35)を加えると、
半導体スイッチング素子(5)が逆バイアスされOFF
する。半導体スイッチング素子(5)がOFFするとそ
のコレクタ電流1cはゼロとなり、コレクターエミッタ
間電圧Vceは(36)に示すように変圧器(3)の1
次側インダクタンスと、共振コンデンサ(27)の共振
電圧としてはね上がる。この半導体スイッチング素子(
5)がOFFの期間は変圧器(3)の1次側の電圧は(
31)の通りとなり変圧器の2次側の半波倍電圧整流回
路は高圧コンデンサωを充電する方向に高圧ダイオード
(21)が導通してマグネトロン(9)には電流が流れ
ない。次に半導体スイッチング素子(5)のVceがゼ
ロとなるポイント■点を検出して再びVbeζこ正の電
圧を加えて半導体スイッチング素子(5)をON状態に
させる。
Next, when a negative voltage (35) shown in FIG. 8(a) is applied between the base and emitter of the semiconductor switching element (5),
The semiconductor switching element (5) is reverse biased and turned off.
do. When the semiconductor switching element (5) is turned off, its collector current 1c becomes zero, and the collector-emitter voltage Vce becomes 1 of the transformer (3) as shown in (36).
It jumps up as a resonant voltage of the next-side inductance and the resonant capacitor (27). This semiconductor switching element (
5) is OFF, the voltage on the primary side of the transformer (3) is (
31), the high-voltage diode (21) in the half-wave voltage doubler rectifier circuit on the secondary side of the transformer conducts in the direction of charging the high-voltage capacitor ω, and no current flows to the magnetron (9). Next, the point (2) at which the Vce of the semiconductor switching element (5) becomes zero is detected, and a positive voltage of Vbeζ is applied again to turn the semiconductor switching element (5) into the ON state.

以上のことを繰り返すことによりマグネトロンを駆動さ
せる従来の制御方法は、Vceがゼロとなった時点で半
導体スイッチング素子(5)をONさせるためON時の
スイッチング損失が少なく電圧共振法として広く知られ
ている。
The conventional control method that drives the magnetron by repeating the above is widely known as the voltage resonance method, which turns on the semiconductor switching element (5) when Vce becomes zero, so there is little switching loss when it is turned on. There is.

第9図は高周波出力相関図であり、高周波出力を高くす
るには半導体スイッチング素子(5)のON時間、即ち
マグネトロン(9)に電流が流れる期間を長くすればよ
く第9図(37)のようになる。しかしこの時、変圧器
(3)のしと共振コンデンサ(rr)からなる電圧共振
回路を使用しており、半導体スイッチング素子(5)の
コレクタエミッタ間電圧がゼロになりポイントが固定さ
れるので、半導体スイッチング素子(5)のOFF時間
を任意に選択できないため。
Figure 9 is a high-frequency output correlation diagram, and in order to increase the high-frequency output, it is sufficient to increase the ON time of the semiconductor switching element (5), that is, the period during which current flows through the magnetron (9), as shown in Figure 9 (37). It becomes like this. However, at this time, a voltage resonant circuit consisting of the transformer (3) and the resonant capacitor (rr) is used, and the collector-emitter voltage of the semiconductor switching element (5) becomes zero and the point is fixed. This is because the OFF time of the semiconductor switching element (5) cannot be arbitrarily selected.

スイッチング周波数と高周波出力この関係は第10図(
38)の様に反比例する。
The relationship between switching frequency and high frequency output is shown in Figure 10 (
It is inversely proportional as shown in 38).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の高周波加熱装置は上記のようにスイッチング素子
のOFF時間が共振条件によって決まり。
As mentioned above, in conventional high-frequency heating devices, the OFF time of the switching element is determined by the resonance conditions.

OFF時間の任意の調節が不可能であり、細かい調節が
出来ない煩わしさがあった。また高周波出力を下げよう
とするとスイッチング周波数が高くなり、より高周波に
適した半導体スイッチング素子、[e、)ランス、フェ
ライトコアーが要求され。
It is not possible to arbitrarily adjust the OFF time, and it is troublesome that fine adjustments cannot be made. In addition, when trying to lower the high frequency output, the switching frequency increases, and semiconductor switching elements, [e,) lances, and ferrite cores that are more suitable for high frequencies are required.

コストアップとなる課題があり、同時に広い範囲の高周
波出力を得るには不適な回路であった。
The problem was that it increased costs, and at the same time, the circuit was not suitable for obtaining high-frequency output over a wide range.

この発明は以上のような課題を解消するためになされた
もので、スイッチング時の損失を少なくし、信頼性のあ
る高周波加熱装置を得ることを目的とする。
This invention was made to solve the above problems, and aims to reduce loss during switching and obtain a reliable high-frequency heating device.

〔課題を解決するtコめの手段〕[Top means to solve problems]

この発明にかかる高周波加熱装置は、商用電源を整流・
平滑して直流電源を作る整流・平滑回路。
The high-frequency heating device according to the present invention rectifies and
A rectifier/smoothing circuit that smoothes and creates DC power.

この整流・平滑回路に接続された変圧器、この変圧器に
並列に接続されたスナパ回路、前記変圧器に直列に接続
された半導体スイッチング素子、この半導体スイッチン
グ素子を駆動する駆動回路。
A transformer connected to this rectifying/smoothing circuit, a snapper circuit connected in parallel to this transformer, a semiconductor switching element connected in series to the transformer, and a drive circuit that drives this semiconductor switching element.

前記変圧器の2次側に接続されたマグネトロン駆動回路
、このマグネトロン駆動回路によって駆動されるマグネ
トロンを備え、前記半導体スイッチング素子の非導通期
間を前記マグネトロンの起動時と安定時とでそれぞれ別
個の長さに設定し、自動的に切り替丸ろようにしたもの
である。
a magnetron drive circuit connected to the secondary side of the transformer; a magnetron driven by the magnetron drive circuit; It is set to 1, and automatically switches to 1/2.

〔作 泪〕[Made by Tears]

この発明における高周波加熱装置は、駆動回路の出力を
任意に調整して半導体スイッチング素子のON時間、O
FF時間を自由に制御して、OFF時間をマグネトロン
の起動時と安定時とでそれぞれ別個の長さに設定し、自
動的に切り替えることにより半導体スイッチング素子を
Vceが低いところで導通させることができ、スイッチ
ング時の損失を少なくすることができる。
The high-frequency heating device according to the present invention arbitrarily adjusts the output of the drive circuit to adjust the ON time of the semiconductor switching element and the O
By freely controlling the FF time, setting the OFF time to different lengths for magnetron startup and stabilization, and automatically switching, the semiconductor switching element can be made conductive when Vce is low. Loss during switching can be reduced.

〔実施例〕〔Example〕

以下、この発明の一実施例について図を用いて説明する
An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明による高周波加熱装置の一実施例を、
示す制御回路図である。
FIG. 1 shows an embodiment of the high frequency heating device according to the present invention.
FIG.

図において、(1)は商用電源、(2)は整流・平滑回
路で、ヒユーズα0)、スイッチ(11)を通して接続
され。
In the figure, (1) is a commercial power supply, and (2) is a rectifier/smoothing circuit, which is connected through a fuse α0) and a switch (11).

整流素子(恥、平滑チョークコイル03)、平滑コンデ
ンサ(2)で構成されている。(1つは整流・平滑回路
(2)に接続された制限抵抗、(3)はマグネトロン駆
動用変圧M、(41は変圧器(3)に接続されたスナパ
回路で。
It consists of a rectifying element (shame, smoothing choke coil 03) and a smoothing capacitor (2). (One is the limiting resistor connected to the rectifier/smoothing circuit (2), (3) is the magnetron drive transformer M, (41 is the snapper circuit connected to the transformer (3).

コンデンサ(1?)、抵抗(IQ、ダイオード(8で構
成される。(5)は変圧器(3)に直列接続された半導
体スイッチング素子、 (1!l)は半導体スイッチン
グ素子(5)に並列接続された転流ダイオードであり、
変圧器(3)。
Consists of a capacitor (1?), a resistor (IQ), and a diode (8). (5) is a semiconductor switching element connected in series to the transformer (3), and (1!l) is a semiconductor switching element connected in parallel to the semiconductor switching element (5). is a connected free-wheeling diode,
Transformer (3).

ズナパ回路(4)、半導体スイッチング素子(5)と共
にインバータ回路(6)を構成する。半導体スイッチン
グ素子(5)のベースには駆動回路(7)が接続される
An inverter circuit (6) is configured together with the ZNAPA circuit (4) and the semiconductor switching element (5). A drive circuit (7) is connected to the base of the semiconductor switching element (5).

変圧器(3)の2次側の第1の巻線には高圧コンデンサ
(至)が接続され、高圧ダイオード(21)と共に半波
倍電圧駆動回路によるマグネトロン駆動回路(8)を構
成し、カットオフダイオード(22)を通してマグネト
ロン(9)に高電圧を供給する。また、変圧器(3)の
2次側の第2の巻線には同じくマグネトロン(9)のフ
ィラメントが接続され、マグネトロン(9)にフィラメ
ント電圧を供給する。(23) 、 (24)は マグ
ネトロン陽極電流検出抵抗であす、(23)は出力制御
用検出兼過電流検出抵抗、 (24)はマグネトロンビ
ーク電流制限抵抗としての役目を果す。検出抵抗(23
) 、 (24)の出力は検出回路(25)に入力され
、検出回路(25)の出力は駆動回路(7)に入力され
、駆動、回路(7)の出力による半導体スイッチング素
子(5)を駆動させる。
A high-voltage capacitor (to) is connected to the first winding on the secondary side of the transformer (3), and together with a high-voltage diode (21) constitutes a magnetron drive circuit (8) using a half-wave voltage doubler drive circuit. A high voltage is supplied to the magnetron (9) through an off-diode (22). Further, the filament of the magnetron (9) is similarly connected to the second winding on the secondary side of the transformer (3), and a filament voltage is supplied to the magnetron (9). (23) and (24) are magnetron anode current detection resistors, (23) serves as an output control detection and overcurrent detection resistor, and (24) serves as a magnetron peak current limiting resistor. Detection resistor (23
), (24) are input to the detection circuit (25), the output of the detection circuit (25) is input to the drive circuit (7), and the output of the drive circuit (7) drives the semiconductor switching element (5). drive.

次に上記一実施例の動作を第2図に示す制御タイミング
波形図を用いて説明する。
Next, the operation of the above embodiment will be explained using the control timing waveform diagram shown in FIG.

半導体スイッチング素子(5)のベース−エミッタ間に
第2図(a)に示す正の電圧(39)を加えると半導体
スイッチング素子(5)がONI、、変圧器(3)には
第2図(b)に示すVdcなる直流電圧(4o)が加わ
り。
When a positive voltage (39) shown in Fig. 2(a) is applied between the base and emitter of the semiconductor switching element (5), the semiconductor switching element (5) turns ONI, and the transformer (3) turns ONI as shown in Fig. 2(a). A DC voltage (4o) of Vdc shown in b) is applied.

第2図(e)に示す電流(41)が変圧器(3)に流れ
る。
A current (41) shown in FIG. 2(e) flows through the transformer (3).

このとき、半導体スイッチング素子(5)のコレクタ電
流Ic、コレクターエミッタ間電圧Vceはそれぞれ第
2図(e) 、 (d)に示す(42) 、 (43)
のようになる。
At this time, the collector current Ic and collector-emitter voltage Vce of the semiconductor switching element (5) are shown in FIGS. 2(e) and (d), respectively (42) and (43).
become that way.

この半導体スイッチング素子のベースエミッタ間に正の
電圧(39)が加わる期間、即ち半導体スイッチング素
子(5)がONしている期間に変圧器(3)の1次側に
発生する直流電圧Vdcを変圧器(3)にて昇圧して2
次側の第1の巻線に数千KVの高圧を発生させる。この
高電圧を高圧コンデンサ(至)、高圧ダイオード(2]
)からなる半波倍電圧整流回路であるマグネトロン駆動
口!’2i (8]によりマグネトロン(9)を駆動さ
せるのに必要な半波倍電圧に変換しマグネトロン(9)
に電流を流しマグネトロン(9)を駆動させる。
During the period when a positive voltage (39) is applied between the base and emitter of this semiconductor switching element, that is, during the period when the semiconductor switching element (5) is ON, the DC voltage Vdc generated on the primary side of the transformer (3) is transformed. Boost the pressure in the device (3) to 2
A high voltage of several thousand KV is generated in the first winding on the next side. This high voltage is connected to a high voltage capacitor (to) and a high voltage diode (2).
) magnetron drive port, which is a half-wave voltage doubler rectifier circuit consisting of! '2i (8) converts the voltage into a half-wave doubler voltage necessary to drive the magnetron (9).
A current is applied to drive the magnetron (9).

次に第2図(alて示すように半導体スイッチング素子
(5)のペースエミッタ間に負の電圧(48)を加える
〜と半導体スイッチング素子(5)が逆バイアスさ八O
FFする。半導体スイッチング素子(5)がOFFする
とそのコレクタB tYE r cはゼロとなり、コレ
クターエミッタ間電圧Vceは変圧器(3)の励磁回路
に蓄えられていた電磁エネルギーが変圧器−次巻線と並
列に接続されたダイオード(■、コンデンサ(■。
Next, as shown in FIG.
FF. When the semiconductor switching element (5) is turned off, its collector B tYE r c becomes zero, and the collector-emitter voltage Vce is caused by the electromagnetic energy stored in the excitation circuit of the transformer (3) being connected in parallel with the transformer-next winding. Connected diode (■, capacitor (■.

抵抗(lとからなるスナパ回路(4)に放電され変圧器
(3)の磁束がリセットされる。この時、変圧器(3)
のリセット電圧が変圧器(3)の2次側の巻線に現われ
るが、半波倍電圧整流回路であるマグネトロン駆動回路
(8)の高圧コンデンサ(至)を充電する方向に高圧ダ
イオード(21)が導通してマグネトロン(9)には電
流が流れない。次に半導体スイッチング素子(5)のV
ceの任意の点0点で再びVbeに正の電圧(39)を
加えて半導体スイッチング素子(5)をON状態にさせ
る。以上の動作を繰り返すことによりマグネトロンを駆
動させて高周波加熱装置から高周波を発生させて食品を
加熱することが出来る。
The magnetic flux of the transformer (3) is reset by discharging into the snapper circuit (4) consisting of a resistor (l).At this time, the magnetic flux of the transformer (3)
A reset voltage appears in the secondary winding of the transformer (3), but a high voltage diode (21) is applied in the direction that charges the high voltage capacitor (to) of the magnetron drive circuit (8), which is a half-wave voltage doubler rectifier circuit. conducts and no current flows through the magnetron (9). Next, the V of the semiconductor switching element (5)
At an arbitrary point 0 of ce, a positive voltage (39) is again applied to Vbe to turn on the semiconductor switching element (5). By repeating the above operations, it is possible to drive the magnetron and generate high frequency waves from the high frequency heating device to heat the food.

第3図はその高周波出力相関図であす、(44)に示す
が如く半導体スイッチング素子(5)のON時間(to
n)を長くしていくと高周波出力は高くなる。
FIG. 3 is a high-frequency output correlation diagram. As shown in (44), the ON time (to
As n) becomes longer, the high frequency output increases.

半導体スイッチング素子(5)の0FFvf@ば、駆動
回路(7)より出力するVbeの逆バイアス電圧がかか
る時間を任意に設定出来るため、高周波出力とスイッチ
ング周波数の関係は第4図(45)に示すように比例&
2反比例す、一定Cと自由に設定可能である。
With 0FFvf@ of the semiconductor switching element (5), the time during which the reverse bias voltage of Vbe output from the drive circuit (7) is applied can be set arbitrarily, so the relationship between the high frequency output and the switching frequency is shown in Figure 4 (45). Proportional &
2 can be freely set as inversely proportional to constant C.

第5図に半導体スイッチング素子(5)の駆動回路(7
)の内部構成図を示す。第5図において2発振回路(7
1)において発振周波数を決定しOFF時間−窓回路(
72)によりOFF時間を任意の値に固定する。このO
FF時間が固定された出力をドライブ回路〔73)に出
力し半導体スイッチング素子(5)を駆動させる。
Figure 5 shows the drive circuit (7) of the semiconductor switching element (5).
) is shown. In Figure 5, two oscillation circuits (7
In 1), the oscillation frequency is determined and the OFF time-window circuit (
72) fixes the OFF time to an arbitrary value. This O
An output with a fixed FF time is output to the drive circuit [73] to drive the semiconductor switching element (5).

第6図はOFF時間を変化させた時の半導体スイッチン
グ素子(5)の導通時のフレフタ−エミッタ間電圧Vc
eであり、この例では第6図(a)及び第6図(b)に
それぞれ示す なる関係がある。
Figure 6 shows the flipter-emitter voltage Vc when the semiconductor switching element (5) is conductive when the OFF time is changed.
e, and in this example, there are the relationships shown in FIGS. 6(a) and 6(b), respectively.

これはマグネトロン(9)が非発振時のインピーダンス
がほぼ無限大2発振時のインピーダンスが低抵抗になる
ため、マグネトロン陽極電圧ebmが。
This is because the impedance of the magnetron (9) when it is not oscillating is almost infinite, and the impedance when it is oscillating is low resistance, so the magnetron anode voltage ebm.

非発振時は第6図(a) (49)のように高く1発振
時は第6図(b) (50)のように半波倍電圧整流さ
れ低くなるので、半導体スイッチング素子(5)のコレ
クターエミッタ間電圧Vce波形も起動時と安定時では
第6図(a) (51) 、第6図(b) (52)に
示すように異なるtこめである。
During non-oscillation, the voltage is high as shown in Fig. 6(a) (49), and during one oscillation, it is rectified by half-wave voltage doubler and becomes low as shown in Fig. 6(b) (50). The collector-emitter voltage Vce waveform also has different waveforms during startup and stability, as shown in FIG. 6(a) (51) and FIG. 6(b) (52).

即ち、起動時は仁。ffが短い方がVCeが低く、安定
時はし。jfが長い方がVceが低くなっている。
In other words, it is Jin at startup. The shorter ff is, the lower the VCe is, and the more stable it is. The longer jf is, the lower Vce is.

即ち、起動時(マグネトロン非発振時)と安定時(マグ
ネトロン発振時)のtolf時間が変化させることによ
りそれぞれ半導体スイッチング素子(5)の導通時のV
eeを最適な低い値に選択することが出来。
That is, by changing the tolf time at startup (when the magnetron is not oscillating) and when it is stable (when the magnetron is oscillating), the V when the semiconductor switching element (5) is conductive is varied.
It is possible to select an optimal low value for ee.

半導体スイッチング素子(5)の導通時の損失を少なく
することが出来る。
Loss during conduction of the semiconductor switching element (5) can be reduced.

次に第5図を用い起動時と安定時の半導体スイッチング
素子(5)のOFF時間を切り替える回路の一実施例を
説明する。起動時はマグネトロン(9)が非発振状態に
あり、マグネトロン電流■Imgが流れないので出力制
御用検出抵抗(23)には電圧降下が発生しない。
Next, an embodiment of a circuit for switching the OFF time of the semiconductor switching element (5) during startup and stabilization will be described using FIG. 5. At startup, the magnetron (9) is in a non-oscillating state and no voltage drop occurs in the output control detection resistor (23) because the magnetron current (Img) does not flow.

したがって検出回路(25)内のコンパレータ(54)
の出力はHI G H状態となる。しばらくしてマグネ
トロン(9)が発振を開始するとマグネトロン電流rm
gが流れ、出力制御用検出抵抗(23)には電圧降下が
発生する。したがって検出回路(25)内のフンパレー
タ(54)の十入力側の電位をある値に設定しておけば
、マグネトロン電i!iff、Imgが流れた時、その
コンパレータ(54)の出力をr=oW状態に設定でき
ろ。このコンパレータ(54)の出力を駆動回路(7)
のOFF時間−窓回路(72)に入力することにより。
Therefore the comparator (54) in the detection circuit (25)
The output of is in the HIGH state. After a while, the magnetron (9) starts oscillating, and the magnetron current rm
g flows, and a voltage drop occurs across the output control detection resistor (23). Therefore, if the potential on the input side of the humpator (54) in the detection circuit (25) is set to a certain value, the magnetron voltage i! When iff, Img flows, the output of the comparator (54) can be set to r=oW state. The output of this comparator (54) is connected to the drive circuit (7).
OFF time of - by inputting into the window circuit (72).

コンパレータ出力HI GH,LOWのそれぞれの状、
態に応じたOFF時間を設定することができる。
Comparator output HIGH, LOW status,
The OFF time can be set according to the situation.

即ち、高周波加熱装置の起動時と安定時の状態を自°動
的に判定して、半導体スイッチング素子(5)のOFF
時間を切り替えることができる。
In other words, the startup and stable states of the high-frequency heating device are automatically determined, and the semiconductor switching element (5) is turned off.
You can change the time.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、高周波加熱装置の半導
体スイッチング素子のOFF時間の値を起動時と安定時
とで別個の長さに設定し自動的に切り替えることにより
、半導体スイッチング素子をVceが低いところで導通
させることが出来るので、スイッチング時の損失を少な
くすることが出来、信頼性があがる。
As described above, according to the present invention, the value of the OFF time of the semiconductor switching element of the high-frequency heating device is set to different lengths for startup and stabilization and is automatically switched, so that Vce of the semiconductor switching element is increased. Since conduction can be made at a low temperature, loss during switching can be reduced and reliability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による高周波加熱装置の一実施例の制
御回路図、第2図は第1図に示す実施例の制御タイミン
グ波形図、第3図及び第4図は第1図に示す一実施例の
高周波出力相関図、第5図は第1図に示す一実施例の主
要部の詳細を示す構成図、第6図は第1図に示す一実施
例の半導体スイツチング素子の動作を説明するための波
形図。 第7図は従来の高周波加熱装置の制御回路図、第8図は
その制御タイミング波形図、第9図及び第10図はその
高周波出力相関図である。 図において、(1)は商用電源、(2)は整流・平滑回
路、(3)は変圧器、(4)はスナパ回路、(5)は半
導体スイッチング素子、(7)は駆動回路、(81はマ
グネトロン駆動回路、(9)はマグネトロンである。 なお2図中同一符号は同−又は相当部分を示す。
FIG. 1 is a control circuit diagram of an embodiment of the high-frequency heating device according to the present invention, FIG. 2 is a control timing waveform diagram of the embodiment shown in FIG. 1, and FIGS. A high-frequency output correlation diagram of the embodiment, FIG. 5 is a configuration diagram showing details of the main parts of the embodiment shown in FIG. 1, and FIG. 6 explains the operation of the semiconductor switching element of the embodiment shown in FIG. 1. Waveform diagram for FIG. 7 is a control circuit diagram of a conventional high-frequency heating device, FIG. 8 is a control timing waveform diagram thereof, and FIGS. 9 and 10 are high-frequency output correlation diagrams thereof. In the figure, (1) is a commercial power supply, (2) is a rectifier/smoothing circuit, (3) is a transformer, (4) is a snapper circuit, (5) is a semiconductor switching element, (7) is a drive circuit, (81) is a 1 is a magnetron drive circuit, and (9) is a magnetron. Note that the same reference numerals in the two figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 商用電源を整流・平滑して直流電源を作る整流・平滑回
路、この整流・平滑回路に接続された変圧器、この変圧
器に並列に接続されたスナパ回路、前記変圧器に直列に
接続された半導体スイッチング素子、この半導体スイッ
チング素子を駆動する駆動回路、前記変圧器の2次側に
接続されたマグネトロン駆動回路、このマグネトロン駆
動回路によって駆動されるマグネトロンを備え、前記半
導体スイッチング素子の非導通期間を前記マグネトロン
の起動時と安定時とでそれぞれ別個の長さに設定して自
動的に切り替えるようにしたことを特徴とする高周波加
熱装置。
A rectifier/smoothing circuit that rectifies and smoothes commercial power to create DC power, a transformer connected to this rectifier/smoothing circuit, a snapper circuit connected in parallel to this transformer, and a snare circuit connected in series to the transformer. A semiconductor switching element, a drive circuit for driving the semiconductor switching element, a magnetron drive circuit connected to the secondary side of the transformer, and a magnetron driven by the magnetron drive circuit, and a non-conducting period of the semiconductor switching element. A high-frequency heating device characterized in that the magnetron is set to different lengths when the magnetron is activated and when it is stable, and the lengths are automatically switched.
JP29664689A 1989-11-15 1989-11-15 High-frequency heating device Pending JPH03156881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29664689A JPH03156881A (en) 1989-11-15 1989-11-15 High-frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29664689A JPH03156881A (en) 1989-11-15 1989-11-15 High-frequency heating device

Publications (1)

Publication Number Publication Date
JPH03156881A true JPH03156881A (en) 1991-07-04

Family

ID=17836236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29664689A Pending JPH03156881A (en) 1989-11-15 1989-11-15 High-frequency heating device

Country Status (1)

Country Link
JP (1) JPH03156881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586561A (en) * 2018-10-30 2019-04-05 上海沪工焊接集团股份有限公司 A kind of two-tube driving circuit and its control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184280A (en) * 1987-01-26 1988-07-29 松下電器産業株式会社 Radio frequency heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184280A (en) * 1987-01-26 1988-07-29 松下電器産業株式会社 Radio frequency heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586561A (en) * 2018-10-30 2019-04-05 上海沪工焊接集团股份有限公司 A kind of two-tube driving circuit and its control method

Similar Documents

Publication Publication Date Title
EP1734791B1 (en) High-frequency heating device
JPS61284088A (en) Solid state oscillator for power
JP2691626B2 (en) Switching power supply for high frequency heating equipment
EP0279514B1 (en) High frequency heating apparatus using inverter-type power supply
WO2005107326A1 (en) High-frequency heating apparatus
JPH027384A (en) Cooker
JPS6258877A (en) Dc-dc converter
JPH03156881A (en) High-frequency heating device
JP3191597B2 (en) High frequency heating equipment
WO2005039245A1 (en) High frequency heating apparatus
JP3206478B2 (en) High frequency heating equipment
JPH03156880A (en) High-frequency heating device
JPH04359889A (en) Power supply for electronic oven
JPH03257789A (en) High frequency heating device
JP3653628B2 (en) High frequency heating device
JP3206498B2 (en) High frequency heating equipment
JP2643445B2 (en) High frequency heating equipment
JP3011482B2 (en) Power supply for microwave oven
JPH03257788A (en) High frequency heating device
JPH03156877A (en) High-frequency heating device
JPH03156879A (en) High-frequency heating circuit
JP2624283B2 (en) High frequency heating equipment
JP2523755B2 (en) High frequency heating equipment
JPH0234135B2 (en)
JPH03156886A (en) High-frequency heating device