JPH03156829A - Electrodepositing device and method therefor - Google Patents

Electrodepositing device and method therefor

Info

Publication number
JPH03156829A
JPH03156829A JP29697189A JP29697189A JPH03156829A JP H03156829 A JPH03156829 A JP H03156829A JP 29697189 A JP29697189 A JP 29697189A JP 29697189 A JP29697189 A JP 29697189A JP H03156829 A JPH03156829 A JP H03156829A
Authority
JP
Japan
Prior art keywords
electrodeposition
phosphor particles
container
substrates
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29697189A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takahashi
裕幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP29697189A priority Critical patent/JPH03156829A/en
Publication of JPH03156829A publication Critical patent/JPH03156829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

PURPOSE:To obtain electrodeposition substrates with excellent fluorescent screen characteristic and uniform thickness by providing ultrasonic oscillating elements for dispersing phosphor grains in an electrodeposition liquid, and sticking phosphor grains on the substrates by electrophoresis with this electrodeposition liquid. CONSTITUTION:An electrodeposition liquid dispersed with phosphor grains is stored in a cylindrical container 1, a rotary shaft 3 rotated by a driving motor is provided in the container 1, and a hexagonal pillar-shaped supporter 4 is integrally formed on the rotary shaft 3, for example. Six electrodeposition substrates 5 are polygonally assembled and supported on faces of the outer periphery of the supporter 4. Segment electrodes 6 are arranged on the outside of electrodeposition substrates 5, and segment electrodes 6 and opposite electrodes 7 are immersed in the electrodeposition liquid 2 face to face. A power source 8 is connected between opposite electrodes 7 and segment electrodes 6. Ultrasonic oscillating elements 10 such as piezoelectric elements are fitted to the outer periphery wall section 11 and the outside bottom section 12 of the container 1 and connected to a ultrasonic oscillator, and the oscillation output can be adjusted. A fluorescent screen with a small gap between grains is obtained.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は電着装置及び電着方法に関し、より詳細には螢
光表示管における螢光面形成のための電着装置及び電着
処理方法に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an electrodeposition apparatus and an electrodeposition method, and more particularly to an electrodeposition apparatus and an electrodeposition processing method for forming a fluorescent surface in a fluorescent display tube. be.

〔従来技術〕[Prior art]

螢光表示管は一方向に単数列または複数列に配列形成さ
れた多数のセグメント電極に螢光面を形成して、熱陰極
とともに真空容器中に封入し、熱陰極から熱電子を発生
せしめる一方、表示されるべき情報に応じてセグメント
電極に選択的に正電圧を印加して1選択されたセグメン
トに熱電子をひきつけ、ひきつけられた熱電子が螢光面
に衝突する際に発する螢光により、情報の表示を行なう
表示素子であって、バーコード表示管や、螢光体ドツト
アレイ管として知られている。
A fluorescent display tube has a fluorescent surface formed on a large number of segment electrodes arranged in a single row or multiple rows in one direction, and is sealed together with a hot cathode in a vacuum container, and the hot cathode generates thermoelectrons. , selectively applying a positive voltage to the segment electrodes according to the information to be displayed attracts thermoelectrons to one selected segment, and the fluorescence emitted when the attracted thermoelectrons collide with the fluorescent surface , a display element that displays information, and is known as a bar code display tube or a fluorescent dot array tube.

このような螢光表示管においてセグメント電極に良好な
螢光面を形成する方法として、電気泳動を利用する方法
が知られている(例えば実公昭57−55728号)。
As a method of forming a good fluorescent surface on the segment electrodes in such a fluorescent display tube, a method using electrophoresis is known (for example, Japanese Utility Model Publication No. 57-55728).

これはセグメント電極列を形成した基板を、螢光体粒子
を分散させた分散液中に浸漬し、セグメント電極列に対
向させた対向電極と上記電極列とに電圧を印加して分散
液中の螢光体粒子をセグメント電極に付着させるもので
ある。セグメント電極と対向電極間の間隔いわゆる対向
間隙と、印加電圧によって決まる電界強度は、電気泳動
法においては重要な因子となる。
This method involves immersing a substrate on which a segment electrode array is formed into a dispersion liquid in which phosphor particles are dispersed, and applying a voltage between a counter electrode facing the segment electrode array and the electrode array. Fluorescent particles are attached to segment electrodes. The distance between the segment electrodes and the opposing electrodes, the so-called opposing gap, and the electric field strength determined by the applied voltage are important factors in the electrophoresis method.

しかし、セグメント電極上にのみ螢光体粒子を付着させ
ることは電界のみの制御では困難であり、電着液の液流
を利用したり、またさらにその安定性を高めるための改
良が行なわれたりしている。
However, it is difficult to attach phosphor particles only on the segment electrodes by controlling the electric field alone, and improvements have been made to utilize the flow of the electrodeposition solution and to further increase its stability. are doing.

ところで電着液の!ll整においては一般に金属塩など
の荷電・安定剤を含んだアルコールなどの有機溶媒を分
散媒とし、これに分散質として螢光体粒子を添加し、撹
拌装置により撹拌することによって螢光体粒子を分散さ
せている。この分散が不充分である場合、液中での螢光
体粒子の凝集が起こり、電極間に電圧を印加した場合、
電極上に凝集体が付着するため、N厚が不均一で粒子間
間隙の大きな螢光面が形成されてしまう。
By the way, about the electrodeposition liquid! In general, an organic solvent such as alcohol containing a charge/stabilizer such as a metal salt is used as a dispersion medium, phosphor particles are added as a dispersoid, and the phosphor particles are stirred with a stirring device. are dispersed. If this dispersion is insufficient, agglomeration of the phosphor particles in the liquid will occur, and when a voltage is applied between the electrodes,
Since aggregates adhere to the electrode, a fluorescent surface with non-uniform N thickness and large interparticle gaps is formed.

撹拌装置としては、一般にブレード型やボッター型のホ
モジナイザーやスターシーが使われている。
As a stirring device, a blade-type or botter-type homogenizer or starsee is generally used.

前記撹拌装置による撹拌終了後、電着液は電着液収容容
器に移され、さらに画電極が浸漬され、付着処理が行な
われるが、前記撹拌装置では撹拌が局所的であることや
、液流をともなうために付着処理を同時に行なうことが
できないこと、そして撹拌終了から付着処理開始までの
間(液流停止までの時間を含む)の粒子の再凝集などの
問題がある。
After the stirring by the stirring device is completed, the electrodeposition liquid is transferred to an electrodeposition liquid storage container, and the image electrode is further immersed to perform the adhesion process. There are problems such as the fact that the adhesion process cannot be carried out at the same time and the particles re-agglomerating between the end of stirring and the start of the adhesion process (including the time until the liquid flow stops).

通常前述の電着に用いられる蛍光体粒子の粒径は1〜数
ミクロン程度のものが使用されている。そして粒径と発
光強度の関係において、粒径が1μm以下の程度まで減
少すると発光強度も減少することが知られてきており、
またこのことと、ドツトアレイ管の場合、解像度(セグ
メント電極幅は0.1−程度)とのかねあいから前記1
〜数ミクロン程度の粒径の蛍光体粒子が用いられている
ものと考えられる。さらに粒子の粒径が小さいものは、
凝集力が大きいため電着時に凝集体となって付着してし
まう不都合が生じてしまう。
Generally, the particle size of the phosphor particles used in the above-mentioned electrodeposition is about 1 to several microns. Regarding the relationship between particle size and emission intensity, it is known that when the particle size decreases to 1 μm or less, the emission intensity also decreases.
In addition, in the case of a dot array tube, due to the conflict with the resolution (segment electrode width is about 0.1 -),
It is thought that phosphor particles having a particle size of approximately several microns are used. Furthermore, particles with a smaller particle size are
Since the cohesive force is large, there arises the disadvantage that it becomes an aggregate and adheres during electrodeposition.

〔目  的〕〔the purpose〕

本発明の目的は、上記の問題点を改善し、主として電着
液中の螢光体粒子の分散性を向上させ、凝集力の大きい
微細粒子を用いた場合においても層厚が均一であり粒子
間間隙が小さな螢光面の形成を可能とする電着装置及び
電着方法を提供することにある。
The purpose of the present invention is to improve the above-mentioned problems, mainly to improve the dispersibility of phosphor particles in an electrodeposition solution, and to achieve a uniform layer thickness even when fine particles with a large cohesive force are used. An object of the present invention is to provide an electrodeposition device and an electrodeposition method that enable the formation of a fluorescent surface with small gaps.

〔構  成〕〔composition〕

本発明は、電気泳動により螢光体粒子を基板に付着させ
る電着装置において、電着液中の螢光体粒子を分散させ
るために超音波発振素子が付設されていることを特徴と
する電着装置並びに超音波を発射しつつ螢光体粒子を分
散させることにより均一な電着液をつくり、ついでこの
電着液を用いて電気泳動法により基板に螢光体粒子を付
着させることを特徴とする電着方法、および螢光体粒子
を電着液中に均一に分散させる工程、それを電気泳動法
により基板に螢光体粒子を電着させる工程よりなり1両
工程にわたって超音波を発射しつづけることを特徴とす
る電着方法の3発明に関する。
The present invention relates to an electrodeposition apparatus for attaching phosphor particles to a substrate by electrophoresis, which is characterized in that an ultrasonic oscillation element is attached to disperse phosphor particles in an electrodeposition solution. A uniform electrodeposition solution is created by dispersing the phosphor particles while emitting a deposition device and ultrasonic waves, and then this electrodeposition solution is used to adhere the phosphor particles to the substrate by electrophoresis. A method of electrodeposition, a step of uniformly dispersing the phosphor particles in an electrodeposition solution, and a step of electrodepositing the phosphor particles onto a substrate using an electrophoresis method. Ultrasonic waves are emitted throughout the two steps. The present invention relates to three inventions of electrodeposition methods characterized by continuous deposition.

本発明をさらに具体的にいえば、基板上に配列形成され
た多数のセグメント電極に電気泳動法を用いて螢光体粒
子を付着させる装置において電着液を収容する容器に超
音波発振素子が設置されていることを特徴とした装置を
用い、螢光体粒子を超音波分散させ、または超音波分散
させながら基板への付着を行なうことを特徴とした方法
に関するものである。
More specifically, in an apparatus for depositing phosphor particles onto a large number of segment electrodes arrayed on a substrate using an electrophoresis method, an ultrasonic oscillation element is placed in a container containing an electrodeposition solution. The present invention relates to a method characterized in that phosphor particles are dispersed by ultrasonic waves or are attached to a substrate while being dispersed by ultrasonic waves using a device characterized in that they are installed.

本発明の電着装置としては、対向電極に対向してなるセ
グメント電極が配列形成された電着基板を支持し、該電
着基板を電着液収容容器中の電着液に浸漬し、適宜の方
法で電着中の電着液の撹拌が行なわれ、該セグメント電
極−該対向電極間に電圧がかけられ、該電着液中に分散
された螢光体粒子がセグメント電極にのみ付着されるよ
うな装置である。
The electrodeposition apparatus of the present invention supports an electrodeposition substrate on which segment electrodes facing a counter electrode are arranged, and immerses the electrodeposition substrate in an electrodeposition liquid in an electrodeposition liquid storage container. The electrodeposition liquid during electrodeposition is stirred by the method described above, and a voltage is applied between the segment electrode and the counter electrode, so that the phosphor particles dispersed in the electrodeposition liquid are attached only to the segment electrodes. It is the kind of device that can be used.

本発明における電着液中の蛍光体粒子を分散させるため
に前記電着装置に付設される超音波発振素子は、電着液
収容容器の外周壁や底部に取り付けられる。超音波発振
素子の設置個数や取り付は位置は、電着液に均一に超音
波が伝達するように均等に配置して取り付けるとよい。
In the present invention, an ultrasonic oscillation element attached to the electrodeposition apparatus for dispersing phosphor particles in the electrodeposition liquid is attached to the outer peripheral wall or bottom of the electrodeposition liquid storage container. Regarding the number of ultrasonic oscillation elements to be installed and their mounting positions, it is preferable that the ultrasonic oscillation elements be arranged and mounted evenly so that the ultrasonic waves are uniformly transmitted to the electrodeposition liquid.

また、超音波発振素子としては圧電素子が用いられ、圧
電素子としては、特にチタン酸ジルコン酸鉛(PZT)
が好ましい。
In addition, a piezoelectric element is used as an ultrasonic oscillation element, and as a piezoelectric element, lead zirconate titanate (PZT) is particularly used.
is preferred.

前記超音波発振素子と接続する超音波発振装置としては
、発振出力可変のものが好ましい。
The ultrasonic oscillation device connected to the ultrasonic oscillation element is preferably one with variable oscillation output.

前記電着液収容容器の材質については耐有機溶剤性、あ
る程度の機械的強度を有し超音波を効率的に伝達するも
のであればよく、例えばステンレス鋼などが好ましい。
The material for the electrodeposition liquid storage container may be any material as long as it is resistant to organic solvents, has a certain degree of mechanical strength, and can efficiently transmit ultrasonic waves. For example, stainless steel is preferable.

本発明で用いる超音波処理は、周波数25〜50K)I
z、液容器の容積に対する発振出力lO〜30Id/Q
が用いられ、処理時間は、処理方法によっても異なるが
1通常1分以上、好ましくは5分以上である。
The ultrasonic treatment used in the present invention has a frequency of 25 to 50K) I
z, oscillation output lO~30Id/Q with respect to the volume of the liquid container
The treatment time varies depending on the treatment method, but is usually 1 minute or more, preferably 5 minutes or more.

本発明では、螢光体粒子として、通常の分散方法では均
一に分散せず、凝集をおこしてしまうような超微粒子、
たとえば粒度(平均)0.5μm以下、好ましくは0.
1μm以下、さらに好ましくは0.08μm以下、とく
に好ましくは0.05μm以下のものをも使用すること
ができる。
In the present invention, the phosphor particles include ultrafine particles that cannot be uniformly dispersed and agglomerate using normal dispersion methods.
For example, the particle size (average) is 0.5 μm or less, preferably 0.5 μm or less.
It is also possible to use particles with a diameter of 1 μm or less, more preferably 0.08 μm or less, particularly preferably 0.05 μm or less.

本発明においては、前記粒度を有する超微粒子螢光体を
従来の螢光体粒子(平均粒径1μm以上)と併用するこ
とができる。併用する場合は、1μm未満の超微粒子が
粒子全体の少くとも10wt%、好ましくは30wt%
、とくに好ましくは7(ht%を占めるように使用する
ことが好ましい。
In the present invention, ultrafine phosphor particles having the above particle size can be used in combination with conventional phosphor particles (average particle size of 1 μm or more). When used together, the ultrafine particles less than 1 μm account for at least 10 wt% of the total particles, preferably 30 wt%.
, particularly preferably 7 (ht%).

なお、使用できる蛍光体材料としては、公知の蛍光体材
料のすべてが含まれる。たとえば、ZnO1ZnS:Z
n、ZnS:CuAl2、Y、O,S : Euなどが
ある。
Note that usable phosphor materials include all known phosphor materials. For example, ZnO1ZnS:Z
n, ZnS:CuAl2, Y, O, S:Eu, etc.

電着液を構成する分散媒としてはイソプロピルアルコー
ルをはじめとする各種アルコールを使用することができ
、これにはAQ (No、)39H20のような各種金
属塩からなる公知の荷電安定剤を添加することができる
Various alcohols including isopropyl alcohol can be used as the dispersion medium constituting the electrodeposition solution, and known charge stabilizers made of various metal salts such as AQ (No.) 39H20 are added to this. be able to.

本発明の超音波処理を含む電着方法の具体例としては、
(A)電着液中での蛍光体粒子の超音波分散終了と同時
番qセグメント電極と対向電極間への電圧の印加を開始
する方法、(B)電着液中での蛍光体粒子の超音波分散
を行ないながら、セグメント電極と対向電極間への電圧
の印加を開始する方法および(C)セグメント電極と対
向電極間への電圧の印加後、超音波発振出力を減少また
は停止させる方法があり、上記方法中では、(C)方法
が最も好ましい。
Specific examples of the electrodeposition method including ultrasonic treatment of the present invention include:
(A) A method of starting the application of voltage between the Q-segment electrode and the counter electrode at the same time as the end of the ultrasonic dispersion of the phosphor particles in the electrodeposition solution, (B) (C) A method of starting the application of voltage between the segment electrode and the counter electrode while performing ultrasonic dispersion, and (C) a method of reducing or stopping the ultrasonic oscillation output after applying the voltage between the segment electrode and the counter electrode. Among the above methods, method (C) is the most preferred.

本発明の電着装置の具体例を示す図面について説明する
The drawings showing a specific example of the electrodeposition apparatus of the present invention will be described.

蛍光体粒子が分散された電着液2は、円筒形のステンレ
ス製などの容器1の中に収容されている。この容器1内
には暉動モータ(図示略)により回転される回転軸3が
設けられていて、さらにこの回転軸3には多角柱、例え
ば六角柱状の支持体4が一体的に形成されている。そし
てこの支持体4の外周各面には6枚の電着基板5が多角
形状に組合せて支持されて筒状体を形成し、回転軸3と
一体に回転される回転体を構成する。ここで電着基板5
にはセグメント電極6が螢光表示管の用途機能に応じた
所定のピッチで配列されており、このセグメント電極6
が外側に位置するようにして、六角形状に組合されてい
る。従って各セグメント電極6は対向電極7と対向し、
かつ、電着液2中に浸漬される。
An electrodeposition liquid 2 in which phosphor particles are dispersed is contained in a cylindrical container 1 made of stainless steel or the like. A rotating shaft 3 rotated by a sliding motor (not shown) is provided in the container 1, and a polygonal column, for example, a hexagonal columnar support 4 is integrally formed on the rotating shaft 3. There is. Six electrodeposited substrates 5 are supported on each outer peripheral surface of the support body 4 in a polygonal combination to form a cylindrical body, and constitute a rotating body that is rotated integrally with the rotating shaft 3. Here, the electrodeposited substrate 5
Segment electrodes 6 are arranged at a predetermined pitch according to the intended function of the fluorescent display tube.
are assembled in a hexagonal shape so that Therefore, each segment electrode 6 faces a counter electrode 7,
And, it is immersed in the electrodeposition liquid 2.

ここで対向電極7は、略コの字状に折曲された断面円形
の棒状体をもって構成されていて両端部が支持体4に係
合された状態にて、セグメント電極との間に相対的な位
置ずれが生じないよう固定されている。そして対向電極
7と各セグメント電極6間には電源8が接続されている
Here, the counter electrode 7 is constituted by a rod-shaped body bent into a substantially U-shape and having a circular cross section. It is fixed to prevent any misalignment. A power source 8 is connected between the counter electrode 7 and each segment electrode 6.

なお、電源8と各セグメント電瓶6および対向電極7と
の電気的導通状態は、図では簡単に示しであるが実際に
は、例えば各セグメント電極を共通に接続する導線を回
転軸3周面の導体リングに導き、この導体リングに、電
源8の各端をモータブラシ状に圧接させて得ることがで
きる。対向電極7についてもこれに準する。回転軸3の
下端には回転翼9を設け、螢光体粒子の沈降を防ぐため
に電着液2の撹拌を促進するようにする。回転軸3を矢
印方向に回転させることにより、セグメント電極6と容
器1とが相対的に回動させられて適度の液流が対向電極
と電着基板との間に生じ、さらに回転翼9の回転とあい
まって被電着面たるセグメント電極6に螢光体粒子が良
好に付着されることになる。
The state of electrical continuity between the power source 8, each segment electric bottle 6, and the counter electrode 7 is simply shown in the figure, but in reality, for example, a conducting wire commonly connecting each segment electrode is connected to the circumferential surface of the rotating shaft 3. It can be obtained by leading to a conductor ring and pressing each end of the power source 8 to this conductor ring in the form of a motor brush. This also applies to the counter electrode 7. A rotary blade 9 is provided at the lower end of the rotary shaft 3 to promote stirring of the electrodeposition liquid 2 in order to prevent sedimentation of the phosphor particles. By rotating the rotating shaft 3 in the direction of the arrow, the segment electrode 6 and the container 1 are rotated relative to each other, and an appropriate liquid flow is generated between the opposing electrode and the electrodeposited substrate. Coupled with the rotation, the phosphor particles are successfully adhered to the segment electrode 6, which is the surface to be electrodeposited.

圧電素子などの超音波発振素子1oは、容器1の外周壁
部11や外側底部12に取付けられており、超音波発振
装置(図示略)に接続され発振出力が調整し得るように
されている。
The ultrasonic oscillation element 1o, such as a piezoelectric element, is attached to the outer peripheral wall 11 and outer bottom 12 of the container 1, and is connected to an ultrasonic oscillation device (not shown) so that the oscillation output can be adjusted. .

容器1に取付ける超音波発振素子10の配置例を容器l
を逆さにして第3図及び第4図に示す。
An example of the arrangement of the ultrasonic oscillation element 10 attached to the container 1 is shown in FIG.
is shown upside down in FIGS. 3 and 4.

実施例1 電着液としてイソプロピルアルコール6Qに対してAQ
CNo、)3・9H20を100■溶解し、これに平均
粒径0.05μmのZnO螢光体超微粒子5gを添加し
たものを用い、荊述の例に示した電着装置を用いて電着
を行なった。
Example 1 AQ for isopropyl alcohol 6Q as electrodeposition liquid
100 μm of CNo.)3.9H20 was dissolved, and 5 g of ZnO phosphor ultrafine particles with an average particle size of 0.05 μm were added thereto, and electrodeposition was performed using the electrodeposition apparatus shown in the example described above. I did this.

まず、電着液2を容器1中で超音波分散させ、同時に回
転X9を600rpmで回転させておく。超音波発振を
停止すると同時に、10mの間隔で対向させたセグメン
ト電極6と対向電極間に20〜40Vの電圧を60秒間
印加し、セグメントTft Fln 6上に螢光体超微
粒子を付着させた。螢光面のSEM[察の結果、同じ定
着液を用いて超音波処理をまったく行なわなかった場合
に比べ粒子間の間隙が小さく、より均一に粒子が付着し
た螢光面が得られた。
First, the electrodeposition liquid 2 is ultrasonically dispersed in the container 1, and at the same time, the rotation X9 is rotated at 600 rpm. At the same time as the ultrasonic oscillation was stopped, a voltage of 20 to 40 V was applied for 60 seconds between the segment electrode 6 and the counter electrode, which were opposed to each other at an interval of 10 m, to adhere ultrafine phosphor particles onto the segment Tft Fln 6. SEM observation of the fluorescent surface revealed that a fluorescent surface with smaller gaps between particles and particles more uniformly adhered to it than when the same fixing solution was used without any ultrasonic treatment was obtained.

実施例2 実施例1と同様の装置と定着液を用い、まず電着液を2
50Wの発振出力で超音波分散し1次に実施例1と同じ
条件で両電極間に電圧を印加した後、90秒間で超音波
発振出力を徐々に減少させて超音波発振を停止させ、同
時に電圧印加も停止した。螢光面のSEMl格の結果、
実施例1の結果より、さらに若干粒子間の間隙が小さく
、均一な螢光面が得られた。
Example 2 Using the same equipment and fixer as in Example 1, first apply 2 electrodeposition liquids.
After dispersing ultrasonic waves with an oscillation output of 50 W and applying a voltage between both electrodes under the same conditions as in Example 1, the ultrasonic oscillation output was gradually decreased for 90 seconds to stop the ultrasonic oscillation, and at the same time The voltage application was also stopped. As a result of the SEM rating of the fluorescent surface,
Compared to the results of Example 1, the gaps between the particles were slightly smaller, and a uniform fluorescent surface was obtained.

実施例3 電着液2としては、イソプロピルアルコール3Qに対し
てAQ  (No、)、・9H,Oを50rrIg溶解
し、これに平均粒径1.5μmのZnO螢光体粒子5g
、平均粒径0.05μmのZnO螢光体超微粒子1gを
混合、添加し、超音波分散させたものを用い、実施例1
で用いた電着装置にて回転翼9を600rpmで回転し
撹拌させ、1onsの間隔で対向させたセグメント電極
6と対向電極7間に20〜40Vの電圧を1分間印加し
、セグメント電極6上にのみ螢光体を電着させた。
Example 3 Electrodeposition solution 2 was prepared by dissolving 50rrIg of AQ (No, ), 9H,O in 3Q of isopropyl alcohol, and adding 5g of ZnO phosphor particles with an average particle size of 1.5 μm to this solution.
, 1 g of ZnO phosphor ultrafine particles having an average particle size of 0.05 μm were mixed, added, and dispersed by ultrasonic waves.
Using the electrodeposition apparatus used in 2008, the rotary blade 9 was rotated at 600 rpm for stirring, and a voltage of 20 to 40 V was applied for 1 minute between the segment electrode 6 and the counter electrode 7, which were opposed to each other at an interval of 1 ounce. The phosphor was electrodeposited only on.

得られた螢光面の電子顕微鏡i察から螢光体粒子間の間
隙が螢光体超微粒子によって充填された構造を有するこ
とがわかった。また、この基板についてのカソードルミ
ネッセンス量を測定したところ、螢光体超微粒子無添加
の場合に比べ約8%の増大がみとめられた。
Electron microscope observation of the obtained fluorescent surface revealed that it had a structure in which the gaps between the fluorescent particles were filled with ultrafine fluorescent particles. Furthermore, when the amount of cathodoluminescence for this substrate was measured, it was found that it increased by about 8% compared to the case where ultrafine phosphor particles were not added.

〔効  果〕〔effect〕

本発明の電着装置においては、電着液容器に超音波発振
素子を設置するという簡単な構成であるため、簡単な作
業により、低コストで、螢光面特性がすぐれた電着基板
が得られる。
Since the electrodeposition apparatus of the present invention has a simple configuration in which an ultrasonic oscillation element is installed in an electrodeposition liquid container, an electrodeposition substrate with excellent fluorescent surface characteristics can be obtained at a low cost with a simple operation. It will be done.

また、本発明の電着方法においては超音波分散と、電極
間電圧印加の順序や出方を操作するという簡単な方法に
より、螢光面特性がすぐれた電着基板が得られる。
Further, in the electrodeposition method of the present invention, an electrodeposited substrate with excellent fluorescent surface properties can be obtained by a simple method of controlling ultrasonic dispersion and the order and manner of applying voltage between electrodes.

さらに、螢光体粒子の粒径が極めて小さい超微粒子を用
いることができ、この超微粒子により空隙率の非常に少
ない層厚が均一な電着jf、版が得られる。
Further, it is possible to use ultrafine phosphor particles having an extremely small particle size, and with these ultrafine particles, an electrodeposited plate with a uniform layer thickness and a very low porosity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明螢光体付着基板を作製するのに用いられ
る電着装置の側断面図、第2図は第1図のA−A線断面
、第3図及び第4図は超音波発振素子の配置例を示す斜
視図である。 1・・容器     2・・・電着液 3・・・回転軸   4・・支持体 5・・・電着基板 7・・・対向電極 9・・・回転翼 11・・・容器外周壁部 6・・・セグメント電極 8・・・電源 10・・・超音波発振素子 12・・・容器外側底部
FIG. 1 is a side cross-sectional view of an electrodeposition apparatus used to produce the phosphor-attached substrate of the present invention, FIG. 2 is a cross-sectional view taken along the line A-A in FIG. 1, and FIGS. 3 and 4 are ultrasonic waves. FIG. 3 is a perspective view showing an example of arrangement of oscillation elements. 1... Container 2... Electrodeposition liquid 3... Rotating shaft 4... Support 5... Electrodeposition substrate 7... Counter electrode 9... Rotating blade 11... Container outer peripheral wall 6 ... Segment electrode 8 ... Power supply 10 ... Ultrasonic oscillation element 12 ... Outer bottom of the container

Claims (1)

【特許請求の範囲】 1、電気泳動により螢光体粒子を基板に付着させる電着
装置において、電着液中の螢光体粒子を分散させるため
に超音波発振素子が付設されていることを特徴とする電
着装置。 2、超音波を発射しつつ螢光体粒子を分散させることに
より均一な電着液をつくり、ついでこの電着液を用いて
電気泳動法により基板に螢光体粒子を付着させることを
特徴とする電着方法。 3、螢光体粒子を電着液中に均一に分散させる工程、そ
れを電気泳動法により基板に螢光体粒子を電着させる工
程よりなり、両工程にわたって超音波を発射しつづける
ことを特徴とする電着方法。
[Claims] 1. In an electrodeposition device for depositing phosphor particles onto a substrate by electrophoresis, an ultrasonic oscillation element is attached to disperse the phosphor particles in the electrodeposition solution. Characteristic electrodeposition equipment. 2. A uniform electrodeposition solution is created by dispersing the phosphor particles while emitting ultrasonic waves, and then the phosphor particles are attached to the substrate by electrophoresis using this electrodeposition solution. Electrodeposition method. 3. It consists of the step of uniformly dispersing the phosphor particles in the electrodeposition solution, and the step of electrodepositing the phosphor particles on the substrate by electrophoresis, and is characterized by continuing to emit ultrasonic waves during both steps. Electrodeposition method.
JP29697189A 1989-11-15 1989-11-15 Electrodepositing device and method therefor Pending JPH03156829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29697189A JPH03156829A (en) 1989-11-15 1989-11-15 Electrodepositing device and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29697189A JPH03156829A (en) 1989-11-15 1989-11-15 Electrodepositing device and method therefor

Publications (1)

Publication Number Publication Date
JPH03156829A true JPH03156829A (en) 1991-07-04

Family

ID=17840575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29697189A Pending JPH03156829A (en) 1989-11-15 1989-11-15 Electrodepositing device and method therefor

Country Status (1)

Country Link
JP (1) JPH03156829A (en)

Similar Documents

Publication Publication Date Title
US8616931B2 (en) Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
JP4242832B2 (en) Fabrication method and activation treatment of nanostructured composite field emission cathode
CN1617954A (en) Deposition method for nanostructure materials
US20050174321A1 (en) Apparatus and process for producing electrophoretic device
US8299700B2 (en) Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
EP2663394B1 (en) Method for synthesizing dissymmetric particles (janus particles) by means of bipolar electrochemistry
EP1577418A1 (en) Polygonal barrel spattering device, polygonal barrel spattering method, coated particle formed by the device and method, microcapsule, and method of manufacturing the microcapsule
KR100836538B1 (en) Metallization of carbon nanotubes for field emission applications
CN102136404B (en) Electron emitting element, method for producing the same and apparatus having the same
JPH03156829A (en) Electrodepositing device and method therefor
JPH03187140A (en) Electrodeposition substrate and manufacture thereof
JPH03156843A (en) Phosphor sticking board and manufacturing method thereof
US20060103287A1 (en) Carbon-nanotube cold cathode and method for fabricating the same
JP2003007198A (en) Electron emission element and its manufacturing method, and picture display device with the electron emission element
Quale et al. Electrophoretic deposition of substrate-normal-oriented single-walled carbon nanotube structures
JPS61259434A (en) Manufacture of fluorescent screen
JPS61245438A (en) Formation of fluorescent screen of fluorescent character display tube
JPH03147228A (en) Method and device for electrodeposition
JP2001154203A (en) Method of spraying spacer
WO2007117103A1 (en) Method of preparing carbon nano colloidial solution using sono-chemistry and electro-chemistry, and carbon nano colloidal solution
JPH06347806A (en) Production of liquid crystal display element
JPH0673163U (en) Plating equipment
RU2225052C1 (en) Autoemission cathode manufacturing process
JPH0682535B2 (en) Electro-deposition device
JPS63221530A (en) Phosphor electrodepositing device