JPH0315681A - Pressure air supply device - Google Patents

Pressure air supply device

Info

Publication number
JPH0315681A
JPH0315681A JP14903789A JP14903789A JPH0315681A JP H0315681 A JPH0315681 A JP H0315681A JP 14903789 A JP14903789 A JP 14903789A JP 14903789 A JP14903789 A JP 14903789A JP H0315681 A JPH0315681 A JP H0315681A
Authority
JP
Japan
Prior art keywords
pressure
air
air compressor
cylinders
unload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14903789A
Other languages
Japanese (ja)
Inventor
Takeshi Hachimaki
鉢巻 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabco Ltd
Original Assignee
Nabco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabco Ltd filed Critical Nabco Ltd
Priority to JP14903789A priority Critical patent/JPH0315681A/en
Publication of JPH0315681A publication Critical patent/JPH0315681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To shorten a manhour requirement of initial air supply so as to extend a normal operating period, by using an air compressor having a plurality of cylinders and operating all cylinders at the time of initial air supply into an air reservoir, and operating only a part of the cylinders after the initial air supply. CONSTITUTION:Compressed air ejected from an air compressor C driven by an electric motor M flows to be stored into an air reservoir RES through a check valve CHV, while being supplied to an air compressed device. And a high pressure governor CMGH, has the electric driven motor M stopped when pressure in the air reservoir RES reaches a ceiling value, and has it started when the pressure reaches a lower limited value. In such a device, a low pressure governor CMGL is provided aside thereof, so that when pressure in the air reservoir RES rises up to a low limited value, an unload command is outputted to the unload mechanism of a part of cylinders in the air compressor C. And when the pressure decreases to the lowest limited value than the lower limited value, the output of the unload command is stopped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧力空気源装置、特に空気圧縮機のピストンリ
ングより漏洩した圧縮空気のクランク室内での露化によ
る潤滑油の乳化を防止するものに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a compressed air source device, particularly to prevent emulsification of lubricating oil due to leakage of compressed air from a piston ring of an air compressor into a crank chamber. Regarding.

〔従来の技術〕[Conventional technology]

第5図は、従来の圧力空気源装置に一般に使用されてい
る基本回路構戒図である(文献、実開昭62−1036
60号公報、特開昭63−3583号公報、但し、全く
同一ではないが、基本的に同一)。同図中、Mは電動機
、Cは空気圧縮機、CHVは逆止弁、RESは空気溜、
CMGは調圧器、CMKは電磁接触器である。すなわち
、電磁接触器CMKを通じて電動機Mに給電し、電動機
Mによって空気圧縮機Cを駆動し、空気圧縮機Cから吐
出する圧力空気を逆止弁CHVを通じて空気溜RESに
流入させ蓄圧して、負荷である空圧機器へ供給する。又
、空気溜RESの圧力が調圧器CMGにより検出され、
上限設定圧に達すると調圧器CMGの接点がオフとなっ
て電磁接触器CMKの励磁巻線を消磁して電磁接触器C
MKを遮断する。したがって電動機M、空気圧縮機Cは
停止する。空気溜RESの圧力が下限設定値まで下降す
ると調圧器CMGの接点がオンとなって電磁接触器CM
Kが投入され、電動機M、空気圧縮機Cが起動運転され
る。したがって、空気溜RESの圧力は下限設定値以上
上限設定値未満の値に調圧されるものである。
Figure 5 is a basic circuit diagram generally used in conventional pressure air source devices (Reference, Utility Model Application No. 62-1036
No. 60 and Japanese Unexamined Patent Publication No. 63-3583 (although they are not exactly the same, they are basically the same). In the figure, M is an electric motor, C is an air compressor, CHV is a check valve, RES is an air reservoir,
CMG is a pressure regulator, and CMK is a magnetic contactor. That is, power is supplied to the electric motor M through the electromagnetic contactor CMK, the air compressor C is driven by the electric motor M, and the pressurized air discharged from the air compressor C flows into the air reservoir RES through the check valve CHV and is accumulated in the load. Supply to pneumatic equipment. In addition, the pressure of the air reservoir RES is detected by the pressure regulator CMG,
When the upper limit set pressure is reached, the contact of the pressure regulator CMG turns off, demagnetizes the excitation winding of the magnetic contactor CMK, and activates the magnetic contactor C.
Cut off MK. Therefore, the electric motor M and the air compressor C stop. When the pressure in the air reservoir RES falls to the lower limit set value, the contact of the pressure regulator CMG turns on and the magnetic contactor CM
K is turned on, and the electric motor M and air compressor C are started up. Therefore, the pressure in the air reservoir RES is regulated to a value that is greater than or equal to the lower limit setting value and less than the upper limit setting value.

(発明が解決しようとする問題点) 空気溜RESの容量が大きい場合、始業時、空気溜RE
Sの圧力を所定圧力まで上げるのに時間を要する。この
結果、始業が遅れることとなる。
(Problem to be solved by the invention) When the capacity of the air reservoir RES is large, at the start of work, the air reservoir RE
It takes time to raise the pressure of S to a predetermined pressure. As a result, the start of work will be delayed.

したがって、大容量の空気圧縮機が採用される。Therefore, large capacity air compressors are employed.

しかし、空気溜RESの圧力が所定圧力に達し、実際に
空圧機器によって空気が消費される段階になると、空気
消費量が少ない場合、その稼動率が極めて低くなり、そ
の結果、空気圧縮機Cのクランク室内の温度が低くなる
ので、ピストンリングより漏洩した圧縮空気中の水蒸気
が、クランク室内で露化し、水分を析出するため、潤滑
油が乳化するという問題点がある. 〔問題点を解決するための手段〕 前述の問題点は始業時に必要とする空気圧縮機の容量と
、通常の空圧機器使用時に必要とする空気圧縮機の容量
との間に大きな差があるために生ずる。したがって本発
明においては、通常時の空気圧縮機の稼動率を上げるこ
とによりクランク室内の温度を上昇させて、ピストンリ
ングより洩れる圧縮空気を露化させないようにする.具
体的には(1)従来の装置における空気圧縮機を複数気
筒を有するものとする.(2)前述の空気圧縮機の各気
筒毎にアンロード機構を取付ける。このアンロード機構
は、後述する第2の調圧器よりアンロード指令信号を入
力したとき、吸込弁を開弁して、その気筒をアンロード
とするものである。(3)従来の装置に第2の調圧器を
追加する。この第2の調圧器は、従来の装置における第
1の調圧器CMGの下限設定値まで空気溜RESの圧力
が上昇したとき、前述の気筒中の一部の気簡のアンロー
ド機構へアンロード指令信号を出力し、前述の下限設定
値より低い最下限設定値まで圧力が下降したとき、前述
のアンロード指令信号の出力を停止するものとする。
However, when the pressure of the air reservoir RES reaches a predetermined pressure and the air is actually consumed by the pneumatic equipment, if the air consumption is small, the operating rate becomes extremely low, and as a result, the air compressor C As the temperature inside the crank chamber becomes lower, the water vapor in the compressed air that leaks from the piston ring is exposed in the crank chamber and precipitates moisture, causing the problem that the lubricating oil becomes emulsified. [Means for solving the problem] The problem mentioned above is that there is a large difference between the capacity of the air compressor required at the start of work and the capacity of the air compressor required when using normal pneumatic equipment. arise for the sake of Therefore, in the present invention, the temperature in the crank chamber is increased by increasing the operating rate of the air compressor during normal operation, thereby preventing the compressed air leaking from the piston ring from being exposed. Specifically, (1) the air compressor in the conventional device has multiple cylinders. (2) An unloading mechanism is installed for each cylinder of the air compressor mentioned above. This unload mechanism opens the suction valve and unloads the cylinder when an unload command signal is input from a second pressure regulator, which will be described later. (3) Adding a second pressure regulator to the conventional device. When the pressure of the air reservoir RES rises to the lower limit set value of the first pressure regulator CMG in the conventional device, this second pressure regulator unloads the load to the partial unload mechanism in the aforementioned cylinder. When the command signal is output and the pressure drops to the lowest set value lower than the lower limit set value, the output of the unload command signal is stopped.

〔作用〕[Effect]

前述の構或とすると、始業時、空気溜RESの圧力が、
上昇して下限設定値に達するまでは第2の調圧器からア
ンロード指令信号が出力されないため、空気圧縮機Cは
全気筒で運転される.したがって、短時間に空気溜RE
Sへの初込めが可能である。圧力が上昇して第lの調圧
器CMGの下限設定値(第2の調圧器の上限設定値)に
達すると、第2の調圧器から一部の気簡のアンロード機
構ヘアンロード指令信号が出力されるため、そのアンロ
ード指令信号を受けた気筒は無負荷(アンロード)とな
り、残りの気簡のみで空気圧縮機Cは運転される。その
結果、全気筒で運転していた従来の場合に比し空気溜R
ESの圧力が上限値に達するまでの時間が長くなり、通
常時の稼動率が高くなる。したがって、クランク室内の
温度が従来に比して高くなり圧縮空気の露化による潤滑
油の乳化が防止できることとなる。圧力が上限値に達す
ると従来の第1の調圧器CMGよりの停止指令により電
動機M、空気圧縮機Cは停止する。その後、空圧機器の
使用により圧力が下限設定値まで下降すると、第1の調
圧器CMGの運転指令により電動機M、空気圧縮機は運
転開始する。この時点では第2の調圧器から引続き一部
の気簡のアンロード機構ヘアンロード指令が出されてい
るため、前回同様、残りの気筒のみで空気圧縮機Cは運
転される。そして空圧機器の使用が全て完了し、空気溜
RESが排気されて最下限設定値(第2の調圧器の下限
設定値)まで圧力が下降すると第2の調圧器からのアン
ロード指令信号の出力が断たれ、次回の始業時の全気筒
運転に備えられる.〔実施例〕 第1図乃至第4図は本実施例の構威図で、第1図は空気
回路図、第2図(イ)は電気主回路図、同図(ロ)は電
気制御回路図、第3図は第2図(ロ)中の転換リレーC
MRの説明図、第4図は空気圧縮機のアンロード機構を
示す断面図である.第1図中、電動機M、空気圧縮機C
、逆止弁CHV、空気溜RES、高圧調圧器CMGH 
(第5図中の調圧器CMGと全く同じ)、で構威される
部分は第5図の従来のものと同一部分である.高圧調圧
器CMG}Iは上限設定圧9kg/cdまで上昇したと
きオフ、下限設定圧8 kg/cdまるで下降したとき
オンとなるヒステリシス特性を有する圧力スイッチであ
る。低圧調圧器CMGL,電磁弁MV1,MV2は本発
明により追加した部分である.低圧調圧器CMGLも従
来の調圧器CMGと同一構造のものでよく、上限設定圧
8 kg / cdまで上昇したときオフ、下限設定圧
7 kg / cdまで下降したときオンとなるヒステ
リシス特性を有する圧力スイッチである(尚、高圧調圧
器CMGHは特許請求の範囲欄の「第1の調圧器」、低
圧調圧器C ?v4GLは「第2の調圧器」に該当する
)。電磁弁MVl,MV2は励磁されているとき連通位
置、励磁されていないときブロック位置をとるものであ
り、励磁されているとき、これらの電磁弁を通して、空
気溜RESから第4図のアンロード機構の外部空気指令
取入口43ヘアンロード指令が入力される.第4図中、
36は空気圧縮機Cの1つの気筒を構或するシリンダ体
で、その内部にシリンダ内部37を形威し、下方より図
示しないピストンが上昇してシリンダ内部37の空気を
圧縮し、又ピストンの下降によりシリンダ内部37を気
薄とする.このシリンダ体36の上部に吐出孔44、吸
込孔46を有する外弁座39が挿置され、吐出孔44の
上に吐出弁27、ばね29が、又、吸込孔46の上にば
ね30、吸込弁28が置かれ、その上に吐出孔45、吸
込孔47を有する内弁座38が置かれて、外弁座39と
内弁座38が皿ボルト31及びナット32で締めつけら
れて弁部を構成している。この弁部の上に吸込室34、
吐出室35を有するシリンダM40が取付けられ、吸込
室34の上部のシリンダ蓋部分に吸込室I21が螺込取
付けられ、さらに吸込室蓋2lの上部に継手42が螺込
取付けられている。吸込弁押し26は内弁座38に設け
られた孔を通して吸込弁28の上方に達する棒部を有し
、常時は内弁座38の上面と吸込弁押し26の下面との
間に設けられた吸込弁押しばね33の付勢力により上方
へ押し上げられて棒部先端が吸込弁28に接触していな
いが、吸込弁押し26に上方より力が加わると、棒部で
吸込弁28を押し下げて強制的に開弁させるよう構威さ
れている。又、吸込弁押し26の上部も棒状になってい
て上部より吸込弁押し棒24がばね25を介して上下方
向摺動自在に外挿され、吸込弁押し26の最上部に設け
られた止め輪によって、ばね25の付勢力で上部に飛び
出さないように止められている。吸込弁押し棒24は、
圧力止め弁23を介して吸込弁押え弁22により上方よ
り力を受けると下方へ押し下げられる。吸込弁押え弁2
2は上方より継手42の外部空気指令取入口43より流
入するアンロード指令の圧力空気(矢印A)を受けると
、その空気圧力により下方へ押し下げられる.以上の構
戒で、アンロード指令を受けていない通常の状態では、
シリンダ内部37で、図示しないピストンが下降すると
、シリンダ内部37が気薄となり吸込室34より気圧が
低くなる。その結果、吸込弁28がばね30の付勢力に
抗して押し開けられ吸込孔47,46を経て(矢印Cの
経路)シリンダ内部37へ吸込室34から空気が吸い込
まれる。次にピストンが上昇すると、シリンダ内部37
の空気が圧縮されシリンダ内部37の圧力が吐出室35
の圧力より高くなる。この結果、吐出弁27が、ばね2
9の付勢力に抗して押し開けられ、吐出孔44.45を
経て(矢印Bの経路)シリンダ内部37から吐出室35
へ圧力空気が吐き出される。通常は、このようにして自
動的に吸込、吐出しが行われ、空気圧縮llCが負荷運
転される。このような状態でいま、指令取入口43から
アンロード指令の圧力空気が流入すると(矢印A)、継
手42内の通路を経て吸込弁押え弁22に上方から空気
圧が作用し、吸込弁押え弁22を押し下げる。吸込弁押
え弁22が押し下げられると、圧力止め弁23、吸込弁
押し棒24が押し下げられ、ばね25を圧縮する。した
がって、吸込弁押し26が押し下げられ、その棒部で吸
込弁28を押し下げて強制的に開弁させる。したがって
、ピストンが上昇してもシリンダ内部37の空気が吸込
孔46.47を経て吸込室34へ逃げるため、その気筒
は無負荷運転されることとなる。
Assuming the above structure, at the start of work, the pressure of the air reservoir RES is
Since the unload command signal is not output from the second pressure regulator until the pressure rises and reaches the lower limit set value, the air compressor C is operated with all cylinders. Therefore, the air reservoir RE
Initial loading into S is possible. When the pressure rises and reaches the lower limit set value of the first pressure regulator CMG (the upper limit set value of the second pressure regulator), the second pressure regulator outputs a hair unload command signal from a part of the unloading mechanism. Therefore, the cylinder that received the unload command signal becomes unloaded (unloaded), and the air compressor C is operated only with the remaining air. As a result, compared to the conventional case where all cylinders were operated, the air reservoir R
The time it takes for the ES pressure to reach the upper limit value becomes longer, and the normal operation rate becomes higher. Therefore, the temperature inside the crank chamber becomes higher than before, and emulsification of lubricating oil due to exposure of compressed air can be prevented. When the pressure reaches the upper limit value, the electric motor M and the air compressor C are stopped by a stop command from the conventional first pressure regulator CMG. Thereafter, when the pressure decreases to the lower limit set value due to the use of the pneumatic equipment, the electric motor M and the air compressor start operating according to an operation command from the first pressure regulator CMG. At this point, the second pressure regulator continues to issue a partial unloading command to the unloading mechanism, so the air compressor C is operated only with the remaining cylinders as before. When the use of all pneumatic equipment is completed and the air reservoir RES is exhausted and the pressure drops to the lowest set value (lower limit set value of the second pressure regulator), an unload command signal from the second pressure regulator is sent. Output is cut off and the system is ready to operate on all cylinders at the next start. [Example] Figures 1 to 4 are configuration diagrams of this example, where Figure 1 is an air circuit diagram, Figure 2 (A) is an electrical main circuit diagram, and Figure 2 (B) is an electrical control circuit. Figure 3 shows the conversion relay C in Figure 2 (b).
Figure 4, an explanatory diagram of the MR, is a sectional view showing the unloading mechanism of the air compressor. In Figure 1, electric motor M, air compressor C
, check valve CHV, air reservoir RES, high pressure regulator CMGH
(Exactly the same as the pressure regulator CMG in Fig. 5), the parts that are constructed are the same parts as the conventional one in Fig. 5. The high pressure regulator CMG}I is a pressure switch having a hysteresis characteristic that turns off when the upper limit set pressure rises to 9 kg/cd and turns on when the lower limit set pressure drops to 8 kg/cd. The low pressure regulator CMGL and solenoid valves MV1 and MV2 are parts added according to the present invention. The low pressure regulator CMGL may also have the same structure as the conventional pressure regulator CMG, and has a pressure hysteresis characteristic that turns off when the upper limit set pressure rises to 8 kg/cd and turns on when the lower limit set pressure falls to 7 kg/cd. (Note that the high pressure regulator CMGH corresponds to the "first pressure regulator" in the claims column, and the low pressure regulator C?v4GL corresponds to the "second pressure regulator"). The solenoid valves MVl and MV2 are in the communicating position when energized and in the blocking position when not energized. When energized, the unloading mechanism shown in FIG. The external air command intake port 43 hair unload command is input. In Figure 4,
Reference numeral 36 denotes a cylinder body constituting one cylinder of the air compressor C. A cylinder body 37 is formed inside the cylinder body, and a piston (not shown) rises from below to compress the air in the cylinder interior 37. By descending, the inside of the cylinder 37 is made thinner. An outer valve seat 39 having a discharge hole 44 and a suction hole 46 is inserted into the upper part of the cylinder body 36, and a discharge valve 27 and a spring 29 are placed above the discharge hole 44, and a spring 30 and a spring 30 are placed above the suction hole 46. The suction valve 28 is placed, and an inner valve seat 38 having a discharge hole 45 and a suction hole 47 is placed thereon, and the outer valve seat 39 and the inner valve seat 38 are tightened with countersunk bolts 31 and nuts 32 to form the valve part. It consists of Above this valve part, a suction chamber 34,
A cylinder M40 having a discharge chamber 35 is attached, a suction chamber I21 is screwed into the cylinder lid part above the suction chamber 34, and a joint 42 is screwed into the upper part of the suction chamber lid 2l. The suction valve pusher 26 has a rod that reaches above the suction valve 28 through a hole provided in the inner valve seat 38, and is normally provided between the upper surface of the inner valve seat 38 and the lower surface of the suction valve pusher 26. The tip of the rod is not in contact with the suction valve 28 because it is pushed upward by the biasing force of the suction valve pusher spring 33, but when force is applied from above to the suction valve pusher 26, the rod pushes down the suction valve 28 and forces it. It is planned that the valve will be opened automatically. Further, the upper part of the suction valve pusher 26 is also rod-shaped, and the suction valve pusher rod 24 is inserted from the upper part via a spring 25 so as to be slidable in the vertical direction. It is stopped by the biasing force of the spring 25 so that it does not pop out upward. The suction valve push rod 24 is
When a force is applied from above by the suction valve holding valve 22 via the pressure stop valve 23, it is pushed down. Suction valve holding valve 2
2 receives the unload command pressurized air (arrow A) flowing from above through the external air command intake port 43 of the joint 42, and is pushed downward by the air pressure. With the above precautions, under normal conditions when no unload command is received,
When a piston (not shown) descends inside the cylinder 37, the inside of the cylinder 37 becomes thin and the air pressure becomes lower than that of the suction chamber 34. As a result, the suction valve 28 is pushed open against the biasing force of the spring 30, and air is sucked into the cylinder interior 37 from the suction chamber 34 through the suction holes 47 and 46 (path indicated by arrow C). Next, when the piston rises, the inside of the cylinder 37
The air is compressed and the pressure inside the cylinder 37 is increased to the discharge chamber 35.
pressure becomes higher than that of As a result, the discharge valve 27
9 is pushed open against the urging force of 9, and the discharge chamber 35 is opened from the cylinder interior 37 through the discharge holes 44 and 45 (route indicated by arrow B).
Pressurized air is discharged to. Normally, suction and discharge are performed automatically in this way, and the air compressor IC is operated under load. In this state, when pressurized air for an unload command flows in from the command intake port 43 (arrow A), air pressure acts on the suction valve presser valve 22 from above through the passage in the joint 42, and the suction valve presser valve Press down on 22. When the suction valve presser valve 22 is pushed down, the pressure stop valve 23 and the suction valve push rod 24 are pushed down and the spring 25 is compressed. Therefore, the suction valve pusher 26 is pushed down, and its rod pushes down the suction valve 28 to forcibly open it. Therefore, even if the piston moves up, the air inside the cylinder 37 escapes to the suction chamber 34 through the suction holes 46, 47, so that the cylinder is operated under no load.

第2図中、転換リレーCMRは励磁コイルが励磁される
毎に交互に切換えるものである。第3図において、コイ
ル3が励磁されると可動鉄心4が上方(矢印方向)へ移
動するため戻しバネ1に抗してレバー2が押し下げられ
、レバー2の先端に取付けられたころ12でこま5の傾
斜部l3を下方へ押すため、こま5が右方へ移動する。
In FIG. 2, the conversion relay CMR is switched alternately each time the excitation coil is excited. In Fig. 3, when the coil 3 is energized, the movable core 4 moves upward (in the direction of the arrow), so the lever 2 is pushed down against the return spring 1, and the roller 12 attached to the tip of the lever 2 rotates the lever 2. The top 5 moves to the right in order to push the slope l3 of the top 5 downward.

したがって、こま5を右側へ傾けていた転換バネ6がこ
ま5の左側へ移動して、こま5を右の図のように左側へ
傾ける。この結果、可動接触子8が右側の固定接点9側
から左側へ移動し、左側固定接点7へ切換わる。励磁コ
イルを消磁した後、再度励磁すると、ころl2がこま5
の傾斜部l3の右側部分を下方へ押すため、こま5が左
方へ移動し、こま5が左の図のように右側へ傾く。この
結果、可動接触子8が右側固定接点9側へ切換わるもの
である.第2図においては、転換リレーCMRが励磁さ
れる度に、その接点が交互に右と左へ切換るため、’t
ifi接触器CMK1とCMK2とが交換に入切される
.以上の構威よりなる本実施例の動作を説明する.まず
、始業時、空気溜RESに大量の空気を初込めする必要
がある.主回路及び制御回路の遮断器を投入すると、未
だ、空気溜RESの圧力が低いため、高圧調圧器CMG
H、低圧調圧器CMGL,は共にオンとなっている.そ
の結果、補助リレーCMLRが励磁され、その常開接点
CMLRがオンとなり、t磁接触器CMKI,CMK2
の両方とも投入され、電動機Mが起動し、空気圧縮機C
が運転開始される.このとき、電磁接触器CMKI,C
MK2の常閉接点CMKI,CMK2はオフとなッテ、
電磁弁MVI,MV2は共に非励磁でブロック位置にあ
る。したがって、アンロード指令は出されず、第1気筒
、第2気筒とも負荷状態で空気圧縮I!Cが運転される
.その結果、長時間を要せず、空気溜RESの圧力が上
昇する。空気溜RESの圧力が低圧調圧器CMGLの上
限設定値8 kg / c4に達すると、低圧調圧器C
MGLがオフとなる。この結果、補助リレーCMLRが
消磁し、その常開接点CMLRがオフとなる。この時点
で初込め動作は終り、通常動作に移行する。このとき、
高圧調圧器CMGHは引き続きオンであり、転換リレー
CMRは、左右のいずれか一方側をオンにしている。い
ま、転換リレーCMRが図示のように電磁接触器CMK
Z側にオンしているとすると、電磁接触器CMK2が引
き続き投入状態で電動機M、空気圧m機Cは運転状態で
ある。このとき、他方の電磁接触器CMK1は遮断され
るため、その常閉接点CMK1がオンとなり、電磁弁M
VIが励磁される。この結果、電磁弁MVIが連通位置
となり、空気溜RESの圧力空気がアンロード指令とし
て空気圧縮機Cの外部空気指令取入口43(第4図)へ
供給される。したがって、吸込弁押え弁22、圧力止め
弁23、吸込弁押し棒24、ばね25、吸込弁押し26
が下降し、吸込弁28を強制開弁して第1気筒が無負荷
状態となる。すなわち、空気圧縮機Cは、第2気筒のみ
で運転される.したがって、高圧調圧器CMGHの上限
設定値9 kg/cdに達するまでの時間が、従来の全
気筒で運転していた場合の2倍を要することとなり、こ
の間運転され続けるため、クランク室が温度低下するこ
となく、圧縮空気の露化が防止できる。空気溜RESの
圧力が、上限設定値9 kg / c1Mに達すると、
高圧調圧器CMGHもオフとなり、電磁接触器CMK2
も遮断され、電動機M、空気圧縮機Cは停止する。
Therefore, the conversion spring 6, which had been tilting the top 5 to the right, moves to the left side of the top 5, and tilts the top 5 to the left as shown in the figure on the right. As a result, the movable contact 8 moves from the right fixed contact 9 side to the left side and switches to the left fixed contact 7. When the excitation coil is demagnetized and then re-energized, roller l2 moves to top 5.
In order to push the right side of the inclined portion l3 downward, the top 5 moves to the left, and the top 5 tilts to the right as shown in the figure on the left. As a result, the movable contact 8 is switched to the right fixed contact 9 side. In Figure 2, each time conversion relay CMR is energized, its contacts alternately switch to the right and left, so 't
ifi contactors CMK1 and CMK2 are switched on and off in exchange. The operation of this embodiment, which has the above structure, will be explained. First, when starting work, it is necessary to initially fill the air reservoir RES with a large amount of air. When the main circuit and control circuit breakers are turned on, the pressure in the air reservoir RES is still low, so the high pressure regulator CMG
Both H and low pressure regulator CMGL are on. As a result, the auxiliary relay CMLR is energized, its normally open contact CMLR is turned on, and the t magnetic contactors CMKI, CMK2
are both turned on, electric motor M starts, and air compressor C
begins operation. At this time, the electromagnetic contactor CMKI,C
The normally closed contacts CMKI and CMK2 of MK2 are turned off,
Both solenoid valves MVI and MV2 are de-energized and in the blocked position. Therefore, no unload command is issued, and both the first and second cylinders are in a loaded state and air compression I! C is driven. As a result, the pressure in the air reservoir RES increases without requiring a long time. When the pressure of the air reservoir RES reaches the upper limit set value of 8 kg/c4 of the low pressure regulator CMGL, the low pressure regulator C
MGL is turned off. As a result, auxiliary relay CMLR is demagnetized and its normally open contact CMLR is turned off. At this point, the initial charging operation ends and the normal operation begins. At this time,
The high voltage regulator CMGH continues to be on, and the conversion relay CMR is on either the left or right side. Now, the conversion relay CMR is connected to the magnetic contactor CMK as shown in the diagram.
If it is turned on to the Z side, the electromagnetic contactor CMK2 continues to be in the closed state, and the electric motor M and the pneumatic machine C are in the operating state. At this time, the other electromagnetic contactor CMK1 is cut off, so its normally closed contact CMK1 is turned on, and the electromagnetic valve M
VI is energized. As a result, the solenoid valve MVI becomes in the communicating position, and the pressurized air in the air reservoir RES is supplied to the external air command intake port 43 (FIG. 4) of the air compressor C as an unload command. Therefore, the suction valve presser valve 22, the pressure stop valve 23, the suction valve push rod 24, the spring 25, the suction valve pusher 26
is lowered, the suction valve 28 is forcibly opened, and the first cylinder becomes unloaded. That is, the air compressor C is operated only on the second cylinder. Therefore, the time required for the high pressure regulator CMGH to reach the upper limit set value of 9 kg/cd is twice as long as in the case of conventional operation with all cylinders, and as the engine continues to operate during this time, the temperature of the crank chamber decreases. This prevents compressed air from being exposed. When the pressure of the air reservoir RES reaches the upper limit set value of 9 kg/c1M,
The high voltage regulator CMGH is also turned off, and the magnetic contactor CMK2
Also, the electric motor M and the air compressor C are stopped.

このとき、電磁接触器CMKI,CMK2とも遮断状熊
となるため、これらの常閉接点CMKI,CMK2がオ
ンとなる.この結果、転換リレーCMRが励磁され、そ
の接点が、電磁接触器CMK2側よりCMKI側へ切換
わり、次はCMK1で運転されることとなる。負荷であ
る空圧機器が使用され、空気溜R E Sの圧力が下限
設定値8kg/C1aまで下降すると、高圧調圧器CM
GHがオンとなり、電磁接触器CMK1が投入され、今
度は、CMK1で電動機M、空気圧縮機Cが運転される
。このとき、電磁弁MV2が励磁されるため、第2気筒
がアンロードとなり、第1気筒のみで9kg/ cdに
達するまで運転される。すなわち、本実施例では、通常
時の運転は各気簡の摩耗が均一になるよう、転換リレー
CMRを用いて、第1気筒と第2気筒とを交互に運転す
るようにしたものである。その日の使用が終了し、空気
溜RESの圧力が低圧調圧器CMGLの下限設定値(特
許請求の範囲では高圧調圧器の下限設定値と区別するた
め「最下限設定値」と記す)7kg/cJまで下降する
と、低圧調圧器CMGLがオンとなり、次の始業時の初
込めに備えられる.以上、本実施例では、2つの気筒を
交互に切換えて使用する場合を示したが、これをいずれ
かの気筒に固定してもよく、又、3気筒以上の空気圧縮
機を使用してもよい.〔発明の効果] 本発明は、複数個の気筒を有する空気圧縮機を使用し、
空気溜への初込め時は全気筒で運転し、初込め後は、一
部の気筒のみで運転するようにしたため、初込めに長時
間を要することなく、しかも、従来よりも常用時の運転
時間が長くなり、稼動率が高まり、したがって、空気圧
縮機のクランク室の温度低下が少なくなり、圧縮空気の
露化による潤滑油の乳化が防止できるという優れた効果
が本発明によりもたらされる。尚、本発明の代案として
、電動機と空気圧縮機とのセットを複数セット使用し、
初込め時は、全セットを運転し、常用時は一部のセット
を運転することも考えられるが、この場合、電動機、空
気圧縮機が複数台となるため、スペース、重量、コスト
の面で、本発明の方が有利となる.又、インバータ制御
等により電動機の回転数を制御して解決することも可能
であるが、この場合もインバータ制御による騒音、電力
消費、コスト等の面で本発明の方が有利である。
At this time, since both the electromagnetic contactors CMKI and CMK2 are in the cutoff state, these normally closed contacts CMKI and CMK2 are turned on. As a result, the conversion relay CMR is excited, and its contact is switched from the electromagnetic contactor CMK2 side to the CMKI side, and the next time it will be operated with CMK1. When the pneumatic equipment that is the load is used and the pressure of the air reservoir R E S falls to the lower limit set value 8 kg/C1a, the high pressure regulator CM
The GH is turned on, the electromagnetic contactor CMK1 is turned on, and the electric motor M and the air compressor C are operated by CMK1. At this time, the electromagnetic valve MV2 is excited, so the second cylinder is unloaded, and only the first cylinder is operated until it reaches 9 kg/cd. That is, in this embodiment, during normal operation, the first cylinder and the second cylinder are operated alternately using the conversion relay CMR so that the wear of each cylinder is uniform. At the end of the day's use, the pressure in the air reservoir RES is 7 kg/cJ, the lower limit set value of the low pressure regulator CMGL (in the claims, it is referred to as the "lowest limit set value" to distinguish it from the lower limit set value of the high pressure regulator). When the pressure drops to this level, the low pressure regulator CMGL is turned on to prepare for initial charging at the next start of work. As described above, in this embodiment, two cylinders are alternately switched and used, but this may be fixed to either cylinder, or an air compressor with three or more cylinders may be used. good. [Effect of the invention] The present invention uses an air compressor having a plurality of cylinders,
All cylinders are operated when initially filling the air reservoir, and only some of the cylinders are operated after initial filling, so initial filling does not take a long time, and the operation during regular use is shorter than before. The present invention provides excellent effects in that the time is increased, the operating rate is increased, the temperature drop in the crank chamber of the air compressor is reduced, and emulsification of lubricating oil due to exposure of compressed air can be prevented. Incidentally, as an alternative to the present invention, a plurality of sets of electric motors and air compressors are used,
It is conceivable to operate all the sets when it is first loaded, and only some sets during regular use, but in this case, there will be multiple electric motors and air compressors, so it will be difficult in terms of space, weight, and cost. , the present invention is more advantageous. It is also possible to solve the problem by controlling the rotation speed of the electric motor using inverter control or the like, but in this case as well, the present invention is more advantageous in terms of noise, power consumption, cost, etc. due to inverter control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1乃至第4図は本発明による実施例の構威図で、第1
図は空気回路図、第2図(イ)は電気主回路図、同図(
ロ)は電気制御回路図、第3図は第2図(ロ)中の転換
リレーCMRの説明図、第4図は空気圧縮機のアンロー
ド機構を示す断面図、第5図は従来の圧力空気源装置に
一般に使用されている基本回路構戒図である。 M・・・電動機 C・・・空気圧縮機 CHV・・・逆
止弁RES・・・空気溜 実施例の9 kg / cj・・・上限設定値実施例の
8kg/cd・・・下限設定値実施例の7 kg/d・
・・最下限設定値CMGH・・・第1の調圧器 CMGL・・・第2の調圧器 28・・・吸込弁
1 to 4 are structural diagrams of an embodiment according to the present invention.
The figure is an air circuit diagram, Figure 2 (a) is an electrical main circuit diagram, and the same figure (
b) is an electric control circuit diagram, Fig. 3 is an explanatory diagram of the conversion relay CMR in Fig. 2 (b), Fig. 4 is a sectional view showing the unloading mechanism of the air compressor, and Fig. 5 is a conventional pressure It is a basic circuit configuration diagram generally used in air source devices. M...Electric motor C...Air compressor CHV...Check valve RES...Air reservoir example 9 kg/cj...Upper limit set value Example example 8 kg/cd...Lower limit set value Example 7 kg/d・
...Lowest limit set value CMGH...First pressure regulator CMGL...Second pressure regulator 28...Suction valve

Claims (1)

【特許請求の範囲】[Claims] (1)電動機にて駆動される空気圧縮機と、その空気圧
縮機より吐出される圧力空気を逆止弁を介して流入させ
蓄圧すると共に空圧機器へ供給する空気溜と、その空気
溜の圧力が上限設定値まで上昇したら前記電動機を停止
し、下限設定値まで下降したら前記電動機を起動し運転
する第1の調圧器と、を備えた圧力空気源装置において
、前記空気圧縮機を複数気筒とすると共に、後記の第2
の調圧器よりアンロード指令信号を入力したとき、吸込
弁を開口して、その気筒をアンロードとするアンロード
機構を各気筒毎に設け、更に、前記空気溜の圧力が前記
下限設定値まで上昇したとき、前記気筒の一部のアンロ
ード機構へアンロード指令信号を出力し、前記下限設定
値より低い最下限設定値まで圧力が下降したとき、前記
アンロード指令信号の出力を停止する第2の調圧器を設
けた圧力空気源装置。
(1) An air compressor driven by an electric motor, an air reservoir in which pressurized air discharged from the air compressor flows in through a check valve, accumulates pressure, and supplies it to pneumatic equipment; A first pressure regulator that stops the electric motor when the pressure rises to an upper limit set value and starts and operates the electric motor when the pressure decreases to the lower limit set value, the air compressor is connected to a plurality of cylinders. In addition, the second part below
An unload mechanism is provided for each cylinder to open the suction valve and unload that cylinder when an unload command signal is input from the pressure regulator, and further, the pressure in the air reservoir reaches the lower limit setting value. when the pressure has increased, outputs an unload command signal to the unload mechanism of a part of the cylinder, and stops outputting the unload command signal when the pressure decreases to a lower limit set value lower than the lower limit set value. Pressure air source device equipped with two pressure regulators.
JP14903789A 1989-06-12 1989-06-12 Pressure air supply device Pending JPH0315681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14903789A JPH0315681A (en) 1989-06-12 1989-06-12 Pressure air supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14903789A JPH0315681A (en) 1989-06-12 1989-06-12 Pressure air supply device

Publications (1)

Publication Number Publication Date
JPH0315681A true JPH0315681A (en) 1991-01-24

Family

ID=15466278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14903789A Pending JPH0315681A (en) 1989-06-12 1989-06-12 Pressure air supply device

Country Status (1)

Country Link
JP (1) JPH0315681A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150868A (en) * 1981-03-12 1982-09-17 Minolta Camera Co Ltd Heating roller fixing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150868A (en) * 1981-03-12 1982-09-17 Minolta Camera Co Ltd Heating roller fixing device

Similar Documents

Publication Publication Date Title
US4863355A (en) Air compressor having control means to select a continuous or intermittent operation mode
US4361417A (en) Oil-cooled compressor
US4432698A (en) Compressor having a starting load reducing apparatus
JP2009511803A (en) Fluid compressor having static pressure type air bearing, control system for compressor having static pressure type air bearing, and control method for compressor having static pressure type air bearing
US2256565A (en) Unloading device
US4505648A (en) Unloading mechanisms for air compressors
JP2004220821A (en) Hydraulic operation device for switching device
US2961148A (en) Compressor cylinder unloaders
US2295775A (en) Compressor control apparatus
JPH0315681A (en) Pressure air supply device
US2274337A (en) Refrigerating apparatus
US4357995A (en) Hydraulic system including oil replenishment for multi-stage hydraulic jack
JP5698912B2 (en) Compressor
US3886744A (en) Power-control system for stirling engines
JP2000337265A (en) Control device for air compressor
US2449740A (en) Pressure unloader for compressors
US2254593A (en) Refrigerating apparatus
US1936411A (en) Unloader for gas compressors
JPH0147633B2 (en)
JP2015190465A (en) compressor
JPS5951181A (en) Reciprocating compressor
JPS63194717A (en) Compressed air source device
JPH06185468A (en) Air compressor
US2720355A (en) Unloading control apparatus for air compressors
US2637485A (en) Unloading system for compressors