JPH03156396A - Method and apparatus for processing radar signal - Google Patents

Method and apparatus for processing radar signal

Info

Publication number
JPH03156396A
JPH03156396A JP1295644A JP29564489A JPH03156396A JP H03156396 A JPH03156396 A JP H03156396A JP 1295644 A JP1295644 A JP 1295644A JP 29564489 A JP29564489 A JP 29564489A JP H03156396 A JPH03156396 A JP H03156396A
Authority
JP
Japan
Prior art keywords
signal
moment
signals
difference
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1295644A
Other languages
Japanese (ja)
Other versions
JP2678072B2 (en
Inventor
Matsuo Sekine
関根 松夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP1295644A priority Critical patent/JP2678072B2/en
Publication of JPH03156396A publication Critical patent/JPH03156396A/en
Application granted granted Critical
Publication of JP2678072B2 publication Critical patent/JP2678072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To positively suppress a surface-of-sea reflecting signal by respectively multiplying moment signals of plural orders, calculated from linear signals obtained through antilogarithmic conversion of difference signals, by coefficients and setting the sum thereof as a threshold value and subtracting the sum from the linear signals. CONSTITUTION:From a logarithmic conversion signal Y obtained by amplifying a radar signal X through a logarithmic amplifier 100, an moving average value signal (Y) of (N) signals Y is subtracted to produce a difference signal V from the first difference circuit 12. This signal V is subjected to antilogarithmic conversion through an antilogarithmic operation circuit 14 to obtain a linear signal Z which is, in turn, inputted to a threshold value operation part 50. In the operation part 50, moment signals from the first order to the n-th order (n is 4 in this example) of the signal Z are calculated by first, second, third and fourth order moment operation circuits 16-1 - 16-4 and multiplied by coefficients predetermined for every moment by first, second, third and fourth order moment coefficient circuits 18-1 - 18-4 and the sum of the respective moment signals subjected to coefficient multiplication is calculated as a threshold signal T by a summing circuit 20 and the signal T is subtracted from the signal Z to obtain a final output signal. By this method, a signal causing constant erroneous alarm probability can be calculated with respect to a radar signal containing a surface-of-sea reflecting signal according to Weibull distribution and the surface-of-sea reflecting signal is suppressed to make it possible to clearly display a ship image.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、海面反射信号を抑圧して船舶等の目標物標信
号を検出するレーダ信号処理方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a radar signal processing method and apparatus for suppressing sea surface reflection signals and detecting target target signals such as ships.

[従来の技術] 従来、船舶用レーダにおいてクラッタ信号を抑圧する信
号処理方式としてはLog−CFARが知られている。
[Prior Art] Log-CFAR is conventionally known as a signal processing method for suppressing clutter signals in marine radars.

Log−CFARは、クラッタ信号がレーリー分布信号
(R171eilh dislribation si
gnals)である時に、レーリー信号のログアンプ出
力信号の平均値の回りの偏差が一定となる性質を利用し
て誤警報を一定値に保つ方式である。
In Log-CFAR, the clutter signal is a Rayleigh distribution signal (R171eilh dislrivation si
This method uses the property that the deviation of the Rayleigh signal around the average value of the log amplifier output signal is constant when the output signal is 100%, and the false alarm is kept at a constant value.

即ち、第8図に示すように、クラッタ信号WをLogア
ンプ100に入力して出力信号Yを求め、このLogア
ンプ出力信号Yから平均回路20Gで平均値<y>を算
出し、最終的に差分回路300でLogアンプ出力信号
Yから平均値<y>を差し引くことによって、誤警報が
一定なCFAR信号Vを得ることができる。
That is, as shown in FIG. 8, the clutter signal W is input to the Log amplifier 100 to obtain the output signal Y, and the average value <y> is calculated from the Log amplifier output signal Y by the averaging circuit 20G. By subtracting the average value <y> from the Log amplifier output signal Y in the difference circuit 300, a CFAR signal V with constant false alarms can be obtained.

[発明が解決しようとする課題] しかしながら、クラッタ信号の1つである海面反射信号
の振幅分布特性は、レーリー分布とはならず、ワイブル
分布(Weibull Distribulion)と
なることが確認されており、この海面反射信号に対し第
8図に示したレーリー分布信号を対象としたLog−C
FAR方式を適用しても、両者の統計的な性質の相違に
より平均値<y>回りの偏差が一定とならず、誤警報の
確立が増大して海面反射の消え残りが発生する。
[Problems to be Solved by the Invention] However, it has been confirmed that the amplitude distribution characteristic of the sea surface reflection signal, which is one of the clutter signals, is not a Rayleigh distribution but a Weibull distribution. Log-C for the Rayleigh distribution signal shown in Figure 8 for the sea surface reflection signal
Even if the FAR method is applied, the deviation around the average value <y> will not be constant due to the difference in statistical properties between the two, increasing the probability of false alarms and causing sea surface reflections to remain undisappeared.

特に船舶用レーダでは海面反射信号と船舶映像との判別
が困難となり、船舶航行上きわめて危険な状況に陥る恐
れがあった。
Particularly with ship radars, it becomes difficult to distinguish between sea surface reflection signals and ship images, which may lead to an extremely dangerous situation for ship navigation.

本発明は、このような従来の問題点に鑑みてなされたも
ので、船舶等のレーダ装置で受けるワイブル分布に従う
海面反射信号を含むレーダ信号に対し誤警報確立が一定
となる信号を算出することによって海面反射信号を確実
に抑圧できるレーダ信号処理方法及び装置を提供するこ
とを目的とする。
The present invention has been made in view of such conventional problems, and it is an object of the present invention to calculate a signal with a constant probability of false alarm for radar signals including sea surface reflection signals according to the Weibull distribution received by radar devices on ships, etc. An object of the present invention is to provide a radar signal processing method and device that can reliably suppress sea surface reflected signals.

[課題を解決するための手段] この目的を達成するため本発明にあっては、まずワイブ
ル分布に従った海面反射信号を含むレーダ信号処理方法
として、対数変換されたレーダ信号からその移動平均を
差し引いて差分信号を求め、この差分信号を逆対数変換
してリニア信号とし、このリニア信号の1次からn次ま
でのモーメント信号を算出すると共に各モーメント信号
毎に予め定めた所定の係数を使用して係数倍し、この係
数倍された各モーメント信号の総和として閾値信号を算
出し、最終的に閾値信号を前記リニア信号から差し引い
て出力信号としたものである。
[Means for Solving the Problem] In order to achieve this object, the present invention first calculates the moving average of logarithmically transformed radar signals as a radar signal processing method including sea surface reflection signals according to Weibull distribution. A difference signal is obtained by subtraction, this difference signal is inverse logarithmically converted to a linear signal, and moment signals from the 1st to the nth order of this linear signal are calculated, and a predetermined coefficient is used for each moment signal. A threshold signal is calculated as the sum of the moment signals multiplied by the coefficient, and finally the threshold signal is subtracted from the linear signal to obtain an output signal.

また、ワイブル分布に従った海面反射信号を含むレーダ
信号処理装置として本発明にあっては、対数変換された
レーダ信号の移動平均を算出する移動平均手段と;該移
動平均手段からの移動平均信号を前記対数変換されたレ
ーダ信号から差し引いて差分信号を出力する第1の差分
手段と;該第1の差分手段からの差分信号を逆対数変換
してリニア信号を出力する逆対数変換手段と;該逆対数
変換手段からのリニア信号の1次からn次までのモーメ
ント信号を並列的に生成するモーメント演算手段と;該
モーメント演算手段で生成された1次からn次までのモ
ーメント信号毎に予め定めた所定の係数を使用して係数
倍するモーメント係数手段と;該モーメント係数手段で
係数倍された1次からn次のモーメント信号の総和とし
て閾値信号を算出する総和手段と;該総和手段で求めた
閾値信号を前記逆対数変換手段で変換したリニア信号か
ら差し引いて出力信号を求める第2の差分手段と;を備
える。
Further, in the present invention, as a radar signal processing device including a sea surface reflection signal according to a Weibull distribution, a moving average means for calculating a moving average of a logarithmically transformed radar signal; a moving average signal from the moving average means; a first difference means that subtracts the difference signal from the logarithmically transformed radar signal and outputs a difference signal; an antilogarithm transform means that performs an antilogarithm transform on the difference signal from the first difference means and outputs a linear signal; a moment calculation means for generating in parallel moment signals from the first order to the nth order of the linear signal from the anti-logarithmic conversion means; moment coefficient means for multiplying by a coefficient using a predetermined coefficient; summing means for calculating a threshold signal as the sum of the first to nth moment moment signals multiplied by a coefficient by the moment coefficient means; a second difference means for obtaining an output signal by subtracting the obtained threshold signal from the linear signal converted by the anti-logarithmic conversion means;

更に、レーダ信号処理方法及び装置として、係数倍され
たモーメント信号の総和として得られた閾値信号をその
まま出力信号としても良い。
Furthermore, as the radar signal processing method and apparatus, the threshold signal obtained as the sum of the moment signals multiplied by the coefficient may be used as the output signal as it is.

[作用] このような構成を備えた本発明のレーダ信号処理方法及
び装置によれば、ワイブル分布に従った海面反射信号に
対する信号処理によって誤警報確立が一定となるCFA
R出力信号を得ることができ、海面反射信号が残留しな
いように確実に抑圧し、海面反射を受けても船舶等の物
標映像を明確に表示して航行の安全性を確保することが
できる。
[Operation] According to the radar signal processing method and device of the present invention having such a configuration, a CFA is achieved in which the probability of false alarm is constant by signal processing for sea surface reflection signals according to Weibull distribution.
It is possible to obtain an R output signal, reliably suppress sea surface reflection signals so that they do not remain, and ensure navigation safety by clearly displaying images of targets such as ships even when sea surface reflections occur. .

[実施例] まず、レーダビデオ信号(以下、単にレーダ信号という
)に含まれるワイブル分布に従った海面反射信号を抑圧
するための、本発明のレーダ信号処理方法は次の処理ス
テップで求められる。
[Example] First, a radar signal processing method of the present invention for suppressing a sea surface reflection signal according to a Weibull distribution included in a radar video signal (hereinafter simply referred to as a radar signal) is obtained by the following processing steps.

■レーダ信号を対数変換する。■Logarithmically transform the radar signal.

■対数変換されたレーダ信号からその移動平均を求める
■Calculate the moving average from the logarithmically transformed radar signal.

■対数変換されたレーダ信号から■で求めた移動平均を
差し引いて差分信号を求める。
■ Subtract the moving average obtained in (■) from the logarithmically converted radar signal to obtain a difference signal.

■差分信号を逆対数変換してリニア信号とする。■Antilogarithmically transform the differential signal to make it a linear signal.

■リニア信号の1次からn次までのモーメント信号を算
出する。
■Calculate moment signals from the 1st order to the nth order of the linear signal.

■各モーメント信号毎に予め定めた所定の係数を使用し
て係数倍する。
■ Multiply each moment signal by a predetermined coefficient using a predetermined coefficient.

■係数倍された1次からn次のモーメント信号の総和と
して閾値信号を算出する。
(2) Calculate the threshold signal as the sum of the first to nth moment moment signals multiplied by the coefficient.

■最終的に閾値信号を前記■で求めたリニア信号から差
し引いて出力信号とする。
(2) Finally, the threshold signal is subtracted from the linear signal obtained in (2) above to obtain an output signal.

このような本発明のレーダ信号処理方法は次の原理に基
づく。
The radar signal processing method of the present invention is based on the following principle.

まずワイブル分布に従うレーダ信号Xの確率密度関数P
c(X)は次の第(1)式きなる。
First, the probability density function P of the radar signal X following the Weibull distribution
c(X) is expressed by the following equation (1).

ここでbはスケールパラメータ、Cはシャープ(形状)
パラメータと呼ばれ、ワイブル分布の特徴を決めるパラ
メータである。
where b is the scale parameter and C is the sharpness (shape)
This is called a parameter and determines the characteristics of the Weibull distribution.

レーダ信号Xの対数変換出力Yは Y=LnX           (2)で表わされ、
対数変換出力Yの移動平均値<y>は前記第(1)式の
パラメータb、  cによって次式で表わされる。
The logarithmic conversion output Y of the radar signal X is expressed as Y=LnX (2),
The moving average value <y> of the logarithmically converted output Y is expressed by the following equation using parameters b and c of equation (1).

<y>= j2nb−(1/c) ・7    (3)
ここでγはオイラ定数である。
<y>= j2nb-(1/c) ・7 (3)
Here γ is Euler's constant.

次に対数変換出力YのLoll−CFAR出力V出力対
数変換出力Yからその移動平均<Y>を差し引いた値と
なるので、 V=y−<y>         (4)となり、この
Log−CFAR出力■出力対数変換出力Zは次式で表
わされる。
Next, the Loll-CFAR output V output of the logarithmic conversion output Y is the value obtained by subtracting the moving average <Y> from the logarithm conversion output Y, so V = y - <y> (4), and this Log-CFAR output ■ The output logarithmic conversion output Z is expressed by the following equation.

Z=ev           (5)この第(5)式
に前記第(2)、(3)、(4)式を代入すると、逆対
数変換出力2は次のように変形できる。
Z=ev (5) By substituting the above-mentioned equations (2), (3), and (4) into this equation (5), the antilogarithmic transformation output 2 can be transformed as follows.

Z= (X/b)e”’      (6)次に第(6
)式で与えられる逆対数変換出力2の1次モーメントを
求めると次式になる。
Z= (X/b)e''' (6) Next, the (6th
) The first moment of the anti-logarithmic transformation output 2 given by the equation is determined by the following equation.

<ZJ >=e ””r (J/c+1)    (7
)ここでrはガンマ関数である。
<ZJ>=e “”r (J/c+1) (7
) where r is the gamma function.

一方、前記第(6)式で与えられる逆対数変換出力2の
誤警報確率Pfxは閾値(スレッショルドレベル)をT
とすると、次式で表わされる。
On the other hand, the false alarm probability Pfx of the inverse logarithmic transformation output 2 given by the above equation (6) is determined by setting the threshold value (threshold level) to T
Then, it is expressed by the following formula.

ここで閾値Tを逆対数変換出力2の1次モーメントの線
形和(総和)で表わすと、 TJa、 [<Z’ >] ”’       (9)
となる。従って、前記第(8)式で与えられる逆対数変
換出力2の誤警報確率pHは、 PIs= 、 −(、E、ar r [(J/C+ 1
)]” ) ’(10) として与えられる。
Here, if the threshold T is expressed as the linear sum (total sum) of the first-order moments of the anti-logarithmic transformation output 2, then TJa, [<Z'>]''' (9)
becomes. Therefore, the false alarm probability pH of the anti-logarithmic transformation output 2 given by the above equation (8) is: PIs= , -(,E,ar r [(J/C+ 1
)]” ) '(10).

ここで逆対数変換出力2の3次のモーメントとしてJ=
1.2.3の場合と、J=1.2,3゜4の場合につい
て前記第(9)式における係数a1の値を第4図に示す
ように定めると、前記第(10)式で与えられる誤警報
確率PL!はJ=1〜3の場合、第5図に示すように略
一定となり、またJ=1〜4の場合については第6図に
示すようにより一局一定となり、本発明によりワイブル
分布をもつ海面反射信号を充分抑圧したCFAR出力が
得られることが確認されている。
Here, J=
If the value of the coefficient a1 in the above equation (9) is determined as shown in Fig. 4 for the case of 1.2.3 and the case of J = 1.2, 3°4, then in the above equation (10), Given false alarm probability PL! is approximately constant when J = 1 to 3, as shown in Fig. 5, and becomes more constant as shown in Fig. 6 when J = 1 to 4. It has been confirmed that a CFAR output with sufficiently suppressed reflected signals can be obtained.

尚、第4図に示したJ=1〜3次またはJ=1〜4次の
係数at−a3.al−a4の値は前記第(3)式で与
えられる移動平均値<y>を求めるための対数変換出力
Yの数NをN=16として最適化法により求めた値であ
り、この係数a、は誤警報確率pHと移動平均<y>を
求める対数変換出力Yの個数Nに依存する。更にalの
値は各パラメータによって一意に決まるものではなく、
いくつかの最適解の組み合せが存在する。
Note that the coefficient at-a3. of J=1st to 3rd order or J=1st to 4th order shown in FIG. The value of al-a4 is the value obtained by the optimization method, assuming that the number N of logarithmically transformed outputs Y for obtaining the moving average value <y> given by the above equation (3) is N=16, and this coefficient a , depends on the false alarm probability pH and the number N of logarithmically transformed outputs Y for obtaining the moving average <y>. Furthermore, the value of al is not uniquely determined by each parameter,
There are several combinations of optimal solutions.

第1図は本発明によるレーダ信号処理装置の一実施例を
示した実施例構成図である。
FIG. 1 is a block diagram showing an embodiment of a radar signal processing device according to the present invention.

第1図において、100はログアンプであり、所定周期
でサンプリングされたレーダ信号Xを入力して対数増幅
し、対数変換信号Yを出力する。
In FIG. 1, 100 is a log amplifier, which inputs a radar signal X sampled at a predetermined period, logarithmically amplifies it, and outputs a logarithmically converted signal Y.

ここで、第1図の装置の処理対象となるレーダ信号はア
ナログ信号であっても良いし、サンプリングされたアナ
ログ信号をデジタル信号に変換した量子化レーダ信号で
あっても良い。当然に各回路部はアナログ信号及びデジ
タル信号に適合した回路方式をとるものである。
Here, the radar signal to be processed by the apparatus shown in FIG. 1 may be an analog signal, or may be a quantized radar signal obtained by converting a sampled analog signal into a digital signal. Naturally, each circuit section adopts a circuit system suitable for analog and digital signals.

ログアンプ100からの対数変換信号Yは移動平均回路
10に与えられ、予め定めた所定数N個の対数変換信号
Yの移動平均を算出する。
The logarithmically transformed signal Y from the log amplifier 100 is given to a moving average circuit 10, which calculates a moving average of a predetermined number N of logarithmically transformed signals Y.

第2図は第1図の移動平均回路10の一実施例を示した
実施例構成図であり、遅延回路24、加算回路26及び
割算回路28で構成される。
FIG. 2 is a block diagram showing an embodiment of the moving average circuit 10 shown in FIG.

遅延回路24は移動平均値を求める個数N1例えばN=
16個分の遅延素子を直列接続しており、直列的に入力
する対数変換信号YをN個の並列出力に順次変換する。
The delay circuit 24 determines the number N1 of moving average values, for example, N=
Sixteen delay elements are connected in series, and the logarithmically converted signal Y input in series is sequentially converted into N parallel outputs.

加算回路26は遅延回路24より新たな対数変換信号Y
の入力毎に得られるN=16個の並列出力の総和を求め
て割算回路28に出力する。割算回路28は平均値を求
める個数Nで加算回路26の出力を割り、移動平均値信
号<y>を出力する。
The adder circuit 26 receives the new logarithmically converted signal Y from the delay circuit 24.
The sum of N=16 parallel outputs obtained for each input is calculated and output to the divider circuit 28. The division circuit 28 divides the output of the addition circuit 26 by the number N for which the average value is to be determined, and outputs a moving average value signal <y>.

第3図は第1図の移動平均回路10の他の実施例を示し
た実施例構成図である。
FIG. 3 is a block diagram showing another embodiment of the moving average circuit 10 of FIG. 1. In FIG.

第3図において、移動平均回路10はN/2遅延回路3
0.34、加算回路36.38、加算器40及び割算回
路28で構成され、更に、N/2遅延回路30の出力を
1段の遅延素子32を介して次のN/2遅延回路34に
与えている。
In FIG. 3, the moving average circuit 10 is the N/2 delay circuit 3.
0.34, an adder circuit 36, 38, an adder 40, and a divider circuit 28. Furthermore, the output of the N/2 delay circuit 30 is sent to the next N/2 delay circuit 34 via a one-stage delay element 32. is giving to

N/2遅延回路30.34のそれぞれは、N=16とし
た場合、それぞれ8個の遅延素子を直列接続し、順次入
力する対数変換信号Yを8つの並列出力に変換して加算
回路36.38に出力する。
When N=16, each of the N/2 delay circuits 30.34 has 8 delay elements connected in series, and converts the sequentially input logarithmically converted signal Y into 8 parallel outputs. Output to 38.

加算回路36.38は各N/2遅延回路30.34のN
=8つの並列出力の総和を求め、加算器40に与えて加
算してN個分の総和を求め、割算回路28で移動平均を
求める個数Nで割って移動平均値信号<y>を出力する
The adder circuits 36.38 correspond to the N of each N/2 delay circuit 30.34.
= Find the sum of 8 parallel outputs, give it to the adder 40 and add it to find the sum of N pieces, divide by the number N for which the moving average is to be obtained in the division circuit 28, and output the moving average value signal <y> do.

N/2遅延回路30と34の間に設けられた1段の遅延
素子32は、第1図に示す次段の第1の差分回路12に
対し対数変換信号Yを出力するために使用されている。
The one stage delay element 32 provided between the N/2 delay circuits 30 and 34 is used to output the logarithmically converted signal Y to the next stage first difference circuit 12 shown in FIG. There is.

再び第1図を参照するに、移動平均回路10に続いては
第1の差分回路12が設けられ、第1の差分回路12は
ログアンプ100より得られた対数変換信号Yから移動
平均回路10で算出されたN個分の移動平均値信号<y
>を差し引き、差分信号Vを出力する。この差分信号V
は、前記第(4)式で与えられるLog−CFAR出力
となる。
Referring again to FIG. 1, a first difference circuit 12 is provided following the moving average circuit 10, and the first difference circuit 12 converts the logarithmically converted signal Y obtained from the log amplifier 100 into the moving average circuit 10. N moving average value signals calculated by <y
> is subtracted and a difference signal V is output. This difference signal V
becomes the Log-CFAR output given by the above equation (4).

また、第1の差分回路12はアナログ方式であればオペ
アンプによる差分回路で実現でき、一方、デジタル方式
であればデジタル加算器で実現される。
Further, if the first difference circuit 12 is an analog type, it can be realized by a difference circuit using an operational amplifier, whereas if it is a digital type, it can be realized by a digital adder.

第1の差分回路12からの差分信号Vは逆対数演算回路
14に与えられ、逆対数演算回路14は前記第(5)式
で与えられる逆対数変換信号(リニア信号)Zを出力す
る。逆対数演算回路14としては、アナログ方式であれ
ば指数関数特性を有する関数演算器で実現され、デジタ
ル方式であれば差分信号Vをアドレスとして予め演算さ
れた逆対数を格納したルックアップテーブルLUTによ
り実現できる。
The difference signal V from the first difference circuit 12 is given to the antilogarithm calculation circuit 14, and the antilogarithm calculation circuit 14 outputs the antilogarithm conversion signal (linear signal) Z given by the above-mentioned equation (5). The anti-logarithm calculation circuit 14 is realized by a function calculator having exponential function characteristics if it is an analog system, or by a look-up table LUT that stores an anti-logarithm calculated in advance using the difference signal V as an address if it is a digital system. realizable.

逆対数演算回路14からの逆対数変換信号2は前記第(
9)式で与えられる閾値Tを算出するための閾値演算部
50に与えられる。閾値演算部50は、この実施例にあ
っては1次から4次のモーメント演算を例にとっている
The antilogarithm conversion signal 2 from the antilogarithm calculation circuit 14 is
9) is given to the threshold value calculation unit 50 for calculating the threshold value T given by equation 9). In this embodiment, the threshold calculation unit 50 takes first to fourth order moment calculations as an example.

まず、逆対数変換信号Zは、1次モーメント演算回路1
6−1.2次モーメント演算回路16−2.3次モーメ
ント演算回路16−3及び4次モーメント演算回路16
−4のそれぞれに入力され、逆対数変換信号Zをn次乗
した後、移動平均回路10と同様の平均演算アルゴリズ
ムにより平均値を算出する。即ち、前記第(9)式にお
けるΣa、を除く右辺の項につき、J=1.2.3゜J
=1 4の各々についてモーメントを演算している。
First, the anti-logarithm conversion signal Z is sent to the first moment calculation circuit 1.
6-1. Second-order moment calculation circuit 16-2. Third-order moment calculation circuit 16-3 and fourth-order moment calculation circuit 16
-4, and after raising the inverse logarithmically transformed signal Z to the nth power, an average value is calculated using the same average calculation algorithm as in the moving average circuit 10. That is, for the term on the right side of equation (9) excluding Σa, J = 1.2.3°J
= 1 The moment is calculated for each of 4.

続いて、1次モーメント係数回路18−1. 2次モー
メント係数回路18−2.3次モーメント係数回路18
−3及び4次モーメント係数回路18−4が設けられ、
前段で演算された1次〜4次モーメントのそれぞれに所
定のモーメント係数a1、 a 2. a 3. a 
4を掛は合わせる。この1〜4次モーメント係数al−
a4は第4図の右側に示すa1〜a4の値が使用される
Next, the first-order moment coefficient circuit 18-1. Second-order moment coefficient circuit 18-2. Third-order moment coefficient circuit 18
- third and fourth moment coefficient circuits 18-4 are provided;
Predetermined moment coefficients a1, a2. are applied to each of the first to fourth moments calculated in the previous stage. a3. a
Multiply 4 and match. This 1st to 4th moment coefficient al-
For a4, the values a1 to a4 shown on the right side of FIG. 4 are used.

このようにして所定のモーメント係数により係数倍され
た1次〜4次の各モーメントは最終的に総和回路20に
入力され、総和回路20において、前記第(9)式で示
されるJ=1〜4の閾値Tが算出される。尚、閾値演算
部50におけるモーメント係数回路18−1〜18−4
はアナログ方式であれば演算増幅器で実現でき、デジタ
ル方式であればルックアップテーブルにより実現でき、
総和回路20についても同様に、アナログ方式は演算増
幅器、デジタル方式はルックアップテーブルもしくはデ
ジタル加算回路の組合せで実現できる。
Each of the first to fourth moments multiplied by a predetermined moment coefficient in this way is finally input to the summation circuit 20, and in the summation circuit 20, J=1 to A threshold T of 4 is calculated. Note that the moment coefficient circuits 18-1 to 18-4 in the threshold calculation unit 50
can be realized using an operational amplifier if it is an analog method, or by a lookup table if it is a digital method.
Similarly, the summation circuit 20 can be realized by a combination of an operational amplifier for an analog system and a look-up table or a digital addition circuit for a digital system.

逆対数演算回路14からの逆対数変換信号2と、閾値演
算部50で算出された閾値信号Tは最終的に第2の差分
回路22に出力され、第2の差分回路22で逆対数変換
信号(リニア信号)2から閾値信号Tを差し引いて、最
終的なCFAR信号を出力するようになる。この第2の
差分回路22から得られる出力信号は、第4図の右側に
示すモーメント係数に従った1次から4次のモーメント
演算による閾値Tを使用していることから、第6図に示
すようにワイブル分布信号に従う海面反射信号に対して
も、その分布の特徴に依らず誤警報確率Pftが一定な
出力信号を算出することができる。
The antilogarithm conversion signal 2 from the antilogarithm calculation circuit 14 and the threshold signal T calculated by the threshold calculation unit 50 are finally output to the second difference circuit 22, and the second difference circuit 22 converts the antilogarithm conversion signal into an antilogarithm conversion signal. The final CFAR signal is output by subtracting the threshold signal T from (linear signal) 2. The output signal obtained from the second difference circuit 22 uses the threshold value T calculated by the first to fourth order moments according to the moment coefficients shown on the right side of FIG. Thus, even for a sea surface reflection signal that follows a Weibull distribution signal, it is possible to calculate an output signal with a constant false alarm probability Pft regardless of the characteristics of the distribution.

第7図は本発明の他の実施例を示した実施例構成図であ
り、第1図に示した第2の差分回路22を除き、閾値演
算部50で算出された閾値信号Tを最終的な出力信号と
したことを特徴とする。即ち、第1図の実施例にあって
は出力信号として逆対数変換信号(リニア信号)Zから
閾値信号Tを差し引いたものを出力信号としているが、
第7図の実施例のように誤警報確率Ptgが一定となる
しベルの閾値信号Tそのものを出力信号として表示して
も、海面反射信号を抑圧した出力信号を求めることがで
きる。
FIG. 7 is an embodiment configuration diagram showing another embodiment of the present invention, in which the second difference circuit 22 shown in FIG. It is characterized in that it has an output signal. That is, in the embodiment shown in FIG. 1, the output signal is obtained by subtracting the threshold signal T from the anti-logarithmically transformed signal (linear signal) Z.
As in the embodiment shown in FIG. 7, the false alarm probability Ptg is constant and even if the Bell threshold signal T itself is displayed as the output signal, it is possible to obtain an output signal in which the sea surface reflection signal is suppressed.

尚、第1.7図の実施例は1次から4次のモーメント演
算を例にとるものであったが、例えば第4図の左側に示
すモーメント係数a l、 a 2. a 3を使用し
た3次のモーメント演算であっても良く、更にモーメン
ト演算の次数は必要に応じて適宜に定めることができる
Note that the embodiment shown in FIG. 1.7 takes first- to fourth-order moment calculations as an example, but for example, the moment coefficients a l, a 2 . It may be a third-order moment calculation using a3, and furthermore, the order of the moment calculation can be appropriately determined as necessary.

また、上記の実施例は海面反射信号がワイブル分布をと
る場合を例にとるものであったが、ワイブル分布以外の
分布をとる場合においても、同様に、逆対数変換された
リニア信号のモーメント演算結果と最適化された係数8
1により閾値信号を求めて海面反射信号を確実に抑圧す
ることができる。
In addition, although the above embodiment takes as an example the case where the sea surface reflection signal has a Weibull distribution, even when the sea surface reflection signal has a distribution other than the Weibull distribution, the moment calculation of the anti-logarithmically transformed linear signal can be performed in the same way. Results and optimized coefficients 8
1, it is possible to obtain a threshold signal and reliably suppress the sea surface reflection signal.

[発明の効果] 以上説明してきたように本発明によれば、ワイブル分布
に従った海面反射信号に対しても、その分布の特徴によ
らず誤警報確率が一定となる出力信号を算出することが
でき、海面反射信号を確実に抑圧して船舶映像を明確に
表示することによって船舶の航行の安全性を確保するこ
とができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to calculate an output signal that has a constant false alarm probability regardless of the characteristics of the distribution, even for sea surface reflection signals that follow the Weibull distribution. By reliably suppressing sea surface reflection signals and clearly displaying ship images, it is possible to ensure the safety of ship navigation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置構成の一実施例を示した実施例構
成図; 第2.3図は第1図の移動平均回路の実施例構成図; 第4図は本発明のモーメント演算に使用する係数a1の
説明図; 第5図は本発明の3次のモーメント演算による誤警報確
率P11の説明図; 第6図は本発明の4次のモーメント演算による誤警報確
率pHの説明図; 第7図は本発明の装置構成の他の実施例を示した実施例
構成図; 第8図は従来方式の説明図である。 10:移動平均回路 12:第1の差分回路 14:逆対数演算回路 16−1〜+6−4:1次〜4次モーメント演算回路1
8−1〜18−4 : 1次〜4次モーメント係数回路
20:総和回路 22:第2の差分回路 24:遅延回路 26.36.38.40:加算回路 28:割算回路 30.34:N/2遅延回路 32:遅延素子 50:閾値演算部 100:ログアンプ
Fig. 1 is a block diagram of an embodiment of the device configuration of the present invention; Fig. 2.3 is a block diagram of an embodiment of the moving average circuit of Fig. 1; Fig. 4 is a block diagram of an embodiment of the moving average circuit of the present invention; An explanatory diagram of the coefficient a1 used; FIG. 5 is an explanatory diagram of the false alarm probability P11 by the third-order moment calculation of the present invention; FIG. 6 is an explanatory diagram of the false alarm probability pH by the fourth-order moment calculation of the present invention; FIG. 7 is an embodiment configuration diagram showing another embodiment of the device configuration of the present invention; FIG. 8 is an explanatory diagram of a conventional system. 10: Moving average circuit 12: First difference circuit 14: Antilogarithm calculation circuit 16-1 to +6-4: 1st to 4th moment calculation circuit 1
8-1 to 18-4: 1st to 4th moment coefficient circuit 20: Summation circuit 22: Second difference circuit 24: Delay circuit 26.36.38.40: Addition circuit 28: Divide circuit 30.34: N/2 delay circuit 32: delay element 50: threshold calculation section 100: log amplifier

Claims (3)

【特許請求の範囲】[Claims] (1)対数変換されたレーダ信号からその移動平均を差
し引いて差分信号を求め、 該差分信号を逆対数変換してリニア信号とし、該リニア
信号の1次からn次までのモーメント信号を算出すると
共に各モーメント信号毎に予め定めた所定の係数を使用
して係数倍し、 該係数倍された1〜n次のモーメント信号の総和として
閾値信号を算出し、 最終的に該閾値信号を前記リニア信号から差し引いて出
力信号とすることを特徴とするレーダ信号処理方式。
(1) Subtract the moving average from the logarithmically converted radar signal to obtain a difference signal, perform antilogarithm conversion on the difference signal to make it a linear signal, and calculate moment signals from the 1st to the nth order of the linear signal. At the same time, each moment signal is multiplied by a predetermined coefficient using a predetermined coefficient, a threshold signal is calculated as the sum of the 1st to nth order moment signals multiplied by the coefficient, and finally the threshold signal is converted to the linear A radar signal processing method characterized by subtracting the signal from the signal to obtain the output signal.
(2)対数変換されたレーダ信号の移動平均信号を算出
する移動平均手段と; 該移動平均手段からの移動平均信号を前記対数変換され
たレーダ信号から差し引いて差分信号を出力する第1の
差分手段と; 該第1の差分手段からの差分信号を逆対数変換してリニ
ア信号を出力する逆対数変換手段と;該逆対数変換手段
からのリニア信号の1次からn次までのモーメント信号
を並列的に生成するモーメント演算手段と; 該モーメント演算手段で生成された1次からn次のモー
メント信号毎に予め定めた所定の係数を使用して係数倍
するモーメント係数手段と;該モーメント係数手段で係
数倍された1次からn次のモーメント信号の総和として
閾値信号を算出する総和手段と; 該総和手段で求めた閾値信号を前記逆対数変換手段で変
換したリニア信号から差し引いて出力信号を求める第2
の差分手段と; を備えたことを特徴とするレーダ信号処理装置。
(2) a moving average means for calculating a moving average signal of the logarithmically transformed radar signal; a first difference subtracting the moving average signal from the moving average means from the logarithmically transformed radar signal and outputting a difference signal; means; anti-logarithmic conversion means for anti-logarithmically converting the difference signal from the first difference means and outputting a linear signal; moment calculation means that generates in parallel; moment coefficient means that multiplies each of the first to nth order moment signals generated by the moment calculation means by a coefficient using a predetermined coefficient; the moment coefficient means summing means for calculating a threshold signal as the sum of the first to nth order moment signals multiplied by a coefficient; subtracting the threshold signal obtained by the summing means from the linear signal transformed by the anti-logarithmic transformation means to obtain an output signal; Second thing to ask for
A radar signal processing device comprising: a differential means;
(3)前記1次からn次のモーメント信号の総和として
求められた閾値信号を出力信号とすることを特徴とする
請求項1,2記載のレーダ信号処理方法及び装置。
(3) The radar signal processing method and device according to claim 1 or 2, characterized in that the output signal is a threshold signal obtained as the sum of the first to n-th moment signals.
JP1295644A 1989-11-14 1989-11-14 Radar signal processing method and apparatus Expired - Fee Related JP2678072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1295644A JP2678072B2 (en) 1989-11-14 1989-11-14 Radar signal processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1295644A JP2678072B2 (en) 1989-11-14 1989-11-14 Radar signal processing method and apparatus

Publications (2)

Publication Number Publication Date
JPH03156396A true JPH03156396A (en) 1991-07-04
JP2678072B2 JP2678072B2 (en) 1997-11-17

Family

ID=17823320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1295644A Expired - Fee Related JP2678072B2 (en) 1989-11-14 1989-11-14 Radar signal processing method and apparatus

Country Status (1)

Country Link
JP (1) JP2678072B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183592A (en) * 1991-12-27 1993-07-23 Mitsubishi Electric Corp Frequency converter circuit, phase comparator circuit and delay detection demodulator provided with them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183592A (en) * 1991-12-27 1993-07-23 Mitsubishi Electric Corp Frequency converter circuit, phase comparator circuit and delay detection demodulator provided with them

Also Published As

Publication number Publication date
JP2678072B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
EP0062519B1 (en) Adaptive constant false alarm rate (cfar) processor
JPS6257951B2 (en)
US4905206A (en) Ultrasonic doppler flow meter
US5552792A (en) Non-coherent radar system having improved resolution capabilities
JPH0320714B2 (en)
JPH06105841A (en) Ultrasonic diagnostic apparatus
JPH03156396A (en) Method and apparatus for processing radar signal
JPS60157062A (en) Discriminator for echo radar
JP2982769B2 (en) Signal processing device
JP2673311B2 (en) Signal processing method and signal processing device
US4003052A (en) Digital prefilter for clutter attenuation in MTI radars
JPH0751134B2 (en) Ultrasound diagnostic image processor
Misiurewicz et al. Stretch processing for masking effect removal in noise radar
JP2011153959A (en) Radar signal processing device
JP2902155B2 (en) Clutter signal suppression device for radar
WO2022059090A1 (en) Radar device, imaging method, and imaging program
JPS61164172A (en) Clutter elimination device
KR20030087090A (en) Target signal sensing apparatus which is adapted to clutter environment
JPH10206524A (en) Target detector
Meena et al. FPGA based real time solution for sensitivity time control
JP2003227871A (en) Clutter suppression circuit for radar apparatus
JPS63171381A (en) Apparatus for detecting target signal
KR100664017B1 (en) Apparatus for digital automatic gain control
JPH0484953A (en) Ultrasonic doppler video device
JPH062260U (en) Target detection device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees