JPH03156352A - Method and apparatus for measuring thermal diffusivity by ac heating - Google Patents

Method and apparatus for measuring thermal diffusivity by ac heating

Info

Publication number
JPH03156352A
JPH03156352A JP22715490A JP22715490A JPH03156352A JP H03156352 A JPH03156352 A JP H03156352A JP 22715490 A JP22715490 A JP 22715490A JP 22715490 A JP22715490 A JP 22715490A JP H03156352 A JPH03156352 A JP H03156352A
Authority
JP
Japan
Prior art keywords
measured
sample plate
alternating current
thermal diffusivity
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22715490A
Other languages
Japanese (ja)
Inventor
Hisamasa Hashimoto
寿正 橋本
Rei Miyamoto
玲 宮本
Kohei Sei
静 公平
Akio Hiugaji
日向寺 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Publication of JPH03156352A publication Critical patent/JPH03156352A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure even material whose thermal diffusivity is small precisely and to make it possible to perform measurement including temperature dependency with a small-scale apparatus by making a current flow through a conductive thin film formed on a sample plate to be measured as an AC heat source. CONSTITUTION:A conductive thin film 2 is formed on at least one surface of a thin sample plate to be measured 1. A current is made to flow through the thin film 2, and an AC heat source which is heated with Joule's heat is provided. An AC which is modulated with a specified modulating frequency is made to flow through the AC heat source of the sample plate to be measured 1, and AC heating is performed. A response curve comprising a pressure wave corresponding to the AC heating is generated on the other surface facing the sample plate to be measured 1, and the phase of the response curve is measured. Thus the thermal diffusivity of the sample plate to be measured 1 in the direction of the thickness is computed. The sample plate to be measured 1 is made of high-molecular compound such as phenol, urea, melamine and the like. The thickness is sufficiently thin so that the thermal diffusion in the direction of the surface can be neglected. The conductive film 2 is made of, e.g. gold, silver, platinum and the like and formed by the method of sputtering or vapor deposition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は物質の熱拡散率の71−1定方法およびこれに
用いられる装置と、熱伝導率の測定方法に関し、特に、
高分子化合物やセラミックス等の難導電性物質の厚み方
向の熱拡散率を精度良く測定する非定常法(温度を一律
に保たず変化させる方法)によるδ−1定方法および装
置と、その熱拡散率測定方法より得られる熱拡散率の測
定値を用いて熱伝導率を求める熱伝導率測定方法に関す
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a 71-1 method for determining thermal diffusivity of a substance, an apparatus used therefor, and a method for measuring thermal conductivity, and in particular,
δ-1 constant method and device using an unsteady method (a method in which the temperature is varied without keeping it uniform) for accurately measuring the thermal diffusivity in the thickness direction of poorly conductive materials such as polymer compounds and ceramics, and its thermal The present invention relates to a thermal conductivity measuring method for determining thermal conductivity using a measured value of thermal diffusivity obtained by the diffusivity measuring method.

(従来の技術) 熱拡散率および熱伝導率は、高分子化合物等の各種の物
質の材料設計、製品設計を行う際の加工条件、使用条件
を決定する上で重要な物性値の−っである。近年、コン
ピユータ化の発達にともない各種シミュレーション・プ
ログラムが数多く開発され、それらを利用した材料設計
、製品設計が頻繁に行われている。例えば、加工製品や
構造物の応力や変形を解析する構造解析、熱移動現象を
解析する熱伝導解析等は既に世の中で広く活用されてお
り、最近では射出成形における金型内の樹脂挙動を解析
する熱流動解析等も数多く利用されてきている。それら
のシミュレーション・プログラムの解析精度は、プログ
ラムの内容もさることながら、解析に用いる物性値の精
度により大きく左右される。従って、それらの解析精度
を向上させ、材料設計、製品設計を的確に行う為に対象
物質の高精度な物性測定が望まれている。
(Prior art) Thermal diffusivity and thermal conductivity are important physical property values for determining processing conditions and usage conditions when designing materials and product designs for various substances such as polymer compounds. be. In recent years, with the development of computers, a large number of various simulation programs have been developed, and material design and product design are frequently performed using these programs. For example, structural analysis to analyze the stress and deformation of processed products and structures, thermal conduction analysis to analyze heat transfer phenomena, etc. are already widely used in the world, and recently, they have been used to analyze the behavior of resin inside molds during injection molding. A number of methods such as thermal-hydraulic analysis have also been used. The analytical accuracy of these simulation programs is greatly influenced by the accuracy of the physical property values used in the analysis, as well as the content of the program. Therefore, highly accurate physical property measurements of target substances are desired in order to improve the analysis accuracy and to accurately perform material and product design.

実際に加工された製品は、室温下で使用されるだけでは
なく、高温下で使用される場合が数多くあり、また、高
分子材料等の多くは、加工する際に高温下で溶融した後
に室温まで冷却するという成形過程を紅る。このため、
製品の実際の使用条件、加工条件を考慮しての材料設計
、製品設計を行なう場合や、実現象に基づいた解析を行
なう場合、室温から溶融温度以上の幅広い温度範囲での
物性を知ることが必要である。
In many cases, processed products are not only used at room temperature but also at high temperatures, and many polymeric materials are melted at high temperatures during processing and then heated to room temperature. The molding process involves cooling until it turns red. For this reason,
When designing materials and products that take into account the actual usage and processing conditions of the product, or when performing analysis based on actual phenomena, it is important to know the physical properties over a wide temperature range from room temperature to above the melting temperature. is necessary.

近年では、加工材料の複合形態での利用が頻繁に行われ
るようになってきており、その組合せは多岐にわたり複
雑化してきている。そのような、特殊な加工材料の材料
開発、材料設計を行なうための物性を測定するにあたり
、大量の被測定試料を入手するのが困難な場合が数多く
ある。また、物性値を素早く知り、その結果を開発内容
や設計内容に、時間的遅れ無く反映させることが必要と
なってきており、それらの結果、小量の試料で迅速に物
性測定を行うことが要求されている。
In recent years, processed materials have been frequently used in composite forms, and the combinations have become diverse and complex. When measuring the physical properties for material development and material design of such special processing materials, it is often difficult to obtain a large number of samples to be measured. In addition, it has become necessary to quickly obtain physical property values and reflect the results in development and design content without any time delay. requested.

熱拡散率の測定方法としては、大きく分けて定常法と非
定常法がある。非定常法による熱拡散率の測定方法の特
徴は、試料内に熱的非平衡の状態を強制的に作り、その
緩和にともなって起こる試料の温度変化を測定すること
によって熱拡散率を求めるものであり、定常法に比べて
測定時間が大幅に短い等の利点がある。
Methods for measuring thermal diffusivity can be broadly divided into steady methods and unsteady methods. The characteristic of measuring thermal diffusivity using the unsteady method is that the thermal diffusivity is determined by forcibly creating a state of thermal non-equilibrium within the sample and measuring the temperature change in the sample that occurs as the state of thermal nonequilibrium is relaxed. This method has advantages such as significantly shorter measurement time than the steady method.

従来の非定常法による熱拡散率測定方法の代表的なもの
としては、オングストローム法、フラッシュ法、PAS
法がある。オングストローム法とは、その長さに較べて
断面積が充分に小さいロッド状の試料の一部を周期的に
加熱、冷却を行う熱源に接触させることにより、試料の
一端に周期的な温度変化を起こさせ、結果的に試tJ内
に温度の波動を起こし、この温度の波動が試料内を伝播
する状態を波動の伝播方向に対して加熱点よりの距離の
異なった2点以上の測定点において温度をIIFI定す
ることにより観測し、各測定点で得られる温度の波動の
振幅と位相を用いて熱拡散率を田川するものである。
Typical conventional thermal diffusivity measurement methods using unsteady methods include the Angstrom method, flash method, and PAS.
There is a law. The Angstrom method is a rod-shaped sample whose cross-sectional area is sufficiently small compared to its length, and by bringing it into contact with a heat source that periodically heats and cools it, a periodic temperature change is generated at one end of the sample. As a result, a temperature wave is generated within the sample tJ, and the state in which this temperature wave propagates within the sample is measured at two or more measurement points at different distances from the heating point in the wave propagation direction. The temperature is observed by determining the IIFI, and the thermal diffusivity is calculated using the amplitude and phase of the temperature wave obtained at each measurement point.

フラッシュ法は、平面板の試料の一方の表面に光吸収膜
を設け、これに例えばレーザ・パルス等を照射して光吸
収による瞬間的な加熱を行い、この時に起こる吸収層で
の温度上昇が試料の19さ方向に伝播されて照射面と反
対側の試料表面に起こす温度変化をフラッシュ照射後の
時間の関数として測定し、この時に得られる温度と時間
の曲線より熱拡散率を測定する方法である。
In the flash method, a light-absorbing film is provided on one surface of a flat plate sample, and the film is irradiated with, for example, a laser pulse to instantaneously heat the film through light absorption, and the temperature rise in the absorption layer that occurs at this time is A method in which the temperature change that occurs on the surface of the sample on the opposite side of the irradiated surface is measured as a function of time after flash irradiation, and the thermal diffusivity is measured from the temperature vs. time curve obtained at this time. It is.

PAS法は、光を透過する窓のついた密閉したセルに音
圧測定のためのマイク等を設置し、セル内の平面板の試
料の一方に光吸収膜を設けて変調した光ビームを窓を通
して照射して周期的な温度変化を与え、この温度の波動
が伝播することによって試料の反対側が周期的な温度変
化を起こすことによりセル内に発生する圧力波の変動を
測定し、その位相と振幅を用いて熱拡散率を求める方法
であ条O (発明が解決しようとする課WB) 上述した従来のn1定方法は下記のような問題点がある
In the PAS method, a microphone for measuring sound pressure is installed in a sealed cell with a window that transmits light, and a light-absorbing film is installed on one side of the flat plate sample inside the cell, and a modulated light beam is passed through the window. When the temperature waves propagate, the opposite side of the sample causes periodic temperature changes, and the fluctuations in the pressure waves generated inside the cell are measured, and the phase and This is a method for determining thermal diffusivity using amplitude. (Part WB to be Solved by the Invention) The conventional n1 constant method described above has the following problems.

オングストローム法は試料を長いロッド状に成形する必
要があるため試料物質が大量に必要であり、試料表面か
らの熱損失を最小に抑さえるための断熱系の設備が大が
かりになる。また、測定に比較的長時間を要し、測定対
象は比較的熱拡散率の大きい物質に限られる。
The Angstrom method requires a large amount of sample material as it is necessary to form the sample into a long rod shape, and requires extensive insulation equipment to minimize heat loss from the sample surface. Furthermore, it takes a relatively long time to measure, and the measurement target is limited to substances with a relatively high thermal diffusivity.

フラッシュ法は光吸収による加熱を行うため、透明試料
や光吸収の少ない試料を測定する場合、試料表面に光吸
収のための吸収層を塗布する必要がある。そのため、吸
収層と試料の界面で熱損失や加熱むらが起き誤差の原因
となる。また、測定が短時間であるため熱損失を考慮し
ないで良いとの仮定のちとになされており、金属等の熱
拡散率の大きなものではこの仮定を良く満たすが、高分
子化合物等の熱拡散率の小さなものになるほど誤差が大
きくなる。
Since the flash method performs heating by light absorption, when measuring a transparent sample or a sample with low light absorption, it is necessary to coat the sample surface with an absorption layer for light absorption. Therefore, heat loss and uneven heating occur at the interface between the absorption layer and the sample, causing errors. Furthermore, since the measurement time is short, it is assumed that heat loss does not need to be taken into consideration; materials with high thermal diffusivity such as metals satisfy this assumption well, but thermal diffusivity such as polymer compounds satisfies this assumption. The smaller the ratio, the larger the error.

PAS法も光吸収による加熱を行うため、フラッシュ法
と同様の問題が生じ、また、音圧検出器により音圧を測
定する測定法のため、振動、騒音等によるノイズの影響
が大きい。
Since the PAS method also performs heating by light absorption, problems similar to those of the flash method occur, and since the PAS method uses a sound pressure detector to measure sound pressure, the influence of noise due to vibrations, noise, etc. is large.

またさらに、これらの測定方法では、熱拡散率の温度依
存性を測定するのが困難であり、測定するとしても大が
かりな装置が必要である。
Furthermore, with these measurement methods, it is difficult to measure the temperature dependence of thermal diffusivity, and even if it were to be measured, a large-scale device would be required.

本発明は上述した問題点を解決し、熱拡散率の小さい物
質でも精度良い測定ができ、被測定試料が微量ですみ、
小規模な装置で迅速に、温度依存性を含めた測定が可能
である熱拡散率の測定方法および装置を提供することを
目的としてなされたものである。
The present invention solves the above-mentioned problems, enables highly accurate measurement even of substances with low thermal diffusivity, and requires only a small amount of sample to be measured.
The purpose of this invention is to provide a method and device for measuring thermal diffusivity, which can quickly measure thermal diffusivity including temperature dependence using a small-scale device.

(課題を解決するための手段) 本発明は、薄い被測定試料板の厚み方向の熱拡散率の測
定方法であって、該薄い被測定試料板の少なくとも片面
に導電性の薄膜を形成して該薄膜に電流を流すことによ
ってそのジュール熱により発熱する交流熱源とし、前記
被測定試料板の前記交流熱源に所定の変調周波数で変調
を加えた交流電流を流して交流発熱させ、該被測定試料
板の対向する他の片面に該交流発熱に対応する圧力波か
らなる応答曲線を発生させ、該応答曲線の位相を測定す
ることより、該被測定試料板の厚み方向の熱拡散率を算
出す−ることを特徴とするもので、好ましくは、薄い被
測定試料板の一方の面に導電性の薄膜を形成して、前記
導電性薄膜に変調された交流電流を流してそのジュール
熱により試料の一方の面を交流加熱する交流熱源とし、
前記一方の面に対向する他方の面を被測定面とし、内部
に所定の気体を封じ込めた音圧検出器を備えた容器内に
、前記交流熱源を形成した被測定試料板を被測定面が壁
面の一部をなすように装着し、被Δp1定而の温度変化
により容器内に発生する圧力波を前記音圧検出器で測定
し、その出力をロックイン増幅器で増幅し、前記交流熱
源と前記音圧検出器により測定される圧力波の交流成分
との位相差と、前記交流熱源に流す交流電流の変調周波
数の平方根との相関関係より熱拡散率を71111定す
るものである。
(Means for Solving the Problems) The present invention provides a method for measuring thermal diffusivity in the thickness direction of a thin sample plate to be measured, which comprises forming a conductive thin film on at least one side of the thin sample plate to be measured. A current is passed through the thin film to create an AC heat source that generates heat due to the Joule heat, and an AC current modulated at a predetermined modulation frequency is passed through the AC heat source of the sample plate to generate AC heat, and the sample is heated. A response curve consisting of a pressure wave corresponding to the AC heat generation is generated on the other opposing side of the plate, and the phase of the response curve is measured to calculate the thermal diffusivity in the thickness direction of the sample plate to be measured. - Preferably, a conductive thin film is formed on one surface of a thin sample plate to be measured, and a modulated alternating current is passed through the conductive thin film to generate Joule heat from the sample. As an AC heat source that heats one side of the
The other surface opposite to the one surface is the surface to be measured, and the sample plate to be measured on which the alternating current heat source is formed is placed in a container equipped with a sound pressure detector in which a predetermined gas is sealed. The sound pressure detector is mounted so as to form a part of the wall surface, and the pressure wave generated in the container due to the temperature change of the subject Δp1 is measured by the sound pressure detector, and its output is amplified by the lock-in amplifier, and the sound pressure detector is connected to the AC heat source. The thermal diffusivity is determined from the correlation between the phase difference between the pressure wave and the alternating current component measured by the sound pressure detector and the square root of the modulation frequency of the alternating current flowing through the alternating current heat source.

本発明における被測定art料板はフィルム、シートま
たは板状となしうる難導電性の物質であり、例えば、 ■、フェノール、ユリア、メラミン、ポリエステル、エ
ボキン、ポリウレタン、セルロース、ポ」スチレン、ポ
リプロピレン、ポリエチレン、塩化ビニルデン、ポリア
ミド、ポリアセタール、ポリカーボネイト、ポリサルホ
ン、ABS、ポリフェニレンオキサイド、ポリエーテル
サルホン、ボリアリレート、アクリル、アクリルニトリ
ル、ポリアクリルニトリル、ポリエーテルエーテルケト
ン、ポリエーテルケトン、ポリイミド、ポリオレフィン
等の高分子化合物 ■、シアニン、フタロシアニン、ナフタロシアニン、ニ
ッケル酢体、スピロ化合物、フェロセン、フルギド、イ
ミダゾール、ペリレン、フェナジン、フェノチアジン、
ポリエン、アゾ化合物、キノン、インジゴ、ジフェニル
メタン、トリフェニルメタン、ポリメチン、アクリジン
、アクリジノン、カルボスチリル、クマリン、ジフェニ
ルアミン、キナクリドン、キノフタロン、フェノサキジ
ン、フタロペリノン等の有機色素■、珪石、ダイアモン
ド、ざくろ石、コランダム、ルビー、サファイア、めの
う、沸石、珪藻土、雲母、岩塩、燐灰石、カオリン、チ
ュモルチ石、珪線石、紅柱石、重晶石、苦灰石、月長石
、大理石、蛇紋石、くじゃく石、ボーキサイト、ペンナ
イト、石英、カンラン石、石膏、硫黄、重晶石、みょう
ばん石、蛍石、長石、滑石、石綿、石灰石、ドロマイト
、方解石、水晶、こはく、スピネル、アレキサンドライ
ト、エメラルド、トパーズ、猫目石、ひすい、オパール
等の鉱石■0石英ガラス、フッ化物ガラス、ソーダガラ
ス、ソーダ石灰ガラス、バリウム・ストロンチウムガラ
ス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸
ガラス、アルミノケイ酸塩ガラス、シリカガラス等のガ
ラス V、 AN 203 、 MgAl 204 、  B
 eo。
The art material plate to be measured in the present invention is a poorly conductive substance that can be in the form of a film, sheet, or plate, and includes, for example, phenol, urea, melamine, polyester, evoquin, polyurethane, cellulose, polystyrene, polypropylene, Polyethylene, vinylidene chloride, polyamide, polyacetal, polycarbonate, polysulfone, ABS, polyphenylene oxide, polyethersulfone, polyarylate, acrylic, acrylonitrile, polyacrylonitrile, polyetheretherketone, polyetherketone, polyimide, polyolefin, etc. Molecular compounds■, cyanine, phthalocyanine, naphthalocyanine, nickel acetate, spiro compound, ferrocene, fulgide, imidazole, perylene, phenazine, phenothiazine,
Organic pigments such as polyene, azo compound, quinone, indigo, diphenylmethane, triphenylmethane, polymethine, acridine, acridinone, carbostyril, coumarin, diphenylamine, quinacridone, quinophthalone, phenosakidine, phthaloperinone, silica stone, diamond, garnet, corundum, Ruby, sapphire, agate, zeolite, diatomaceous earth, mica, halite, apatite, kaolin, chumolite, sillimanite, andalusite, barite, dolomite, moonstone, marble, serpentine, pavilion, bauxite, pennite, Quartz, olivine, gypsum, sulfur, barite, alum, fluorite, feldspar, talc, asbestos, limestone, dolomite, calcite, quartz, amber, spinel, alexandrite, emerald, topaz, cat's eye, jade, opal Glasses such as quartz glass, fluoride glass, soda glass, soda lime glass, barium-strontium glass, lead glass, aluminoborosilicate glass, borosilicate glass, aluminosilicate glass, silica glass, etc., AN 203 , MgAl 204 , B
eo.

S i C,A I N、 MgO,PLZT、 Y2
03 。
S i C, A I N, MgO, PLZT, Y2
03.

ZrO,、TiO2,CaF2.GaAs。ZrO, , TiO2, CaF2. GaAs.

PbO,Cab、La2O3,S i3N4 ra−S
t:H等のファインセラミックス等であり、その厚みは
面方向の熱拡散を無視できる程度に充分薄いもので、従
って面方向には完全に断熱と考えられる。
PbO, Cab, La2O3, Si3N4 ra-S
It is made of fine ceramics such as t:H, etc., and its thickness is sufficiently thin to the extent that thermal diffusion in the plane direction can be ignored, so it is considered to be completely insulated in the plane direction.

交流熱源に用いる導電性物質は、電流を流すことでジュ
ール熱により発熱するもので、例えば、金、銀、白金、
銅、鉄、亜鉛、アンチモン、イリジウム、クロメル、コ
ンスタンタン、ニクロム、アルミニウム、クローム、ニ
ッケル、カーボン等である。
Conductive materials used in AC heat sources generate heat due to Joule heat when current is passed through them.For example, gold, silver, platinum,
These include copper, iron, zinc, antimony, iridium, chromel, constantan, nichrome, aluminum, chromium, nickel, and carbon.

また、交流熱源に用いる導電性薄膜は、被測定試料板と
の界面が無視できる程度に、その厚みは被測定試料板に
比べて充分薄く、その熱容量は被i1?J定試料板に比
べて充分小さく、肢Δp1定試料板に完全に密着してお
り、従って披n1定試料板の一方の面自体が交流熱源の
変調周波数で交流発熱していると考えられる。
In addition, the conductive thin film used for the AC heat source is sufficiently thinner than the sample plate to be measured so that the interface with the sample plate to be measured can be ignored, and its heat capacity is i1? It is sufficiently smaller than the J constant sample plate, and is in complete contact with the limb Δp1 constant sample plate, so it is considered that one surface of the Yen1 constant sample plate itself is generating AC heat at the modulation frequency of the AC heat source.

交流熱源に用いる導電性薄膜は、被測定試料板に、 1、イオンを固体表面に照射することにより、固体を構
成する原子が飛び出す現象を利用して、表面上に吸着さ
せることにより薄膜を生成するスパッタ ■、真空中で物質を蒸発させ、これを表面上に吸着させ
ることにより薄膜を生成する蒸着■、液体、半液体状態
の物質を表面上に塗りつける塗布 ■、同種あるいは異種物質からなる接着剤により、表面
を接合する接着 70表面上に同種あるいは異種物質からなる接む剤を用
いずに、押しつけることによる圧着力で接合する圧着 等により形成されるが、スパッタまたは、蒸芒による方
法が最も好ましい。
The conductive thin film used in the AC heat source is produced by applying ions to the sample plate to be measured. 1. By irradiating the solid surface with ions, the atoms that make up the solid fly out, and by adsorbing them onto the surface, a thin film is created. sputtering, which involves evaporating a substance in a vacuum and adsorbing it onto a surface to form a thin film; coating, which involves applying a liquid or semi-liquid substance onto a surface; and adhesion, which consists of the same or different materials. Adhesive 70 is formed by pressing the surfaces together using a pressure bonding force without using a bonding agent made of the same or different materials on the surface, but methods using sputtering or steaming are Most preferred.

スパッタにより被測定試料板に導電性薄膜を形成する場
合は、例えば金を用いる場合、被測定試料板にポリエス
テル・フィルム等でマスクを施した後、真空下におイテ
、1.2kV、 3.5mA程度の電圧および電流で、
30分程度にわたり被7I−1定試料板上に金を吸着さ
せ、厚さ10〜5000オングストローム、抵抗値0.
1Ω〜10にΩ程度の導電性薄膜にするのが好ましい。
When forming a conductive thin film on a sample plate to be measured by sputtering, for example, when using gold, the sample plate to be measured is masked with a polyester film, etc., and then heated under vacuum at 1.2 kV.3. With a voltage and current of about 5mA,
Gold was adsorbed onto the 7I-1 constant sample plate for about 30 minutes to form a sample plate with a thickness of 10 to 5000 angstroms and a resistance value of 0.
It is preferable to form a conductive thin film of about 1Ω to 10Ω.

蒸管により被測定試料板に導電性薄膜を形成する場合は
、例えば金を用いる場合、被δ−1定試料板にポリエス
テル・フィルム等でマスクを施した後、真空下において
金をその融点以上まで通電加熱して蒸発させ、30分程
度にわたり被測定試料板上に金を吸むさせ、厚さ10〜
5000オングストローム、抵抗値0.1Ω〜10にΩ
程度の導電性薄膜にするのが好ましい。
When forming a conductive thin film on a sample plate to be measured using a steam tube, for example, when using gold, mask the δ-1 constant sample plate with a polyester film, etc., and then heat the gold above its melting point under vacuum. The gold is evaporated by heating with electricity until the gold is absorbed onto the sample plate to be measured for about 30 minutes until the gold reaches a thickness of 10~
5000 angstroms, resistance value 0.1Ω to 10Ω
It is preferable to form a conductive thin film with a certain degree of conductivity.

塗布により被測定試料板に導電性薄膜を形成する場合は
、銀ペースト等の導電性ペーストを被測定試料板に、厚
さ10〜5000オングストローム、抵抗値0.1Ω〜
10にΩ程度になるように均一に塗るのが好ましい。
When forming a conductive thin film on the sample plate to be measured by coating, apply a conductive paste such as silver paste to the sample plate to be measured, with a thickness of 10 to 5000 angstroms and a resistance value of 0.1Ω to
It is preferable to apply it evenly to about 10Ω.

接若により被δP1定試料板に導電性薄膜を形成する場
合は、厚さ10〜5000オングストローム、抵抗値0
.1Ω〜10にΩ程度の銅箔、金箔等の導電性薄膜に、
接着剤を導電性薄膜と被測定試料板との界面が無視でき
る程度に薄く塗り、被δ−1定試料板に剥がれないよう
に完全に密むさせるのが好ましい。
When forming a conductive thin film on a δP1 constant sample plate by applying force, the thickness should be 10 to 5000 angstroms, and the resistance value should be 0.
.. For conductive thin films such as copper foil, gold foil, etc. of 1Ω to 10Ω,
It is preferable to apply the adhesive so thinly that the interface between the conductive thin film and the sample plate to be measured can be ignored, and completely adhere to the δ-1 constant sample plate so as not to peel off.

圧着により被11PI定試料板に導電性薄膜を形成する
場合は、厚さ10〜5000オングストローム、抵抗値
(1,1Ω〜IOkΩ程度の銅箔、金箔等の導電性薄膜
を、導電性薄膜と被δP1定試料板との界面の影響が無
視できる圧着力以上の力で、被測定試料板に押しつけて
完全に密着させるのが好ましい。
When forming a conductive thin film on the 11PI constant sample plate by pressure bonding, a conductive thin film such as copper foil or gold foil with a thickness of 10 to 5000 angstroms and a resistance value (approximately 1.1 Ω to IO kΩ) is bonded to the conductive thin film. It is preferable to press it against the sample plate to be measured and bring it into complete contact with a pressure force that is greater than the pressure force at which the influence of the interface with the δP1 constant sample plate can be ignored.

以下、本発明の基本的構成とその特徴を図面を参照して
説明する。
Hereinafter, the basic configuration and features of the present invention will be explained with reference to the drawings.

第1図において、1は被測定試料板でその厚みが実質的
に一定のもので、面方向の熱拡散を無視できる程度に充
分薄い板であって、例えば被測定試料板の熱拡散率測定
部分が正方形の場合、−辺の長さ(N)と厚み(d)の
比(1/d)が10以上、好ましくは50以上、さらに
好ましくは100以上で、厚み(d)の上限は2000
μm以下、好ましくは1500μm以下、さらに好まし
くは1000μm以下であり、厚みの下限は一方の面に
形成された導電性薄膜の熱容量が無視できる範囲で、0
.01μm以上、好ましくは0.1μm以上、さらに好
ましくは1μm以上のフィルム又はシートもしくは板状
のものである。また、被測定試料板1は高分子化合物、
セラミックス等の難導電性物質で、その抵抗率がI X
 10’Ω・口以上、好ましくはI X 10’Ω・ω
以上、さらに好ましくはI X 10’Ω・■以上であ
り、抵抗率の上限についてはいくら大きくてもかまわな
いが、例えば1×1021Ω・■以下、好ましくは1x
 l Q 22Ω・(至)以下、さらに好ましくはlX
1023Ω・c以下である。
In Fig. 1, reference numeral 1 denotes a sample plate to be measured, which has a substantially constant thickness and is sufficiently thin to the extent that thermal diffusion in the plane direction can be ignored. When the part is square, the ratio (1/d) of the side length (N) to the thickness (d) is 10 or more, preferably 50 or more, more preferably 100 or more, and the upper limit of the thickness (d) is 2000.
μm or less, preferably 1500 μm or less, more preferably 1000 μm or less, and the lower limit of the thickness is within the range where the heat capacity of the conductive thin film formed on one side can be ignored, and the thickness is 0.
.. It is a film, sheet, or plate with a diameter of 0.01 μm or more, preferably 0.1 μm or more, and more preferably 1 μm or more. In addition, the sample plate 1 to be measured is made of a polymer compound,
A poorly conductive material such as ceramics whose resistivity is I
10'Ω・ω or more, preferably I x 10′Ω・ω
Above, more preferably I x 10'Ω・■ or more, and the upper limit of the resistivity may be as large as possible, but for example, 1×1021Ω・■ or less, preferably 1×
lQ 22Ω・(to) or less, more preferably lX
It is 1023Ω·c or less.

2は変調を加えた電流により被測定試料板の一面を交流
加熱するための交流熱源となる導電性薄膜で、その抵抗
値は0.01Ω〜100にΩ、好ましくは0.05Ω〜
50にΩ、さらに好ましくは0.1Ω〜10にΩである
。交流熱源となる導電性薄膜は、被測定試料板と交流熱
源の界面が無視できる程度に被測定試料板に完全に密着
しており、その厚みは被測定試料板に比べて充分薄く、
例えば50000オングストローム以下、好ましくは1
0000オングストローム以下、さらに好ましくは50
00オングストローム以下で、厚みの下限は交流電流が
通電可能であればい(らでも良いが、例えば1オングス
トロ一ム以上、好ましくは5オングストロ一ム以上、さ
らに好ましくは10オングストローム以上である。
2 is a conductive thin film that serves as an AC heat source for AC heating one side of the sample plate to be measured using a modulated current, and its resistance value is 0.01Ω to 100Ω, preferably 0.05Ω to
50Ω, more preferably 0.1Ω to 10Ω. The conductive thin film that serves as the AC heat source is in complete contact with the sample plate to be measured, so that the interface between the sample plate and the AC heat source can be ignored, and its thickness is sufficiently thinner than that of the sample plate to be measured.
For example, 50,000 angstroms or less, preferably 1
0,000 angstroms or less, more preferably 50 angstroms or less
00 angstroms or less, and the lower limit of the thickness may be as long as an alternating current can be passed therethrough, but it is, for example, 1 angstrom or more, preferably 5 angstroms or more, and more preferably 10 angstroms or more.

第2図に示されるごとく、被測定試料板は密封容器3に
被測定面が密封容器の壁面の一部をなすように気密性を
保つように装着され、交流熱源2は交流電流発生器(フ
ァンクション・シンセサイザー等)4により変調された
交流電流を通電され、そのジュール熱により交流加熱さ
れる。密封容器3には音圧検出器としてマイクロフォン
5が気密性を保つように設置され、その出力はロックイ
ン増幅器6で増幅され、密封容器内の圧力波の交流成分
をJP1定する。
As shown in FIG. 2, the sample plate to be measured is attached to the sealed container 3 in such a manner that the surface to be measured forms part of the wall surface of the sealed container to maintain airtightness, and the AC heat source 2 is connected to the AC current generator ( A modulated alternating current is applied by a function synthesizer (such as a function synthesizer) 4, and AC heating is performed by the Joule heat generated by the modulated alternating current. A microphone 5 as a sound pressure detector is installed in the sealed container 3 so as to maintain airtightness, and its output is amplified by a lock-in amplifier 6 to determine the alternating current component of the pressure wave inside the sealed container JP1.

ロックイン増幅器6は同期整流回路とも呼ばれ、交流電
源発生器4からの参照交流波と検出波との積をとり直流
分を得るものである。所定の等飾帯域幅を有し、選択性
を持つため、必要とする周波数以外のノイズはほぼ完全
に除去される。
The lock-in amplifier 6 is also called a synchronous rectifier circuit, and obtains a DC component by multiplying the reference AC wave from the AC power generator 4 and the detected wave. Since it has a predetermined iso-decorative bandwidth and has selectivity, noise at frequencies other than those of interest can be almost completely removed.

このロックイン増幅器6の出力はデータ処理装置(例工
ば、パーソナルコンピュータ)7に人力され、熱拡散率
が求められる。この熱拡散率の算出法は以下のとおりで
ある。
The output of the lock-in amplifier 6 is input to a data processing device (for example, a personal computer) 7, and the thermal diffusivity is determined. The method for calculating this thermal diffusivity is as follows.

ジュール熱によっておきる発熱は電流の正負を問わずそ
のピーク点において最大となるため、温度の変化周期は
通電された交流電流の周期の2倍となる。従って、交流
熱源2の温度変化の交流成分は、変調した交流電流の周
波数をf/2とするとfの周波数で変動する。その変動
温度は、温度変化の交流成分の角周波数をω(−2πf
)として、 T(t)−Tocos(ωt)   ・+・+・+−1
1)により表される。
Since the heat generated by Joule heat is maximum at its peak point regardless of whether the current is positive or negative, the period of temperature change is twice the period of the applied alternating current. Therefore, the alternating current component of the temperature change of the alternating current heat source 2 fluctuates at a frequency of f, where the frequency of the modulated alternating current is f/2. The fluctuating temperature is calculated by changing the angular frequency of the alternating current component of the temperature change to ω(-2πf
), T(t)−Tocos(ωt) ・+・+・+−1
1).

被測定試料板1は難導電性物質であるが、その厚さが極
めて薄いため、交流熱源2のジュール熱による熱エネル
ギーは厚さ方向の熱伝導のみにより伝熱され、反対面の
被測定面と接する密封容器内の気体に周期的な温度変動
を引き起し、試料の披11FI定面の温度変動の位相と
一致する圧力波を発生させる。
The sample plate 1 to be measured is made of a difficult-to-conduct material, but because its thickness is extremely thin, the thermal energy due to Joule heat from the AC heat source 2 is transferred only by heat conduction in the thickness direction, and is transferred to the opposite surface to be measured. This causes periodic temperature fluctuations in the gas in the sealed container that is in contact with the sample, and generates pressure waves that match the phase of the temperature fluctuations on the surface of the sample.

被71P1定試料板の厚みをd、熱拡散率をαとすると
、被測定面での変動温度は、 T(t)=To exp(−ン■欝d)cos(ωL−
A四q7d)・・・・・・・・・・・・(2) となる。交流熱源2と被測定面の温度変化の位相差に着
[1すると、 △θ−んT7d+β    ・・・・・・・・・・・・
(3)となる。ここで、△θは?fjCDI定試料板の
熱拡散による位相遅れ、βは装置定数である。このΔθ
は被71FI定面と接する密封容器内の気体に発生する
圧力波と交流熱源2との位相差と一致する。
Assuming that the thickness of the constant sample plate 71P1 is d and the thermal diffusivity is α, the fluctuating temperature on the surface to be measured is T(t)=To exp(-n■欝d)cos(ωL-
A4q7d)・・・・・・・・・・・・(2) It becomes. When the phase difference between the temperature change between the AC heat source 2 and the surface to be measured is reached, △θ−T7d+β ・・・・・・・・・・・・
(3) becomes. Here, what is △θ? The phase delay due to thermal diffusion of the fjCDI constant sample plate, β, is an apparatus constant. This Δθ
coincides with the phase difference between the AC heat source 2 and the pressure wave generated in the gas in the sealed container that is in contact with the fixed surface 71FI.

ω−2πfを(3)式に代入して変形すると、△θ−d
T77Tv′TF−β  ・・・・・・・・・・・・(
4)を得る。
Substituting ω-2πf into equation (3) and transforming it, we get △θ-d
T77Tv'TF-β ・・・・・・・・・・・・(
4) is obtained.

従って、厚みdが既知の被測定試料板に関して、少なく
とも2点以上変調周波数を変化させて、交流熱源と音圧
検出器により測定される圧力波の位相差Δθを測定し、
変調周波数fの平方根に対するその位相差の変化率(勾
配、グラフ化した場合の傾き)を求め、(4)式を用い
て熱拡散率αを求めることができる。
Therefore, for a sample plate to be measured whose thickness d is known, the modulation frequency is varied at at least two points to measure the phase difference Δθ between the pressure waves measured by the AC heat source and the sound pressure detector,
The rate of change (gradient, slope when graphed) of the phase difference with respect to the square root of the modulation frequency f is determined, and the thermal diffusivity α can be determined using equation (4).

この測定に適した周波数範囲の下限は、熱拡散長(μ、
−h77;)が被測定試料板の厚みd以下になる周波数
であり、上限は音圧検出器より肺1定されるシグナルの
振幅がノイズより充分大きい範囲である。被測定試料板
が100μm程度の高分子フィルムの場合その最適な周
波数範囲は、0゜01から100011z、好ましくは
0.5から700 fiz、さらに好ましくは0.1か
ら50011zの間である。
The lower limit of the frequency range suitable for this measurement is the thermal diffusion length (μ,
-h77;) is the frequency at which the thickness of the sample plate to be measured is less than d, and the upper limit is the range in which the amplitude of the signal determined by the sound pressure detector is sufficiently larger than the noise. When the sample plate to be measured is a polymer film of about 100 μm, the optimum frequency range is between 0°01 and 100011z, preferably between 0.5 and 700 fiz, and more preferably between 0.1 and 50011z.

第3図に示すように、これらの装置は全てパーソナルコ
ンピュータ(CPU)で制御され、測定結果も自動的に
処理され、−括した自動化された測定システム化がなさ
れている。測定開始時に測定周波数範囲を決めておくこ
とにより、交流電流発生器であるファンクション・シン
セサイザーの出力周波数は、各周波数での測定が終了し
た後に自動的に変更される。ロックイン増幅器による測
定値は、各周波数でのn1定が終了する都度、パーソナ
ルコンピュータに送られて、あらかじめ決められた周波
数範囲での測定終了後にそれらの測定値はフロッピー・
ディスクへ保存される。
As shown in FIG. 3, all of these devices are controlled by a personal computer (CPU), and the measurement results are automatically processed, creating an integrated automated measurement system. By determining the measurement frequency range at the start of measurement, the output frequency of the function synthesizer, which is an alternating current generator, is automatically changed after measurement at each frequency is completed. Measured values by the lock-in amplifier are sent to a personal computer each time the n1 constant at each frequency is completed, and after the measurement is completed in a predetermined frequency range, those measured values are transferred to a floppy disk.
Saved to disk.

熱拡散率を熱伝導率との関係式で表すと、熱伝導率をλ
、比熱をCp、密度をρとして、α讃λ/ (Cp・ρ
)     ・・・・・・・・・(5)となり、変形す
ると、 λ−αφCp・ρ       ・・・・・・・・・(
6)となる。従って、他の測定方法によりll?I定さ
れた比熱と密度の1111定値を得ることて、本発明に
よる熱拡散率の測定値と併せて、(6)式より熱伝導率
を求めることができる。比熱は示差走査熱量計、断熱型
熱量51等で測定することができ、密度は体積膨張11
、P−V−T測定装置等で1111定することができ、
それらの測定値を熱伝導率を求めるために用いる。
Expressing the relationship between thermal diffusivity and thermal conductivity, thermal conductivity is λ
, where the specific heat is Cp and the density is ρ, αsanλ/ (Cp・ρ
) ・・・・・・・・・(5), and when deformed, λ−αφCp・ρ ・・・・・・・・・(
6). Therefore, by using other measurement methods, ll? By obtaining the 1111 constant values of the specific heat and density, the thermal conductivity can be determined from equation (6) in conjunction with the measured value of the thermal diffusivity according to the present invention. Specific heat can be measured with a differential scanning calorimeter, adiabatic calorific value 51, etc., and density can be measured by volume expansion 11
, 1111 can be determined using a PVT measuring device, etc.
These measured values are used to determine thermal conductivity.

(作用) このように本発明は、被11?1定試料板の片面を交流
加熱したときの加熱面と、加熱面に対向する他方の面の
温度変化により誘起される密封容器内の圧力波との位相
差が、加熱面の温度変化の変調周波数に依存することを
利用し、微小な被71−1定試料板に微小な導電性薄膜
を形成し、交流電流を導電性薄膜にJff1電すること
によってそのジュール熱により発熱させ被測定試料板の
片面を交流加熱し、加熱面に対向する他方の面の温度変
化を圧力波を用いて測定することにより熱拡散率を求め
る。微小な被lIp+定試料板に微小な導電性薄膜を形
成しているだけの単純な構造なので、被測定試料板を均
一に加熱、冷却することが容易にでき、測定雰囲気温度
を変化させて熱拡散率の温度依存性を測定することが可
能であり、設備も他の方法と比べて簡単かつ小型のもの
でよい。
(Function) As described above, the present invention is capable of generating pressure waves in a sealed container induced by temperature changes between the heating surface and the other surface facing the heating surface when one side of the sample plate to be subjected to AC heating is applied. Utilizing the fact that the phase difference between By doing so, the Joule heat generates heat, one side of the sample plate to be measured is heated with alternating current, and the thermal diffusivity is determined by measuring the temperature change on the other side facing the heated surface using pressure waves. Since it has a simple structure of just forming a minute conductive thin film on a minute sample plate, it is easy to uniformly heat and cool the sample plate to be measured. It is possible to measure the temperature dependence of diffusivity, and the equipment may be simpler and smaller than other methods.

また、本発明により得られた熱拡散率と他の方法により
求めた比熱、密度の測定値から、熱伝導率を求めること
ができる。
Further, the thermal conductivity can be determined from the thermal diffusivity obtained by the present invention and the measured values of specific heat and density determined by other methods.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

被測定試料板には、厚さが100μm1大きさが10m
5X 10msのPET (ポリエチレンテレフタレー
ト)・フィルムに、交流熱源を300オングストローム
の厚みに、ポリエステル・フィルム1こより8−■X5
m■:こマスクして、金をスパッタしたものを用いた。
The sample plate to be measured has a thickness of 100 μm and a size of 10 m.
5X 10ms PET (polyethylene terephthalate) film, AC heat source to 300 angstrom thickness, polyester film 8-■X5
m■: This was masked and gold was sputtered.

第4図にその被測定試料板による交流熱源と音圧検出器
よりの出力の位相差の周波数の平方根による変化を示す
。この図より得られる勾配より、先に述べた式を用いて
熱拡散率が求められる。
FIG. 4 shows the change in the phase difference between the output from the AC heat source and the sound pressure detector due to the square root of the frequency due to the sample plate to be measured. From the slope obtained from this figure, the thermal diffusivity can be determined using the equation described above.

本1mpJ定法によると、ロックイン増幅器を用いるの
で必要とする周波数以外のノイズはほぼ完全に除去され
、位相差についてのlI?I定なので温度の絶対値によ
るil?I定誤差定収差、精度のよい、再現性の優れた
測定データを得ることができる。
According to the 1mpJ standard method, since a lock-in amplifier is used, noise other than the required frequencies is almost completely removed, and the lI? Since I is constant, il depends on the absolute value of temperature? It is possible to obtain measurement data with constant error and constant aberration, high precision, and excellent reproducibility.

(発明の効果) 以上説明したように本発明によれば、以下の効果が得ら
れ、高分子化合物やセラミックス等の各種材料の開発、
製品設工1およびシミュレーシコンによる解析等の分野
に好適に適用することが可能である。
(Effects of the Invention) As explained above, according to the present invention, the following effects can be obtained, and the development of various materials such as polymer compounds and ceramics,
It can be suitably applied to fields such as product construction 1 and analysis using a simulator.

(1)本発明によると、温度の交流成分の位相差を)F
J定することにより熱拡散率を求めるため、温度の絶対
値が問題にならず、誤差の少ない精度良い測定ができる
。また、被測定試料板がWL量かつ薄肉であり、微小な
導電性薄膜を被測定試料板に直接形成する単純な構造な
ので、装置の小型化、n1定の高速化が可能となる。従
って、従来のオングストローム法が有していた種々の問
題点、すなわち、試料が大量に必要、熱損失を最小に抑
えるための断熱系の設備が大きい、測定に比較的長時間
必要、測定対象は比較的熱拡散率の大きい物質に限られ
る、という全ての問題点を除去できる。
(1) According to the present invention, the phase difference of the AC component of temperature) F
Since the thermal diffusivity is determined by determining J, the absolute value of the temperature does not matter, and accurate measurements with few errors can be made. Further, since the sample plate to be measured has a WL amount and is thin, and has a simple structure in which a minute conductive thin film is directly formed on the sample plate to be measured, it is possible to miniaturize the apparatus and increase the speed of n1 constant. Therefore, various problems that the conventional angstrom method had, namely, a large amount of samples are required, a large amount of heat insulation equipment to minimize heat loss, a relatively long time is required for measurement, and the measurement target is All the problems of being limited to materials with a relatively high thermal diffusivity can be eliminated.

(2)交流熱源となる導電性薄膜はスパッタ等により被
測定試料板に完全に密着して形成され、接触界面を無視
できるほどに薄いため、被測定試料板と熱源との間の熱
損失が問題にならない。従って、光吸収を利用するフラ
ッシュ法やPAS法のような、加熱むらや熱損失誤差の
発生を抑制できる。また、PAS法のような光をスイッ
チングする際にチョッパによるノイズが重量されるとい
う問題点も本発明では生じない。
(2) The conductive thin film that serves as the AC heat source is formed in complete contact with the sample plate to be measured by sputtering, etc., and is so thin that the contact interface can be ignored, reducing heat loss between the sample plate and the heat source. It's not a problem. Therefore, it is possible to suppress the occurrence of heating unevenness and heat loss errors that occur in the flash method and PAS method that utilize light absorption. Furthermore, the present invention does not have the problem of noise caused by a chopper when switching light as in the PAS method.

(3)試料が超小型であり、装置も簡素化、小型化され
ているため、被測定試料板を装着した容器内の被測定試
料部を加熱、冷却することにより、被測定部の測定雰囲
気温度を容8に変えることができ、熱拡散率の温度依存
性を測定することができる。
(3) Since the sample is ultra-small and the equipment is also simplified and miniaturized, the measurement atmosphere of the part to be measured can be improved by heating and cooling the part to be measured in the container with the sample plate to be measured. The temperature can be changed to 8 and the temperature dependence of the thermal diffusivity can be measured.

実際の製品の使用条件、加工条件の検討を行なう場合や
実現象に基づいた解析を行なう場合、室温から溶融温度
以上の幅広い温度範囲での熱物性を知ることが必要であ
るが、本発明により、従来法のように、バルクの処理等
のために装置が複雑化、大型化することがなく、試料の
熱特性を多面的に捉えられ、近年の多用な材料特性の研
究、開発に柔軟に対処できる。
When examining actual product usage conditions and processing conditions or performing analysis based on actual phenomena, it is necessary to know thermophysical properties over a wide temperature range from room temperature to above the melting temperature. Unlike conventional methods, the equipment does not become complicated or large due to bulk processing, and the thermal properties of the sample can be understood from multiple angles, making it flexible for research and development of material properties that are widely used in recent years. I can handle it.

(4)本発明による測定値と他の方法により求めた比熱
、密度の測定値より熱伝導率を得ることができる。
(4) Thermal conductivity can be obtained from the measured values of the present invention and the measured values of specific heat and density determined by other methods.

材料の熱移動にともなう物性を考慮して+4料特性の研
究、開発を行なう場合、熱拡散率のみならず熱伝導率を
知ることも重要であるが、本発明により、熱拡散率と熱
伝導率の両者による多面的な材料特性の研究、開発を行
なうことができる。
When conducting research and development of +4 material properties in consideration of physical properties associated with heat transfer of materials, it is important to know not only thermal diffusivity but also thermal conductivity. It is possible to conduct research and development on multifaceted material properties based on both ratios.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における被測定試料板の構造を示す側面
図、 第2図は本発明の測定装置の概略図、 第3図は71P+定装置を自動化したときの例第4図は
PET (ポリエチレンテレフタレート)・フィルムに
よりfil定した、交流熱源と音圧検出器の出力の交流
成分との位相差の周波数の甲か根による変化のIll定
例を示す図である。 図において、 ]・・・被測定試料板 2・・・交流熱源(導電性薄膜) 3・・密封容器 4・・・交流電流発生器 (ファンクション・シンセサイザ) 5・・・音圧検出器(マイクロフォン)6・・・ロック
イン増幅器 7・・・データ処理装置 を示す。
Fig. 1 is a side view showing the structure of the sample plate to be measured in the present invention, Fig. 2 is a schematic diagram of the measuring device of the present invention, Fig. 3 is an example of an automated 71P + constant device Fig. 4 is a PET ( FIG. 3 is a diagram illustrating a typical example of a change in the frequency of the phase difference between an AC heat source and an AC component of the output of a sound pressure detector, determined by a polyethylene terephthalate film. In the figure, ]...Measurement sample plate 2...AC heat source (conductive thin film) 3...Sealed container 4...AC current generator (function synthesizer) 5...Sound pressure detector (microphone ) 6... Lock-in amplifier 7... Indicates a data processing device.

Claims (7)

【特許請求の範囲】[Claims] (1)薄い被測定試料板の厚み方向の熱拡散率の測定方
法であって、該薄い被測定試料板の少なくとも片面に導
電性の薄膜を形成して該薄膜に電流を流すことによって
そのジュール熱により発熱する交流熱源とし、前記被測
定試料板の前記交流熱源に所定の変調周波数で変調を加
えた交流電流を流して交流発熱させ、該被測定試料板の
対向する他の片面に該交流発熱に対応する圧力波からな
る応答曲線を発生させ、該応答曲線の位相を測定するこ
とより、該被測定試料板の厚み方向の熱拡散率を算出す
る薄い被測定試料板の熱拡散率測定方法。
(1) A method for measuring the thermal diffusivity in the thickness direction of a thin sample plate to be measured, in which a conductive thin film is formed on at least one side of the thin sample plate to be measured and a current is passed through the thin film. An alternating current heat source that generates heat due to heat is used, and an alternating current modulated at a predetermined modulation frequency is passed through the alternating current heat source of the sample plate to be measured to generate alternating current heat, and the alternating current is applied to the other opposing side of the sample plate to be measured. Thermal diffusivity measurement of a thin sample plate in which the thermal diffusivity in the thickness direction of the sample plate is calculated by generating a response curve consisting of pressure waves corresponding to heat generation and measuring the phase of the response curve. Method.
(2)一つの面に交流熱源とすべき導電性の薄膜が形成
されかつ該一つの面に対向する他方の面を被測定面とす
る薄い被測定試料板と、内部に音圧検出器を備えた容器
とを用意し、前記被測定試料板を、前記被測定面が該容
器の内壁面の一部をなすように前記容器に装着し、前記
被測定試料板の前記導電性薄膜に所定 の変調周波数で変調を加えた交流電流を流すことによっ
てそのジュール熱により交流発熱させ、これにより前記
被測定面に該交流発熱に応答する温度変化を起こさせて
前記容器内に圧力波を誘起し、この圧力波の位相を前記
音圧検出器により測定し、これを前記被測定試料板につ
いて前記変調周波数の範囲で少なくとも2点以上前記変
調周波数を変化させて行い、前記交流熱源の温度変化と
測定された前記容器内に発生する圧力波との位相差と、
前記変調周波数との相関関係から前記測定試料板の厚み
方向の熱拡散率を測定する請求項1記載の交流加熱によ
る熱拡散率の測定方法。
(2) A thin sample plate to be measured on which a conductive thin film to be used as an AC heat source is formed on one surface and the other surface opposite to the one surface to be measured, and a sound pressure detector inside. the sample plate to be measured is attached to the container so that the surface to be measured forms a part of the inner wall surface of the container, and the conductive thin film of the sample plate to be measured is covered with a predetermined amount. By passing an alternating current modulated at a modulation frequency of , the Joule heat generated by the alternating current is caused to generate alternating current heat, thereby causing a temperature change in the surface to be measured in response to the alternating current heat generation, thereby inducing a pressure wave within the container. , the phase of this pressure wave is measured by the sound pressure detector, and this is performed on the sample plate to be measured by changing the modulation frequency at least two points within the range of the modulation frequency, and the temperature change of the AC heat source is measured. a phase difference with the measured pressure wave generated in the container;
2. The method for measuring thermal diffusivity by alternating current heating according to claim 1, wherein the thermal diffusivity in the thickness direction of the measurement sample plate is measured based on the correlation with the modulation frequency.
(3)被測定試料板が高分子化合物、有機色素、鉱石、
ガラス、セラミックスから選択される難導電性物質の板
である請求項2記載の交流加熱による熱拡散率の測定方
法。
(3) The sample plate to be measured is a polymer compound, an organic pigment, an ore,
3. The method for measuring thermal diffusivity by alternating current heating according to claim 2, wherein the plate is made of a poorly conductive material selected from glass and ceramics.
(4)交流熱源となる導電性薄膜が、ジュール熱により
発熱する導電性物質からなる請求項2記載の交流加熱に
よる熱拡散率の測定方法。
(4) The method for measuring thermal diffusivity by alternating current heating according to claim 2, wherein the conductive thin film serving as the alternating current heat source is made of a conductive substance that generates heat by Joule heat.
(5)交流熱源となる導電性薄膜の形成を、スパッタ、
蒸着、塗布、接着、圧着のうちのいずれかより選択され
る方法により行う請求項2記載の交流加熱による熱拡散
率の測定方法。
(5) Formation of a conductive thin film that serves as an AC heat source by sputtering,
3. The method for measuring thermal diffusivity by alternating current heating according to claim 2, which is carried out by a method selected from vapor deposition, coating, adhesion, and compression bonding.
(6)請求項2〜5記載の交流加熱による熱拡散率測定
方法で得られた被測定定試料板の熱拡散率と、該被測定
試料板の比熱および密度の測定値から、熱伝導率を求め
る該被測定試料板の熱伝導率の測定方法。
(6) From the thermal diffusivity of the sample plate to be measured obtained by the method for measuring thermal diffusivity by alternating current heating according to claims 2 to 5, and the measured values of the specific heat and density of the sample plate to be measured, the thermal conductivity is determined. A method for measuring the thermal conductivity of the sample plate to be measured.
(7)一つの面に導電性薄膜が形成され、該一つの面に
対向する他方の面を被測定面とする被測定試料板の厚み
方向の熱拡散率を測定するための装置であって、 前記被測定試料板の前記導電性薄膜に一定 振幅の変調を加えた交流電流を供給する交流電流供給手
段と、 内部に音圧検出器を有し、前記被測定試料 板の被測定面を内壁の一部とするように該被測定試料を
装着可能な容器と、 前記音圧検出器よりの出力を増幅するロッ クイン増幅器とを有することを特徴とする交流加熱によ
る熱拡散率測定装置。
(7) An apparatus for measuring the thermal diffusivity in the thickness direction of a sample plate to be measured, in which a conductive thin film is formed on one surface, and the other surface opposite to the one surface is the surface to be measured, , an alternating current supply means for supplying an alternating current modulated with a constant amplitude to the conductive thin film of the sample plate to be measured, and a sound pressure detector therein; A thermal diffusivity measurement device using AC heating, comprising: a container into which the sample to be measured can be mounted so as to form part of the inner wall; and a lock-in amplifier that amplifies the output from the sound pressure detector.
JP22715490A 1989-08-30 1990-08-29 Method and apparatus for measuring thermal diffusivity by ac heating Pending JPH03156352A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22364189 1989-08-30
JP1-223641 1989-08-30

Publications (1)

Publication Number Publication Date
JPH03156352A true JPH03156352A (en) 1991-07-04

Family

ID=16801377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22715490A Pending JPH03156352A (en) 1989-08-30 1990-08-29 Method and apparatus for measuring thermal diffusivity by ac heating

Country Status (1)

Country Link
JP (1) JPH03156352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013963A (en) * 2004-06-25 2006-01-12 Matsushita Electric Works Ltd Pressure wave generating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013963A (en) * 2004-06-25 2006-01-12 Matsushita Electric Works Ltd Pressure wave generating element
JP4649889B2 (en) * 2004-06-25 2011-03-16 パナソニック電工株式会社 Pressure wave generator

Similar Documents

Publication Publication Date Title
US5080495A (en) Method and apparatus for measuring thermal diffusivity by ac joule-heating
Zhao et al. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials
WO2003044509A1 (en) Method for thermal analysis and system for thermal analysis
JP2688012B2 (en) Thermal diffusivity measurement method
Hatta Thermal diffusivity measurements of thin films and multilayered composites
Mansanares et al. Photoacoustic characterization of a two‐layer system
JPH03156351A (en) Method and apparatus for measuring thermal diffusivity by ac heating
Neubauer et al. The influence of mechanical adhesion of copper coatings on carbon surfaces on the interfacial thermal contact resistance
Balageas et al. EMIR: a photothermal tool for electromagnetic phenomena characterization
CN107907150A (en) A kind of optoacoustic excitation based on side-polished fiber grating is with detecting integral type probe and preparation method thereof, test method
Jeger-Madiot et al. Controlling the force and the position of acoustic traps with a tunable acoustofluidic chip: Application to spheroid manipulations
JPH03189547A (en) Method and device for measuring heat diffusivity
Lima et al. Measurement of the thermal properties of liquids using a thermal wave interferometer
JPH03156352A (en) Method and apparatus for measuring thermal diffusivity by ac heating
JP2591570B2 (en) Thermal analysis method and apparatus using temperature wave
JP4203596B2 (en) Thin film thermophysical property measuring method and measuring device
CN108918580B (en) Nondestructive steady-state thermal conductivity measurement method
Coufal et al. A pulsed method for thermal-diffusivity measurements of polymer films with submicrometre thickness
CN115165956A (en) Method and device for measuring thermal conductivity of thin film based on frequency domain photo-thermal radiation
JPH06130012A (en) Method and device for measuring thermal diffusion rate by use of ac heating
CN108051476B (en) Independent type 3 omega thermophysical property measuring device and method based on sapphire substrate
Fraizier et al. Evaluation of viscoelastic constants of metallic materials by laser-ultrasonics at elevating temperature
RU2664685C1 (en) Method of measurement of thin film coating thickness on thermal conducting bases
Wörner et al. Electrically induced thermal transient experiments for thermal diffusivity measurements on chemical vapor deposited diamond films
JPH0816657B2 (en) Method and apparatus for measuring thermal diffusivity by AC heating