JPH03156260A - Absorption cold/hot water producer - Google Patents

Absorption cold/hot water producer

Info

Publication number
JPH03156260A
JPH03156260A JP29470989A JP29470989A JPH03156260A JP H03156260 A JPH03156260 A JP H03156260A JP 29470989 A JP29470989 A JP 29470989A JP 29470989 A JP29470989 A JP 29470989A JP H03156260 A JPH03156260 A JP H03156260A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
absorber
pipe
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29470989A
Other languages
Japanese (ja)
Inventor
Nobuhiro Idei
伸浩 出射
Yoshiki Iwatani
岩谷 孝樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29470989A priority Critical patent/JPH03156260A/en
Publication of JPH03156260A publication Critical patent/JPH03156260A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/006Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To securely prevent a refrigerant or cold water from being frozen and an absorption fluid from being crystallized by controlling the opening of a refrigerant control valve at the temperature of a cold water outlet upon hot water main control and further providing a mechanism for controlling the opening/closing of a solenoid valve. CONSTITUTION:Where a cold water load is rapidly reduced and hence cold water outlet temperature is rapidly lowered as an absorption cold/hot water machine is under hot water main control operation, the opening of a control valve 30 is increased and a refrigerant flows from an evaporator 2 to an absorber 3, sprayed absorption fluid concentration is diluted with refrigerant absorption capability being lowered and further with the concentration of the sprayed absorption fluid being diluted, whereby the refrigerant absorption capability is lowered to lower the cooling capability of the evaporator 2. When the cold water outlet temperature is further lowered, a solenoid valve 24 is opened, a refrigerant in a condenser 5 flows to the absorber 3 via the solenoid valve 34, whereby the refrigerant absorption capability is further lowered, the refrigerant in the condenser 5 flows to the absorber 3 via the solenoid valve 34. Thus, the refrigerant absorption capability is further lowered and hence the refrigerant or the cold water is securely prevented from being frozen and the absorption fluid from being crystallized. Further, also after a refrigerant pump 26 is interrupted, the refrigerant is the condenser 5 flows to the absorber 3 to prevent the absorption fluid from being crystallized.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は冷水と温水とを供給する吸収冷温水機に関する
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an absorption chiller/heater that supplies cold water and hot water.

(ロ)従来の技術 例えば特開昭58−37460号公報には、二重効用吸
収冷温水機の制御装置が開示され、この制御装置では高
温再生器に温水器を付設し、冷水負荷と温水負荷とを加
算して高温再生器に供給きれる燃料を制御し、冷房主制
御では高温再生器と凝縮器との間の配管に設けられた冷
媒制御弁(CM、)を全開にし、温水器と凝縮器との間
の配管に設けられた冷媒制御弁(CM、)を温水温度で
比例操作する。又、暖房主制御では冷媒制御弁(CM、
)を冷水温度で比例制御し、冷媒制御弁(CM、)を全
開にし、かつ、温水器と高温再生器との間の配管に設け
られた冷媒制御弁(CM、)を開とする。
(b) Conventional technology For example, Japanese Patent Application Laid-Open No. 58-37460 discloses a control device for a dual-effect absorption chiller/heater. In this control device, a water heater is attached to a high temperature regenerator, and the chilled water load and hot water The fuel that can be supplied to the high-temperature regenerator is controlled by adding the load, and in the cooling main control, the refrigerant control valve (CM) installed in the pipe between the high-temperature regenerator and the condenser is fully opened, and the fuel that can be supplied to the high-temperature regenerator is fully opened. A refrigerant control valve (CM) installed in the pipe between the condenser and the condenser is operated proportionally to the hot water temperature. In addition, in the heating main control, the refrigerant control valve (CM,
) is proportionally controlled by the chilled water temperature, the refrigerant control valve (CM, ) is fully opened, and the refrigerant control valve (CM, ) installed in the piping between the water heater and the high temperature regenerator is opened.

又、例えば特開昭64−54179号公報には高温再生
器に温水器を付設し、蒸発器の冷水負荷を冷水負荷検出
器で求め、冷水負荷が設定値より大きいときには冷水出
口温度により高温再生器の加熱量を制御し、かつ、冷水
負荷が設定値より小さいときは温水温度により高温再生
器の加熱量を制御し、温、水温度により高温再生器の加
熱量を制御しているとき、冷水負荷が減少したときには
冷媒ポンプから吐出した冷媒を冷媒ブロー装置を介して
吸収器へ流し、吸収液の濃度を低下させ冷媒吸収能力を
低下きせるようにした吸収冷温水機が開示されている。
Furthermore, for example, in Japanese Patent Application Laid-Open No. 64-54179, a water heater is attached to the high-temperature regenerator, the cold water load of the evaporator is determined by a cold water load detector, and when the cold water load is larger than a set value, high-temperature regeneration is performed based on the cold water outlet temperature. When the heating amount of the high temperature regenerator is controlled by the hot water temperature and the heating amount of the high temperature regenerator is controlled by the hot water temperature, when the cold water load is smaller than the set value, the heating amount of the high temperature regenerator is controlled by the hot water temperature, An absorption chiller/heater has been disclosed in which when the chilled water load decreases, the refrigerant discharged from the refrigerant pump is flowed to the absorber via a refrigerant blowing device to reduce the concentration of the absorption liquid and reduce the refrigerant absorption capacity.

(ハ)発明が解決しようとする課題 上記特開昭58−37460号公報に開示された制御装
置において、暖房主制御で冷水負荷が減少したとき、冷
媒制御弁(CMI)の開度が小さくなり、高温再生器か
ら凝縮器へ送られる冷媒の量、及び低温再生器での冷媒
蒸気の発生量が減少して凝縮器から蒸発器へ送られる冷
媒の量が減少する。そして、蒸発器での冷媒の散布量が
減少して、冷却能力が減少するが、冷水負荷が急激に減
少した場合には、冷却能力が低下するよりも早く冷水出
口温度が低下して冷水が凍結する虞れがあった。又、冷
水負荷の減少に伴い蒸発器での冷媒散布量が減少した場
合、吸収器での吸収液濃度が上昇し、それに伴い吸収液
循環路での吸収液濃度が上昇し、濃液が流れる再生器と
吸収器との間の配管などで吸収液が結晶する虞れがあっ
た。
(c) Problems to be Solved by the Invention In the control device disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 58-37460, when the chilled water load decreases in the heating main control, the opening degree of the refrigerant control valve (CMI) decreases. , the amount of refrigerant sent from the high temperature regenerator to the condenser and the amount of refrigerant vapor generated in the low temperature regenerator are reduced, thereby reducing the amount of refrigerant sent from the condenser to the evaporator. Then, the amount of refrigerant sprayed in the evaporator decreases, and the cooling capacity decreases, but if the chilled water load decreases rapidly, the chilled water outlet temperature decreases faster than the cooling capacity decreases, and the chilled water decreases. There was a risk of freezing. In addition, when the amount of refrigerant sprayed in the evaporator decreases due to a decrease in the chilled water load, the concentration of the absorbent in the absorber increases, and accordingly the concentration of the absorbent in the absorbent circulation path increases, causing the concentrated liquid to flow. There was a risk that the absorption liquid would crystallize in the piping between the regenerator and absorber.

又、上記特開昭64−54179号公報に開示された吸
収冷温水機において、冷水負荷が減少したとき、それに
伴い冷水出口温度が急激に低下したとき吸収器の冷媒ポ
ンプの運転により蒸発器の冷媒を送ることはできるが、
冷水出口温度の低下が急激で冷却能力が大幅に低下する
前に、冷媒ポンプの運転が停止した場合には、蒸発器に
凝縮器からの冷媒が溜り、オーバーフローして吸収器へ
流れるまで吸収器へは冷媒がブローされず、吸収液濃度
は高くなり、吸収液に結晶が発生する虞れがあった。
In addition, in the absorption chiller/heater disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 64-54179, when the chilled water load decreases and the chilled water outlet temperature suddenly decreases, the absorber refrigerant pump operates to stop the evaporator. Although it is possible to send refrigerant,
If the refrigerant pump stops operating before the chilled water outlet temperature drops rapidly and the cooling capacity decreases significantly, the refrigerant from the condenser will accumulate in the evaporator and will continue to flow through the absorber until it overflows and flows to the absorber. Since the refrigerant was not blown to the absorbent, the concentration of the absorbent increased, and there was a risk that crystals would form in the absorbent.

本発明は吸収冷温水機が暖房主制御運転されているとき
、冷水負荷が急減した場合の冷媒、又は冷水の凍結、吸
収液の結晶を確実に防止することを目的とする。
An object of the present invention is to reliably prevent freezing of the refrigerant or cold water and crystallization of the absorption liquid when the cold water load suddenly decreases when the absorption chiller/heater is operated under heating main control.

(ニ)課題を解決するための手段 本発明は上記課題を解決するために、凝縮器(5)と蒸
発器(2)との間の冷媒管(15)と吸収器(3)との
間に接続された冷媒ブロー管(33) 、 (29)と
、冷媒ブロー管(33)に設けられた電磁弁(34)と
、蒸発器(2)に接続された冷媒管(冷媒循環管) (
16)の冷媒ポンプ(25)の吐出側と吸収器(3)と
の間に設けられた冷媒ブロー管(2g) 、 (29)
と、冷媒ブロー管(28)に設けられた冷媒ブロー制御
弁(30)と、温水主制御の運転時に、冷水出口温度で
冷媒ブロー制御弁(30)の開度を制御し、さらに電磁
弁(34)の開閉を制御する機構とを備えた吸収冷温水
機を提供するものである。
(d) Means for Solving the Problems In order to solve the above problems, the present invention provides a solution between the refrigerant pipe (15) between the condenser (5) and the evaporator (2) and the absorber (3). The refrigerant blow pipes (33), (29) connected to the refrigerant blow pipe (33), the solenoid valve (34) provided on the refrigerant blow pipe (33), and the refrigerant pipe (refrigerant circulation pipe) connected to the evaporator (2) (
Refrigerant blow pipe (2g) provided between the discharge side of the refrigerant pump (25) of 16) and the absorber (3), (29)
and a refrigerant blow control valve (30) provided in the refrigerant blow pipe (28). During hot water main control operation, the opening degree of the refrigerant blow control valve (30) is controlled based on the cold water outlet temperature, and a solenoid valve ( 34) A mechanism for controlling the opening and closing of the absorption chiller/heater is provided.

又、冷媒管(15)と吸収器(3)との間に冷媒ブロー
管(33) 、 (29)を接続し、冷媒ブロー管(3
3)の途中に電磁弁(34)を設け、冷媒管(冷媒循環
管)(16)と吸収器(3)との間に冷媒ブロー管(2
B) 、 (29)を接続し、冷媒ブロー管(28)の
途中に制御弁(30)を設け、高温再生器(7)と凝縮
器(5)との間の冷媒管(14)に電磁弁(24)を設
け、かつ各電磁弁(34) 、 (24)の開閉、及び
制御弁(30)の開度を蒸発器(2)の冷水出口温度で
制御する機構を設けた吸収冷凍機を提供するものである
In addition, refrigerant blow pipes (33) and (29) are connected between the refrigerant pipe (15) and the absorber (3), and the refrigerant blow pipe (3) is connected between the refrigerant pipe (15) and the absorber (3).
A solenoid valve (34) is provided in the middle of the refrigerant blow pipe (2) between the refrigerant pipe (refrigerant circulation pipe) (16) and the absorber (3).
B), (29) are connected, a control valve (30) is provided in the middle of the refrigerant blow pipe (28), and an electromagnetic valve is connected to the refrigerant pipe (14) between the high temperature regenerator (7) and the condenser (5). An absorption refrigerator provided with a valve (24) and a mechanism for controlling the opening/closing of each solenoid valve (34), (24) and the opening degree of a control valve (30) by the cold water outlet temperature of the evaporator (2). It provides:

さらに、凝縮器(5)の冷媒を吸収器(3)へ流す冷媒
ブロー管(33) 、 (29)の途中に設けられた電
磁弁(34)と、蒸発器(2)の冷媒を吸収器(3)へ
流す冷媒ブロー管(28) 、 (29)の途中に設け
られた制御弁(30)と、この制御弁(30)の開度、
及び電磁弁(34)の開閉を蒸発器(2)の冷水負荷で
制御する機構とを備えた吸収冷温水機を提供するもので
ある。
Furthermore, there are solenoid valves (34) installed in the middle of the refrigerant blow pipes (33) and (29) that flow the refrigerant from the condenser (5) to the absorber (3), and solenoid valves (34) that flow the refrigerant from the evaporator (2) to the absorber. (3) A control valve (30) provided in the middle of the refrigerant blow pipes (28) and (29), and the opening degree of this control valve (30),
and a mechanism for controlling the opening and closing of the solenoid valve (34) by the cold water load of the evaporator (2).

(*)作用 吸収冷温水機が温水主制御運転しているときに、冷水負
荷が急激に減少して冷水出口温度が急激に低下した場合
、それに伴い制御弁(30)の開度が大きくなり、蒸発
器(2)から吸収器(3)へ冷媒が流れ、吸収器(3)
の吸収液濃度が薄くなり、冷媒吸収能力が低下し、さら
に散布される吸収液の濃度も薄くなり、冷媒吸収能力が
さらに低下して、蒸発器(2)の冷却能力が低下する。
(*) When the action absorption chiller/heater is operating under hot water main control, if the chilled water load suddenly decreases and the chilled water outlet temperature suddenly drops, the opening degree of the control valve (30) will increase accordingly. , the refrigerant flows from the evaporator (2) to the absorber (3),
The concentration of the absorption liquid becomes thinner, the refrigerant absorption capacity decreases, and the concentration of the sprayed absorption liquid also becomes thinner, the refrigerant absorption capacity further decreases, and the cooling capacity of the evaporator (2) decreases.

冷水出口温度がさらに低下した場合には、電磁弁(34
)が開き、凝縮器(5)の冷媒が電磁弁(34)を介し
て吸収器(3)へ流れ、冷媒吸収能力が一層低下し、冷
媒、又は冷水の凍結、及び吸収液の結晶を確実に防止す
ることが可能になる。又、冷媒ポンプ(26)が停止し
た後も、凝縮器(5)の冷媒が吸収器(3)へ流れ、吸
収液の結晶を防止することが可能になる。
If the cold water outlet temperature drops further, the solenoid valve (34
) opens, the refrigerant in the condenser (5) flows through the solenoid valve (34) to the absorber (3), and the refrigerant absorption capacity is further reduced, ensuring freezing of the refrigerant or cold water and crystallization of the absorbing liquid. It becomes possible to prevent Further, even after the refrigerant pump (26) is stopped, the refrigerant in the condenser (5) flows to the absorber (3), making it possible to prevent crystallization of the absorption liquid.

又、吸収冷凍機が温水主制御運転しているときに、冷水
負荷が急激に減少して、冷水出口温度が急激に低下した
場合、制御弁(30)を介して蒸発器(2)の冷媒が吸
収器(3)へ流れ、それでも冷水出口温度が低下すると
きには、電磁弁(24)が閉じて高温再生器(7)から
凝縮器(5)へ流れる冷媒の量が急減し、凝縮器(5)
から蒸発器(2)へ流れる冷媒の量が減少し、さらに、
冷水出口温度が低下したときには、凝縮器(5)の冷媒
が吸収器(3)へ流れるため、吸収器(3)の冷媒吸収
能力を大幅に低下させ、冷水などの凍結、吸収液の結晶
などを回避することが可能になる。
In addition, when the absorption chiller is operating under hot water main control, if the chilled water load suddenly decreases and the chilled water outlet temperature suddenly drops, the refrigerant in the evaporator (2) is removed via the control valve (30). flows to the absorber (3), and when the chilled water outlet temperature still decreases, the solenoid valve (24) closes and the amount of refrigerant flowing from the high temperature regenerator (7) to the condenser (5) rapidly decreases, causing the condenser ( 5)
The amount of refrigerant flowing from the to the evaporator (2) is reduced, and
When the chilled water outlet temperature drops, the refrigerant in the condenser (5) flows to the absorber (3), which significantly reduces the refrigerant absorption capacity of the absorber (3), causing freezing of the chilled water, crystallization of the absorption liquid, etc. becomes possible to avoid.

さらに、温水主制御運転時、冷水負荷が急減したとき、
蒸発器(2)の冷媒を制御弁(30)を介して吸収器(
3)へ流し、冷媒吸収能力を低下させ、さらに冷水負荷
が減少した゛ときには、凝縮器(5〉の冷媒を吸収器(
3)へ流し、−層冷媒吸収能力を低下させ、冷水などの
凍結、吸収液の結晶を防止でき、さらに蒸発器(2)か
らの冷媒ブローが停止した後も、凝縮器(5)から吸収
器(3〉へ冷媒が流れ、吸収液の濃度を低下させること
が可能になる。
Furthermore, when the cold water load suddenly decreases during hot water main control operation,
The refrigerant in the evaporator (2) is passed through the control valve (30) to the absorber (
When the chilled water load further decreases, the refrigerant from the condenser (5) is transferred to the absorber (5).
3), which lowers the absorption capacity of the -layer refrigerant and prevents freezing of cold water etc. and crystallization of the absorption liquid.Furthermore, even after the refrigerant blowing from the evaporator (2) has stopped, the absorption capacity from the condenser (5) is reduced. The refrigerant flows into the container (3), making it possible to reduce the concentration of the absorption liquid.

(へ)実施例 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
(F) Example Hereinafter, an example of the present invention will be described in detail based on the drawings.

図面は冷媒に水(H!O)、吸収液に臭化リチウム(L
iBr)溶液を使用した二重効用吸収冷温水機を示した
ものであり、(1)は蒸発器(2)と吸収器(3)とを
内蔵した蒸発吸収側、(4)は凝縮器(5)と低温再生
器(6)とを内蔵した凝縮再生胴、(7)はガスバーナ
等の加熱器(8)を備えた高温再生器、(9A)、及び
(9B)はそれぞれ低温熱交換器、及び高温熱交換器で
あり、これらは吸収液管(10) 、 (IIA) 、
 (11B) 、 (12A) 、 (12B)、及び
冷媒管(14) 、 (15) 、 (16)により配
管接続されている。そして、高温再生器(7)に温水器
(17)が付設され、温水器(17)と高温再生器(7
)との間に接続された冷媒ドレン管(18)の途中に温
水ドレン制御弁(20)が設けられている。又、(21
)は温水器(17)と負荷との間に接続された温水管、
(21A)は温水熱交換器である。又、加熱器(8)に
接続された燃料管(22)には燃料制御弁(23)が設
けられている。
The drawing shows water (H!O) as the refrigerant and lithium bromide (L!O) as the absorbent.
This figure shows a dual-effect absorption chiller/heater using an iBr) solution, in which (1) is the evaporative absorption side with built-in evaporator (2) and absorber (3), and (4) is the condenser ( 5) and a low-temperature regenerator (6), (7) is a high-temperature regenerator equipped with a heater (8) such as a gas burner, and (9A) and (9B) are low-temperature heat exchangers, respectively. , and a high temperature heat exchanger, which are absorbent tubes (10), (IIA),
(11B), (12A), (12B), and refrigerant pipes (14), (15), and (16). A water heater (17) is attached to the high temperature regenerator (7), and the water heater (17) and the high temperature regenerator (7)
) A hot water drain control valve (20) is provided in the middle of a refrigerant drain pipe (18) connected between the two. Also, (21
) is a hot water pipe connected between the water heater (17) and the load;
(21A) is a hot water heat exchanger. Further, a fuel control valve (23) is provided in the fuel pipe (22) connected to the heater (8).

(24)は冷媒管(14)の低温再生器(6)と凝縮器
(5)との間に設けられた第1電磁弁である。(25)
は冷媒タンク、(26)は冷媒管(16)の途中に設け
られた冷媒ポンプであり、この冷媒ポンプ(26)の吐
出側と冷媒タンク(25)との間に冷媒送り管(27)
が接続され、かつ、冷媒タンク(25)と吸収器(3)
との間に冷媒ブロー管(2B) 、 (29)が接続さ
れている。そして、冷媒ブロー管(28)の途中に冷媒
制御弁(30)が設けられている。ここで冷媒ブロー管
(29)の出口は吸収液が逆流することを防止するため
に、吸収器(3)内のほぼ中間部に位置している。又、
(31)は冷媒戻し管、(32)は冷媒オーバーフロー
管であり、堰(25A)からオーバーフローした冷媒は
冷媒戻し管(31)を介して冷媒管(15)へ戻される
(24) is a first solenoid valve provided between the low temperature regenerator (6) and the condenser (5) of the refrigerant pipe (14). (25)
is a refrigerant tank, (26) is a refrigerant pump installed in the middle of the refrigerant pipe (16), and a refrigerant feed pipe (27) is installed between the discharge side of this refrigerant pump (26) and the refrigerant tank (25).
are connected, and the refrigerant tank (25) and absorber (3)
Refrigerant blow pipes (2B) and (29) are connected between them. A refrigerant control valve (30) is provided in the middle of the refrigerant blow pipe (28). Here, the outlet of the refrigerant blow pipe (29) is located approximately in the middle of the absorber (3) in order to prevent the absorption liquid from flowing back. or,
(31) is a refrigerant return pipe, (32) is a refrigerant overflow pipe, and the refrigerant overflowing from the weir (25A) is returned to the refrigerant pipe (15) via the refrigerant return pipe (31).

(33)は冷媒管(15)と冷媒ブロー管(29)との
間に接続された冷媒ブロー管であり、この冷媒ブロー管
(33)の途中に第215磁弁(34)が設けられてい
る。又、(35〉は蒸発器(2)に配管された冷水管で
あり、この冷水管(35)の途中には蒸発器熱交換器(
35A)が設けられている。(36)は蒸発器(2)の
冷媒溜り(2A)と吸収器(3)の吸収液溜り(3A)
との間に接続された冷媒管であり、この冷媒管(36)
の途中にバルブ〈37)が設けられている。
(33) is a refrigerant blow pipe connected between the refrigerant pipe (15) and the refrigerant blow pipe (29), and a 215th magnetic valve (34) is provided in the middle of this refrigerant blow pipe (33). There is. In addition, (35> is a cold water pipe piped to the evaporator (2), and an evaporator heat exchanger (
35A) is provided. (36) is the refrigerant reservoir (2A) of the evaporator (2) and the absorption liquid reservoir (3A) of the absorber (3).
This refrigerant pipe (36) is connected between
A valve (37) is provided in the middle.

(38)は冷却水管であり、この冷却水管(38)の途
中に吸収器熱交換器(40)、及び凝縮器熱交換器(4
1)が設けられている。又、(42)は吸収液管(10
)の途中に設けられた吸収液ポンプである。
(38) is a cooling water pipe, and an absorber heat exchanger (40) and a condenser heat exchanger (40) are installed in the middle of this cooling water pipe (38).
1) is provided. In addition, (42) is the absorption liquid pipe (10
) is an absorption liquid pump installed in the middle of the

(43)は上記二重効用吸収冷温水機のマイコン制御盤
、(44)、及び(45)はそれぞれ温水器(17)の
温水出口側の温水管(21B)、及び温水入口側の温水
管(21C)に取り付けられた第1.第2温水温度検出
器である。又、<46)、及び(47)はそれぞれ蒸発
器(2)の冷水出口側の冷水管(35)、及び冷水入口
側の冷水管(35)に取り付けられた第1.第2冷水温
度検出器である。そして、制御盤(43)と各温度検出
器(44)ないしく46)、温水ドレン制御弁(20)
、冷媒制御弁(30)、及び第1.第2電磁弁<24)
 、 (34)とが接続している。制御盤(43〉は第
2温水温度検出器(45)、及び第2冷水温度検出器(
47)から温水、及び冷水の入口温度の信号を入力して
動作し、それぞれの検出温度により冷房主制御(冷水主
制御)運転と暖房主制御(温水主制御)運転とを第2図
に示したように切換える。又、制御盤(43)は第1温
水温度検出器(44)、及び第1冷水温度検出器(46
)から温水、及び冷水の出口温度の信号を入力して、燃
料制御弁(23)、温水ドレン制御弁(20)、及び冷
媒制御弁(30)へ開度信号を出力し、第1.第2’E
磁弁(24) 、 (34)へ開閉信号を出力する。こ
こで、温水ドレン制御弁(20)、冷媒制御弁〈30)
の開度はそれぞれ、温水出口温度、及び冷水出口温度に
応じて第3図、及び第4図に示したように制御される。
(43) is the microcomputer control panel of the dual-effect absorption chiller/heater, (44) and (45) are the hot water pipe (21B) on the hot water outlet side of the water heater (17), and the hot water pipe on the hot water inlet side, respectively. (21C) attached to the first. This is a second hot water temperature detector. In addition, <46) and (47) are the first. This is a second cold water temperature detector. Then, the control panel (43), each temperature detector (44) or 46), and the hot water drain control valve (20)
, a refrigerant control valve (30), and a first. 2nd solenoid valve <24)
, (34) are connected. The control panel (43) has a second hot water temperature detector (45) and a second cold water temperature detector (
It operates by inputting hot water and cold water inlet temperature signals from 47), and depending on each detected temperature, cooling main control (chilled water main control) operation and heating main control (hot water main control) operation are shown in Figure 2. Switch as shown. The control panel (43) also has a first hot water temperature detector (44) and a first cold water temperature detector (46).
), the output temperature signals of the hot water and cold water are inputted, and opening signals are outputted to the fuel control valve (23), the hot water drain control valve (20), and the refrigerant control valve (30). 2nd'E
Outputs open/close signals to the magnetic valves (24) and (34). Here, a hot water drain control valve (20), a refrigerant control valve (30)
The opening degrees of are controlled as shown in FIGS. 3 and 4 according to the hot water outlet temperature and the cold water outlet temperature, respectively.

以下、上記二重効用吸収冷温水機の動作について、i5
図に示したフローチャートに基づいて説明する。
Below, regarding the operation of the above dual-effect absorption chiller/heater, i5
This will be explained based on the flowchart shown in the figure.

例えば夏期で暖房負荷(温水負荷)が小びく、冷房負荷
(冷水負荷)が大きく、温水器(17)の温水入口温度
が54°C1蒸発器(2)の冷水入口温度が11℃のと
きには第2図に示したように制御盤(43)は冷房主制
御を行う。そして、制御盤(43)は第1を磁弁(24
)へ開信号、冷媒制御弁(30)へ閉信号、第2電磁弁
(34)へ閉信号を出力する。そして、従来の二重効用
吸収冷温水機と同様に冷媒ポンプ(25)、及び吸収液
ポンプ(42)が運転され、冷媒、及び吸収液が循環す
る。又、冷水出口温度に基づいて制御盤(43)が出力
する開度信号により燃料制御弁〈23)の開度が変化し
、高温再生器(7)の冷媒発生量が変化して冷水出口温
度がほぼ設定温度に保たれる。
For example, in the summer, when the heating load (hot water load) is small and the cooling load (chilled water load) is large, the hot water inlet temperature of the water heater (17) is 54°C, and the cold water inlet temperature of the evaporator (2) is 11°C. As shown in Figure 2, the control panel (43) performs main cooling control. The control panel (43) then controls the first magnetic valve (24).
), a close signal to the refrigerant control valve (30), and a close signal to the second electromagnetic valve (34). Then, the refrigerant pump (25) and the absorption liquid pump (42) are operated as in the conventional dual-effect absorption chiller/heater, and the refrigerant and absorption liquid are circulated. In addition, the opening degree of the fuel control valve (23) changes according to the opening degree signal output by the control panel (43) based on the chilled water outlet temperature, and the amount of refrigerant generated by the high temperature regenerator (7) changes, causing the chilled water outlet temperature to change. is maintained at approximately the set temperature.

又、第1温水温度検出器(44ンから信号を入力した制
御盤(43)は温水出口温度に基づいて第3図に示した
ように開度信号を温水ドレン制御弁(20)へ出力し、
温水ドレン制御弁(20)の開度が制御されドレン量が
変化する。このため、温水器(21)に溜っている冷媒
の水位が変化し、温水熱交換器(2IA)での熱交換量
が変化し、温水出口温度がほぼ設定温度に保たれる。以
後、温水入口温度と冷水入口温度との関係が第2図に示
した冷房主制御運転の範囲に収まるときには上記と同様
に吸収冷温水機が運転される。
In addition, the control panel (43) which receives the signal from the first hot water temperature detector (44) outputs an opening signal to the hot water drain control valve (20) as shown in Fig. 3 based on the hot water outlet temperature. ,
The opening degree of the hot water drain control valve (20) is controlled to change the amount of drain. Therefore, the water level of the refrigerant stored in the water heater (21) changes, the amount of heat exchanged in the hot water heat exchanger (2IA) changes, and the hot water outlet temperature is maintained at approximately the set temperature. Thereafter, when the relationship between the hot water inlet temperature and the cold water inlet temperature falls within the cooling main control operation range shown in FIG. 2, the absorption chiller/heater is operated in the same manner as described above.

又、例えば冬期で暖房負荷が大きく、又、冷房負荷が小
きく、温水入口温度が51°Cであり、冷水入口温度が
9℃のときには、第2図に示したように制御盤(43)
は暖房主制御運転を行う、そして、制御盤(43)は第
1温水温度検出器(44)が検出した温水出口温度に基
づいて燃料制御弁(23)へ開度信号を出力し、又、温
水ドレン制御弁(20)へ100%の開信号を出力する
。このため、温水出口温度に基づいて高温再生器(7)
の加熱量が制御され、温水出口温度がほぼ設定温度に保
たれる。
For example, in winter when the heating load is large and the cooling load is small and the hot water inlet temperature is 51°C and the cold water inlet temperature is 9°C, the control panel (43) is activated as shown in Figure 2.
performs heating main control operation, and the control panel (43) outputs an opening signal to the fuel control valve (23) based on the hot water outlet temperature detected by the first hot water temperature detector (44), and Outputs a 100% open signal to the hot water drain control valve (20). Therefore, based on the hot water outlet temperature, the high temperature regenerator (7)
The amount of heating is controlled, and the hot water outlet temperature is maintained at approximately the set temperature.

又、制御盤(43)は冷水出口温度に基づいて第1電磁
片(24)へ開信号を出力し、冷媒制御弁(30〉へ開
度信号を出力する。暖房主制御運転が行われているとき
冷房負荷が減少して冷水出口温度が第1設定温度の8°
C以下になると、冷媒制御弁(30)の開度は第4図に
示したように冷水出口温度の変化に伴い変化する。その
後、冷媒負荷が急減して冷水出口温度が第2設定温度の
6.5°C以下になると、閉信号が第1T!、磁片(2
4)へ出力され、第1電磁弁(24)が閉じ、冷媒が高
温再生器(7)から冷媒管(14)を介して凝縮器(5
)へ送られなくなる。ここで上記のように、冷水出口温
度が低下すると、冷媒制御弁(30)の開度は大きくな
り、蒸発器(2)から冷媒ポンプ(26)、冷媒タンク
(25)、冷媒ブロー管(28) 、 (29)、及び
第2冷媒制御弁(30)を介して吸収器(3)へ流れる
冷媒の量が増加する。このため、蒸発器(2)での冷媒
の散布量が減少して蒸発器(2)の冷水冷却能力が減少
する。
Further, the control panel (43) outputs an open signal to the first electromagnetic piece (24) based on the cold water outlet temperature, and outputs an opening signal to the refrigerant control valve (30>. When the air conditioner is on, the cooling load decreases and the chilled water outlet temperature reaches the first set temperature of 8°.
When the temperature drops below C, the opening degree of the refrigerant control valve (30) changes as the chilled water outlet temperature changes, as shown in FIG. After that, when the refrigerant load suddenly decreases and the chilled water outlet temperature falls below the second set temperature of 6.5°C, the close signal goes to the first T! , magnetic piece (2
4), the first solenoid valve (24) closes, and the refrigerant passes from the high temperature regenerator (7) to the condenser (5) via the refrigerant pipe (14).
) will no longer be sent to. Here, as mentioned above, when the chilled water outlet temperature decreases, the opening degree of the refrigerant control valve (30) increases, and from the evaporator (2) to the refrigerant pump (26), the refrigerant tank (25), and the refrigerant blow pipe (28). ), (29), and the amount of refrigerant flowing to the absorber (3) via the second refrigerant control valve (30) increases. Therefore, the amount of refrigerant sprayed in the evaporator (2) decreases, and the cold water cooling capacity of the evaporator (2) decreases.

その後、冷水出口温度の変化に基ついて冷媒制御弁(3
0)の開度が変化する。そして、さらに冷房負荷が減少
し、冷水出口温度が低下すると、制御盤(43)は冷水
出口温度の低下に伴い信号を出力し、第4図に示したよ
うに冷媒制御弁(30)の開度はさらに大きくなり、冷
媒タンク(25)から吸収器(3)へ流れる冷媒の量が
増加し、蒸発器(2)での冷媒の散布量が減少する。さ
らに冷房負荷が減少して冷水出口温度が第3設定温度の
6°Cになると、制御盤(43)は第2電磁弁(34)
へ開信号を出力し、第2電磁弁(34)が開き、凝縮器
(5)に溜っていた冷媒が冷媒管(15)、冷媒ブロー
管(33) 、 <29)を介して吸収器(3)へ流れ
、冷媒吸収能力はさらに減小する。又、制御盤(43)
は冷媒制御弁(30)へ100%の開信号を出力し、冷
媒制御弁(30〉が全開になり、冷媒ポンプ(26)か
ら吐出された冷媒のほとんどが吸収器(3)へ流れるよ
うになり、蒸発器(2)の冷却能力がさらに、小さくな
る。
Then, based on the change in the chilled water outlet temperature, the refrigerant control valve (3
0) changes in opening degree. When the cooling load further decreases and the chilled water outlet temperature decreases, the control panel (43) outputs a signal as the chilled water outlet temperature decreases, opening the refrigerant control valve (30) as shown in FIG. The temperature further increases, the amount of refrigerant flowing from the refrigerant tank (25) to the absorber (3) increases, and the amount of refrigerant sprayed in the evaporator (2) decreases. When the cooling load further decreases and the chilled water outlet temperature reaches the third set temperature of 6°C, the control panel (43) activates the second solenoid valve (34).
An open signal is output to the second solenoid valve (34), and the refrigerant accumulated in the condenser (5) passes through the refrigerant pipe (15) and the refrigerant blow pipe (33) to the absorber (29). 3), and the refrigerant absorption capacity further decreases. Also, control panel (43)
outputs a 100% open signal to the refrigerant control valve (30), the refrigerant control valve (30) is fully opened, and most of the refrigerant discharged from the refrigerant pump (26) flows to the absorber (3). As a result, the cooling capacity of the evaporator (2) further decreases.

その後も、冷房負荷が減少し、冷水出口温度が低下して
第4設定温度の5°Cになると、制御盤(43)が動作
して冷媒ポンプ(26)へ停止信号を出力し、冷媒ポン
プ(26)が停止して蒸発器(2)での冷媒散布が停止
する。このため、蒸発器(2)での冷却能力がほぼ零に
なる。その後、冷水出口温度が、3.0℃以下になった
場合には吸収冷温水機が異常停止する。
After that, when the cooling load decreases and the chilled water outlet temperature drops to the fourth set temperature of 5°C, the control panel (43) operates to output a stop signal to the refrigerant pump (26), and the refrigerant pump (26) is stopped, and refrigerant dispersion in the evaporator (2) is stopped. Therefore, the cooling capacity of the evaporator (2) becomes almost zero. Thereafter, when the cold water outlet temperature becomes 3.0° C. or lower, the absorption chiller/heater abnormally stops.

又、上記のように冷媒ポンプ(26)が停止した後冷房
負荷が増加し、冷水出口温度が上昇して例えば5.5°
Cになると制御盤(43)が冷媒ポンプ(26)へ信号
を出力する。このため、冷媒ポンプ(26)が運転を始
める。そして、凝縮器(5)から蒸発器(2)へ冷媒が
送られ、冷媒ポンプ(26)の運転により、冷媒が蒸発
器熱交換器(35A)に散布される。このため、蒸発器
熱交換器(35A)にて冷却された冷水が蒸発器(2)
から負荷へ送られる。その後、さらに冷房負荷が増加し
て冷水出口温度が6.5°C以上になった場合には、第
2電磁弁(34)が閉じる。
Also, as mentioned above, after the refrigerant pump (26) stops, the cooling load increases, and the chilled water outlet temperature rises to, for example, 5.5°.
When the temperature reaches C, the control panel (43) outputs a signal to the refrigerant pump (26). Therefore, the refrigerant pump (26) starts operating. Then, the refrigerant is sent from the condenser (5) to the evaporator (2), and the refrigerant is dispersed to the evaporator heat exchanger (35A) by operating the refrigerant pump (26). Therefore, the cold water cooled by the evaporator heat exchanger (35A) is transferred to the evaporator (2).
to the load. Thereafter, when the cooling load further increases and the cold water outlet temperature reaches 6.5°C or higher, the second solenoid valve (34) closes.

妨らに冷水出口温度が上昇して7.0°C以上になると
第1を磁片(24)が開く。又、冷水出口温度が6.0
°C以上になると第4図に示したように冷媒制御弁(3
0)の開度が制御される。
If the cold water outlet temperature rises to 7.0°C or higher, the first magnetic piece (24) opens. Also, the cold water outlet temperature is 6.0
When the temperature exceeds °C, the refrigerant control valve (3
0) is controlled.

以後、暖房主制御時には、上記と同様に温水出口温度に
より燃料制御弁(23)の開度が制御され、高温再生器
(7)の加熱量が変化して冷媒蒸気の発生量が変化して
温水出口温度がほぼ一定に保たれる。又、冷水出口温度
により、冷媒制御弁(30)の開度、第1.第2電磁弁
(24) 、 (34)の開閉、及び冷媒ポンプ(26
)の運転が制御される。
Thereafter, during main heating control, the opening degree of the fuel control valve (23) is controlled by the hot water outlet temperature in the same way as above, the heating amount of the high temperature regenerator (7) changes, and the amount of refrigerant vapor generated changes. Hot water outlet temperature is kept almost constant. Also, depending on the chilled water outlet temperature, the opening degree of the refrigerant control valve (30), the first. Opening/closing of the second solenoid valves (24), (34), and refrigerant pump (26)
) operation is controlled.

上記実施例によれば、暖房主制御の運転時、冷房負荷が
減少して冷水出口温度が第1設定温度以下になったとき
、冷水出口温度により冷媒制御弁(30)の開度が制御
され、冷水出口温度の低下に伴い冷媒制御弁(24)の
開度が大きくなり、蒸発器(2)から吸収器(3)へ送
られる冷媒の量が増加するとともに、蒸発器(2)で散
布される冷媒の量が少なくなり、冷水出口温度の急激な
低下を防止できる。又、さらに冷水出口温度が低下した
ときには、低下に伴い、第1電磁弁(24)を閉じ、高
温再生器(7)から凝縮器(5)への冷媒を止め、第2
電磁弁(34)を開き、冷媒ポンプ(26)の運転を停
止することにより、蒸発器(2)での冷水冷却能力をほ
とんど零にすることができ、冷水の温度がさらに低下す
ることを防止でき、冷水の凍結を回避することができる
、又、凝縮器(5)に溜っていた冷媒を吸収器(3)へ
流し吸収器(3)から流出する稀吸収液の濃度をさらに
薄くして、吸収液管(10) 、 (IIA)。
According to the above embodiment, when the cooling load decreases and the chilled water outlet temperature becomes equal to or lower than the first set temperature during heating main control operation, the opening degree of the refrigerant control valve (30) is controlled based on the chilled water outlet temperature. As the chilled water outlet temperature decreases, the opening degree of the refrigerant control valve (24) increases, and the amount of refrigerant sent from the evaporator (2) to the absorber (3) increases, and the amount of refrigerant that is distributed by the evaporator (2) increases. The amount of refrigerant used is reduced, and a sudden drop in the chilled water outlet temperature can be prevented. In addition, when the chilled water outlet temperature further decreases, the first solenoid valve (24) is closed, the refrigerant from the high temperature regenerator (7) to the condenser (5) is stopped, and the second solenoid valve (24) is closed.
By opening the solenoid valve (34) and stopping the operation of the refrigerant pump (26), the chilled water cooling capacity in the evaporator (2) can be reduced to almost zero, preventing the temperature of the chilled water from further decreasing. In addition, the refrigerant accumulated in the condenser (5) can be flowed to the absorber (3) to further dilute the concentration of the dilute absorption liquid flowing out from the absorber (3). , absorption liquid tube (10), (IIA).

(IIB> 、 (12A) 、 (12B)、高温熱
交換器(9B)、及び低温熱交換器(9A)を流れる吸
収液の濃度を薄くすることができ、この結果、低温熱交
換器(9A)などでの結晶発生を防止することができる
。又、冷媒ポンプ(26)が停止してからも凝縮器(5
)から吸収器(3)へ冷媒を送り、吸収液濃度を薄くす
ることができ、吸収液の結晶を一層確実に防止すること
ができる。
(IIB>, (12A), (12B), the concentration of the absorption liquid flowing through the high temperature heat exchanger (9B), and the low temperature heat exchanger (9A) can be reduced, and as a result, the concentration of the absorption liquid flowing through the low temperature heat exchanger (9A) can be reduced. ), etc. Also, even after the refrigerant pump (26) has stopped, the condenser (5) can be prevented from forming.
) to the absorber (3), the concentration of the absorption liquid can be reduced, and crystals of the absorption liquid can be more reliably prevented.

尚、本発明は上記実施例に限定されるものではなく、例
えば図面に一点鎖線にて示したように冷媒ポンプ(26
)の吐出側の冷媒管(16)と吸収液ポンプ(42)の
入口側の吸収液管(10)との間に冷媒ブロー管(50
)を設け、この冷媒ブロー管(50)の途中に第2冷媒
制御弁(30)を設けた場合にも同様の作用効果を得る
ことができる。さらに、第2電磁弁(34)を制御弁に
換え、この制御弁を上記実施例と同様に冷水出口温度が
6.0°C以下のとき全開としても良い。
It should be noted that the present invention is not limited to the above-mentioned embodiment, and for example, the refrigerant pump (26
) between the refrigerant pipe (16) on the discharge side and the absorption liquid pipe (10) on the inlet side of the absorption liquid pump (42).
) and a second refrigerant control valve (30) is provided in the middle of this refrigerant blow pipe (50), similar effects can be obtained. Furthermore, the second electromagnetic valve (34) may be replaced with a control valve, and this control valve may be fully opened when the cold water outlet temperature is 6.0°C or less, as in the above embodiment.

(ト)発明の効果 本発明は以上のように構成された吸収冷温水機であり、
冷水主制御の運転と温水主制御の運転とを切換える機構
を備えた吸収冷温水機において、凝縮器と蒸発器との間
の冷媒管と吸収器との間の冷媒管と吸収器との間の冷媒
ブロー管に電磁弁を設け、冷媒循環管の冷媒ポンプの出
口側と吸収器との間の冷媒ブロー管に冷媒制御弁を設け
、温水主制御時には蒸発器の冷水出口温度で上記冷媒制
御弁の開度を制御し、きらに電磁弁の開閉を制御するた
め、温水主制御の運転時、冷水負荷が小さくなり冷水出
口温度が低くなったときには冷媒制御弁の開度が大きく
なり、蒸発器から冷媒ブロー管を介して吸収器へ流れる
冷媒の量が増え吸収器の冷媒吸収能力が低下するととも
に、冷媒ポンプから吐出された蒸発器で散布される冷媒
の量が減少し、蒸発器の冷却能力を冷水出口温度の低下
に応じて小さくすることができ、さらに、冷水出口温度
が低下したときには電磁弁を開き、凝縮器に溜っていた
冷媒を冷媒ブロー管を介して吸収器へ流して吸収液の濃
度を薄くして吸収器の冷媒吸収能力を急激に低下させる
ことができ、この結果、温水主制御の運転時に冷水負荷
が急減した場合にも冷水出口温度の大幅な低下を回避す
ることができ、冷水の凍結を防止することができる。又
、蒸発器及び凝縮器に溜っていた冷媒を吸収器へ流すこ
とにより吸収液の濃度を大幅に低下きせることができ、
吸収液の結晶を確実に防止することができる。きらに、
冷媒ポンプが停止した以後、冷媒が凝縮器から吸収器へ
流れ吸収液の濃度が薄くなり結晶の発生を確実に防止す
ることができる。
(g) Effects of the invention The present invention is an absorption chiller/heater configured as described above,
In an absorption chiller/heater equipped with a mechanism for switching between cold water main control operation and hot water main control operation, between the refrigerant pipe between the condenser and the evaporator and the absorber, and between the refrigerant pipe and the absorber A solenoid valve is provided in the refrigerant blow pipe of the refrigerant circulation pipe, and a refrigerant control valve is provided in the refrigerant blow pipe between the refrigerant pump outlet side of the refrigerant circulation pipe and the absorber, and during hot water main control, the refrigerant is controlled using the cold water outlet temperature of the evaporator. Since the opening degree of the valve is controlled and the opening and closing of the solenoid valve is controlled, when the chilled water load is small and the chilled water outlet temperature is low during hot water main control operation, the opening degree of the refrigerant control valve is increased and evaporation is prevented. The amount of refrigerant flowing from the refrigerant to the absorber through the refrigerant blow pipe increases and the refrigerant absorption capacity of the absorber decreases, and the amount of refrigerant discharged from the refrigerant pump and sprayed by the evaporator decreases, causing the evaporator to The cooling capacity can be reduced according to the drop in the chilled water outlet temperature, and when the chilled water outlet temperature drops, the solenoid valve is opened and the refrigerant accumulated in the condenser is flowed to the absorber via the refrigerant blow pipe. By diluting the concentration of the absorption liquid, the refrigerant absorption capacity of the absorber can be rapidly reduced, and as a result, even if the chilled water load suddenly decreases during hot water main control operation, a significant drop in the chilled water outlet temperature can be avoided. It can prevent cold water from freezing. In addition, by flowing the refrigerant accumulated in the evaporator and condenser to the absorber, the concentration of the absorption liquid can be significantly reduced.
Crystallization of the absorption liquid can be reliably prevented. Kirani,
After the refrigerant pump stops, the refrigerant flows from the condenser to the absorber, and the concentration of the absorption liquid becomes diluted, making it possible to reliably prevent the formation of crystals.

又、再生器と凝縮器との間の冷媒管に電磁弁を設け、凝
縮器と蒸発器との間の冷媒管と吸収器との間の冷媒ブロ
ー管に電磁弁を設け、冷媒循環管と吸収器との間の冷媒
ブロー管に制御弁を設け、この制御弁の開度、及び上記
各xi弁の開閉を蒸発器の冷水出口温度で制御するため
、吸収冷温水機の温水主制御運転時に、冷水負荷が急減
した場合には冷水出口温度の低下に伴い制御弁の開度が
大きくなり、吸収器から蒸発器へ流れる冷媒の量が増え
、吸収器の冷媒吸収能力が低下し、蒸発器の冷却能力を
低下させることができ、さらに、冷水出口温度が低下し
たときには冷媒管の電磁弁を閉じるとともに冷媒ブロー
管の電磁弁を開き、再生器から凝縮器へ流れる冷媒を大
幅に減少させるとともに、凝縮器の冷媒を吸収器へ流し
、吸収器の冷媒吸収能力を#らに低下させるとともに、
吸収液の濃度を急激に薄くして蒸発器の冷却能力を低下
させることができ、この結果、冷水出口温度の大幅な低
下を回避して冷水の凍結を防止することができ、又、吸
収液の結晶を防止することができる。
In addition, a solenoid valve is installed in the refrigerant pipe between the regenerator and the condenser, a solenoid valve is installed in the refrigerant pipe between the condenser and evaporator, and a refrigerant blow pipe between the absorber, and the refrigerant circulation pipe and A control valve is provided in the refrigerant blow pipe between the absorber and the opening degree of this control valve and the opening/closing of each of the above-mentioned xi valves are controlled by the cold water outlet temperature of the evaporator, so that the hot water main control operation of the absorption chiller/heater is performed. Sometimes, when the chilled water load suddenly decreases, the opening degree of the control valve increases as the chilled water outlet temperature decreases, and the amount of refrigerant flowing from the absorber to the evaporator increases, reducing the refrigerant absorption capacity of the absorber and reducing evaporation. Furthermore, when the chilled water outlet temperature drops, the solenoid valve of the refrigerant pipe is closed and the solenoid valve of the refrigerant blow pipe is opened, significantly reducing the amount of refrigerant flowing from the regenerator to the condenser. At the same time, the refrigerant in the condenser is flowed to the absorber, reducing the refrigerant absorption capacity of the absorber to #
It is possible to reduce the cooling capacity of the evaporator by rapidly diluting the concentration of the absorption liquid, and as a result, it is possible to avoid a significant drop in the cold water outlet temperature and prevent the cold water from freezing. crystallization can be prevented.

さらに、凝縮器の冷媒を吸収器へ流す配管に電磁弁を設
け、蒸発器の冷媒を吸収器へ流す配管に制御弁を設け、
この制御弁の開度、及び上記電磁弁の開閉を蒸発器の冷
水負荷で制御することにより、冷水負荷の急激な減少時
、制御弁の開度を冷水負荷の減少に伴い大きくして蒸発
器から吸収器へ冷媒を流し、吸収器の吸収液濃度を薄く
し、吸取器の冷媒吸収能力を低下させ、蒸発器の冷却能
力を冷水負荷の減少に応じて小さくすることができ、又
、きらに冷水負荷が減少したときには電磁弁を開き、凝
縮器の冷媒を吸収器へ流し、冷媒吸収能力を大幅に低下
させ、蒸発器の冷却能力を大幅に低下させ、冷水、又は
冷媒の凍結を防止することができる。
Furthermore, a solenoid valve is installed in the piping that flows the refrigerant from the condenser to the absorber, and a control valve is installed in the piping that flows the refrigerant from the evaporator to the absorber.
By controlling the opening degree of this control valve and the opening/closing of the above-mentioned solenoid valve by the chilled water load of the evaporator, when the chilled water load suddenly decreases, the opening degree of the control valve is increased as the chilled water load decreases, and the evaporator It is possible to flow refrigerant from the evaporator to the absorber, dilute the absorption liquid concentration in the absorber, reduce the refrigerant absorption capacity of the absorber, and reduce the cooling capacity of the evaporator in accordance with the reduction of the chilled water load. When the chilled water load decreases, the solenoid valve is opened and the refrigerant in the condenser flows to the absorber, significantly reducing the refrigerant absorption capacity and the cooling capacity of the evaporator, thereby preventing the chilled water or refrigerant from freezing. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし、第5図は本発明の一実施例を示し、第1
図は吸収冷温水機の回路構成図、第2図は温水入口温度
と冷水入口温度とによる暖房主制御と冷房主制御との関
係図、第3図は温水出口温度と温水ドレン制御弁の開度
との関係図、第4図は冷水出口温度と冷媒制御弁の開度
との関係図、第5図は吸収冷温水機の動作を説明するた
めのフローチャートである。 (2〉・・・蒸発器、 (3)・・・吸収器、 (5)
・・・凝縮器、 (6)・・・低温再生器、 (7)・
・・高温再生器、(14) 、 (15) 、 (16
)・・・冷媒管、 (20)・・・温水ドレン制御弁、
 (24)・・・第1電磁弁、 (26)・・・冷媒ポ
ンプ、 (2g) 、 (29)・・・冷媒ブロー管、
制御弁、 〈33)・・・冷媒ブロー管、磁片、 (4
3)・・・制御盤。 (30)・・・冷媒 (34)・・・第2電
1 to 5 show one embodiment of the present invention, and the first embodiment is shown in FIG.
Figure 2 is a diagram showing the circuit configuration of an absorption chiller/heater, Figure 2 is a diagram showing the relationship between heating main control and cooling main control based on hot water inlet temperature and cold water inlet temperature, and Figure 3 is a diagram showing the relationship between hot water outlet temperature and hot water drain control valve opening. FIG. 4 is a diagram showing the relationship between the chilled water outlet temperature and the opening degree of the refrigerant control valve, and FIG. 5 is a flowchart for explaining the operation of the absorption chiller/heater. (2>...Evaporator, (3)...Absorber, (5)
... Condenser, (6) ... Low temperature regenerator, (7).
...High temperature regenerator, (14), (15), (16
)... Refrigerant pipe, (20)... Hot water drain control valve,
(24)...First solenoid valve, (26)...Refrigerant pump, (2g), (29)...Refrigerant blow pipe,
Control valve, <33)... Refrigerant blow pipe, magnetic piece, (4
3)...Control panel. (30)...Refrigerant (34)...Second electric

Claims (1)

【特許請求の範囲】 1、吸収器、温水器が付設された再生器、凝縮器、及び
蒸発器を配管接続して冷凍サイクルを形成するとともに
、蒸発器の冷水出口温度で再生器の加熱量を制御する冷
水主制御と、温水出口温度で再生器の加熱量を制御する
温水主制御とを切換える機構を備えた吸収冷温水機にお
いて、凝縮器と蒸発器との間の冷媒管と吸収器との間に
接続された冷媒ブロー管と、この冷媒ブロー管に設けら
れた電磁弁と、蒸発器に接続された冷媒循環管に設けら
れた冷媒ポンプの吐出側と吸収器との間に設けられた冷
媒ブロー管と、この冷媒ブロー管に設けられた冷媒制御
弁と、温水主制御時に冷水出口温度で冷媒制御弁の開度
を制御し、さらに上記電磁弁の開閉を制御する機構とを
備えたことを特徴とする吸収冷温水機。 2、吸収器、温水器が付設された再生器、凝縮器、及び
蒸発器を配管接続して冷凍サイクルを形成するとともに
、凝縮器と蒸発器との間に冷媒管を接続し、蒸発器に冷
媒循環管を接続し、蒸発器から冷水を供給し、温水器か
ら温水を供給するように構成した吸収冷温水機において
、上記冷媒管と吸収器との間に冷媒ブロー管を接続し、
この冷媒ブロー管の途中に電磁弁を設け、冷媒循環管と
吸収器との間に冷媒ブロー管を接続し、この冷媒ブロー
管の途中に制御弁を設け、再生器と凝縮器との間の冷媒
管の途中に電磁弁を設け、かつ、上記各電磁弁の開閉、
及び上記制御弁の開度を蒸発器の冷水出口温度で制御す
る機構を設けたことを特徴とする吸収冷温水機。 3、吸収器、温水器が付設された再生器、凝縮器、及び
蒸発器を配管接続して冷凍サイクルを形成し、温水器か
ら温水を供給し、かつ蒸発器から冷水を供給する吸収冷
温水機において、凝縮器の冷媒を吸収器へ流す配管の途
中に設けられた電磁弁と、蒸発器の冷媒を吸収器へ流す
配管の途中に設けられた制御弁と、この制御弁の開度、
及び上記電磁弁の開閉を蒸発器の冷水負荷で制御する機
構とを備えたことを特徴とする吸収冷温水機。
[Claims] 1. An absorber, a regenerator equipped with a water heater, a condenser, and an evaporator are connected via piping to form a refrigeration cycle, and the heating amount of the regenerator is determined by the cold water outlet temperature of the evaporator. In an absorption chiller/heater equipped with a mechanism for switching between cold water main control that controls the amount of heat generated by the regenerator and hot water main control that controls the heating amount of the regenerator based on the hot water outlet temperature, the refrigerant pipe between the condenser and the evaporator and the absorber a refrigerant blow pipe connected between the refrigerant blow pipe, a solenoid valve provided on the refrigerant blow pipe, and a refrigerant pump provided between the discharge side of the refrigerant pump and the absorber provided in the refrigerant circulation pipe connected to the evaporator. a refrigerant blow pipe, a refrigerant control valve provided in the refrigerant blow pipe, and a mechanism that controls the opening degree of the refrigerant control valve according to the cold water outlet temperature during main hot water control, and further controls the opening and closing of the solenoid valve. An absorption chiller/heater featuring the following features: 2. Connect an absorber, a regenerator with a water heater, a condenser, and an evaporator via piping to form a refrigeration cycle, and connect a refrigerant pipe between the condenser and evaporator to connect the evaporator to the evaporator. In an absorption chiller/heater configured to connect a refrigerant circulation pipe, supply cold water from an evaporator, and supply hot water from a water heater, a refrigerant blow pipe is connected between the refrigerant pipe and the absorber,
A solenoid valve is provided in the middle of this refrigerant blow pipe, a refrigerant blow pipe is connected between the refrigerant circulation pipe and the absorber, a control valve is provided in the middle of this refrigerant blow pipe, and the refrigerant blow pipe is connected between the regenerator and the condenser. A solenoid valve is installed in the middle of the refrigerant pipe, and each of the above solenoid valves is opened and closed.
and an absorption chiller/heater comprising a mechanism for controlling the opening degree of the control valve according to the chilled water outlet temperature of the evaporator. 3. Absorption cold/hot water by connecting an absorber, a regenerator with a water heater, a condenser, and an evaporator via piping to form a refrigeration cycle, supplying hot water from the water heater and cold water from the evaporator. In the machine, there is a solenoid valve installed in the middle of the pipe that flows the refrigerant from the condenser to the absorber, a control valve installed in the middle of the pipe that flows the refrigerant from the evaporator to the absorber, and the opening degree of this control valve.
and a mechanism for controlling the opening and closing of the electromagnetic valve according to the cold water load of the evaporator.
JP29470989A 1989-11-13 1989-11-13 Absorption cold/hot water producer Pending JPH03156260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29470989A JPH03156260A (en) 1989-11-13 1989-11-13 Absorption cold/hot water producer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29470989A JPH03156260A (en) 1989-11-13 1989-11-13 Absorption cold/hot water producer

Publications (1)

Publication Number Publication Date
JPH03156260A true JPH03156260A (en) 1991-07-04

Family

ID=17811294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29470989A Pending JPH03156260A (en) 1989-11-13 1989-11-13 Absorption cold/hot water producer

Country Status (1)

Country Link
JP (1) JPH03156260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020050504A (en) * 2000-12-21 2002-06-27 황한규 Absorption freezer with crystalization prevention method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020050504A (en) * 2000-12-21 2002-06-27 황한규 Absorption freezer with crystalization prevention method

Similar Documents

Publication Publication Date Title
US3410104A (en) Absorption refrigerating systems
JP2523042B2 (en) Absorption cold water heater
JPH03156260A (en) Absorption cold/hot water producer
JP2985513B2 (en) Absorption cooling and heating system and its control method
JPS62186178A (en) Absorption refrigerator
KR100542461B1 (en) Absorptive refrigerator
JP2883372B2 (en) Absorption chiller / heater
JP2858922B2 (en) Absorption chiller / heater controller
JPH0833259B2 (en) Absorption chiller / heater control method
JP2816012B2 (en) Control device for absorption refrigerator
JP3157349B2 (en) Absorption refrigerator control device
JP4145001B2 (en) Absorption refrigerator
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JPH05312429A (en) Absorption water cooling/heating apparatus
JPH0275865A (en) Controlling method for absorption refrigerator
JPS5818139Y2 (en) Double effect absorption chiller
JPH02203166A (en) Absorption type refrigerator
JPH04313652A (en) Absorption refrigerating machine
JPS5924770B2 (en) Absorption heating and cooling equipment
JPH0317474A (en) Absorption refrigerator
JP3133538B2 (en) Absorption refrigerator
JPH03279760A (en) Absorption system cold/hot water supplying apparatus
JPS5960162A (en) Controller for absorption refrigerator
JPS6277567A (en) Absorption refrigerator
JPS63282460A (en) Absorption refrigerator