JPH0315587B2 - - Google Patents

Info

Publication number
JPH0315587B2
JPH0315587B2 JP9853082A JP9853082A JPH0315587B2 JP H0315587 B2 JPH0315587 B2 JP H0315587B2 JP 9853082 A JP9853082 A JP 9853082A JP 9853082 A JP9853082 A JP 9853082A JP H0315587 B2 JPH0315587 B2 JP H0315587B2
Authority
JP
Japan
Prior art keywords
brake
pressure
direct
command value
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9853082A
Other languages
Japanese (ja)
Other versions
JPS58218464A (en
Inventor
Kazuhiko Nagase
Toshio Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP9853082A priority Critical patent/JPS58218464A/en
Publication of JPS58218464A publication Critical patent/JPS58218464A/en
Publication of JPH0315587B2 publication Critical patent/JPH0315587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)
  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Description

【発明の詳細な説明】 本発明は電磁直通ブレーキ装置の故障検知方法
に関するものである。このブレーキ装置は応答性
に優れ、構造も比較的簡易なため多くの電車に広
く使用されている。しかしこの装置は列車全体に
引き通された直通管や電気指令線の加圧によりブ
レーキ指令を伝達するため、これらの要素が破損
するとブレーキ力の低下又は失効などの事態が生
ずる。たとえ、このような事態が発生しても、通
常、運転士がそのような事態の発生を直ちに認識
し、非常ブレーキの手配を行うので、最悪事態の
発生は防止できる。ところで、自動列車運転装置
や自動列車制御装置(以下これらを「ATC」と
いう。)を用いて運転している列車のブレーキ出
力指令は多くの場合、運転士の手を介することな
くATCから自動的に出力される。このような運
転方式を採つた列車にブレーキ装置の故障が発生
した場合は、たとえ、運転士が乗務している場合
でも、ブレーキ故障発生を運転士が認識出来ない
可能性がある。このため、ATC運転を行う列車
はATCから出力されるブレーキ指令に沿つた減
速を列車が行い得ないような事態が発生した場合
には、その旨を検知できるブレーキ故障発生検知
装置を設けている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a failure detection method for an electromagnetic direct brake device. This brake device has excellent responsiveness and a relatively simple structure, so it is widely used on many trains. However, this device transmits brake commands by pressurizing direct pipes and electrical command lines that run throughout the train, so if these elements are damaged, braking force may decrease or fail. Even if such a situation occurs, the driver usually immediately recognizes the occurrence of such a situation and arranges for emergency braking, so that the worst situation can be prevented from occurring. By the way, in many cases, brake output commands for trains operating using automatic train operation equipment or automatic train control equipment (hereinafter referred to as "ATC") are automatically issued from ATC without the driver's intervention. is output to. If a brake system failure occurs in a train that employs such a driving method, the driver may not be able to recognize that the brake failure has occurred, even if the driver is on board. For this reason, trains operating with ATC are equipped with a brake failure detection device that can detect when a situation occurs where the train is unable to decelerate in accordance with the brake commands output from ATC. .

しかし、かような目的のためにATC運転を行
う列車に現在取り付けられている公知の検知装置
は、本来の機能を充分に果たしたものとは言い難
い。編成列車の全ての車両がブレーキ指令に対応
したブレーキ機能をが発揮しているか否かをチエ
ツクする機構を取り付けるためには、編成全車両
のブレーキシリンダ圧の上昇状況を検知出来る装
置など複雑なシステム等を導入せねばならない。
しかし、これは容易でない。このため、ATC運
転を行う多くの列車で採用されているこの種の検
知装置は、特定の車両(多くの場合先頭車両)に
ブレーキ指令が到達したことを圧力スイツチ等に
より検知し、これをもつてブレーキ効果の確認に
代えている場合が多い。このような方式では列車
全体にブレーキ効果が及んでいることの確認等を
行うことは難しい。
However, the known detection devices currently installed on trains that perform ATC operation for such purposes cannot be said to fully fulfill their original function. In order to install a mechanism to check whether all vehicles in a train train are exerting the brake function corresponding to the brake command, a complex system such as a device that can detect the increase in brake cylinder pressure of all vehicles in the train train is required. etc. must be introduced.
However, this is not easy. For this reason, this type of detection device, which is used in many trains that perform ATC operation, uses a pressure switch etc. to detect when a brake command has reached a specific vehicle (in most cases the lead vehicle). In many cases, this is used instead of checking the braking effect. With such a method, it is difficult to confirm that the braking effect is being applied to the entire train.

本発明は電磁直通ブレーキを使用した列車に簡
易な装置を装備することによつて列車全体のブレ
ーキ装置に故障が発生し、ブレーキ指令に沿つた
ブレーキ効果が期待出来ない事態が発生した場合
にはその旨を直ちに検知できるシステムを提供
し、これによつて、上記の問題を解決しようとす
るものである。
The present invention equips trains that use electromagnetic direct brakes with a simple device, so that in the event that a failure occurs in the entire train's braking equipment and the braking effect cannot be expected in accordance with the braking command, The present invention aims to solve the above problem by providing a system that can immediately detect this fact.

つぎに、本発明の実施例の説明に先だつて、公
知の電磁直通ブレーキの構造を第1図の概念図に
より説明する。図において乗務員の操作するブレ
ーキ弁BVは図示しない元空気ダメに接続され、
列車の長手方向に引き通された元ダメ管MRから
の圧縮空気(以下、“空気”と略す)をブレーキ
弁の操作により、ブレーキ設定指令値に応じた圧
力に調圧し制御管CPを介し、電空制御器1の空
気室3に出力する。電空制御器1は2つの空気室
3、及び4が作用棒6と2つの膜板2を介し相対
して設けられ、空気室4は列車全体にブレーキ作
動指令を伝達するため直通管SAPに接続され同
管はホース連結器HCを通じ元ダメ管MRと共に
列車長手方向全長にわたり引き通される。各車毎
に直通管SAPに接続されたユルメ電磁弁RVは通
常すなわちブレーキ緩解時は、電空制御器1から
のユルメ制御指令線(以下、これを“RL”とい
う)が不動作なので、直通管SAPの空気を排気
口EXから大気に開放し、ブレーキ作動時には、
RLが動作となつて大気と直通管SAPとの間を閉
じる。同じ直通管SAPに接続する電磁弁AVは電
空制御器1からの直通管圧力制御線たる作用制御
指令線(以下、これを“AL”という)が動作加
圧されたときに限り動作となつて元ダメ管MRの
高圧空気を貯えた供給空気ダメSR内の空気を直
通管SAPに給気する。中継弁LVは直通管SAPの
指令をうけてこれと等圧の多量の空気を供給空気
ダメSRからブレーキシリンダBCに給気し又はブ
レーキシリンダの空気を排気口EXから排気する。
Next, prior to describing embodiments of the present invention, the structure of a known electromagnetic direct brake will be explained with reference to the conceptual diagram of FIG. In the figure, the brake valve BV operated by the crew is connected to a source air dam (not shown).
The compressed air (hereinafter referred to as "air") from the former damaged pipe MR drawn in the longitudinal direction of the train is regulated to a pressure according to the brake setting command value by operating the brake valve, and then passed through the control pipe CP. It is output to the air chamber 3 of the electropneumatic controller 1. The electro-pneumatic controller 1 has two air chambers 3 and 4 facing each other via an action rod 6 and two membrane plates 2, and the air chamber 4 is connected to a direct pipe SAP in order to transmit brake operation commands to the entire train. Once connected, the pipe is routed along the entire length of the train along with the previously damaged pipe MR through the hose coupler HC. Normally, that is, when the brake is released, the brake control command line (hereinafter referred to as "RL") from the electro-pneumatic controller 1 is inactive, so the brake solenoid valve RV connected to the direct pipe SAP for each car is directly connected. The air in the pipe SAP is released to the atmosphere from the exhaust port EX, and when the brake is applied,
RL becomes active and closes the gap between the atmosphere and the direct pipe SAP. The solenoid valve AV connected to the same direct pipe SAP operates only when the action control command line (hereinafter referred to as "AL"), which is the direct pipe pressure control line from the electro-pneumatic controller 1, is pressurized. The air in the supply air tank SR, which stores high-pressure air from the former pipe MR, is supplied to the direct pipe SAP. The relay valve LV receives a command from the direct pipe SAP and supplies a large amount of air at the same pressure to the brake cylinder BC from the supply air tank SR, or exhausts the air in the brake cylinder from the exhaust port EX.

以上が公知の電磁直通ブレーキ装置の主要構成
だが、つぎにこの装置の動作を説明しよう。ブレ
ーキ緩解中はブレーキ弁BVからの制御管CPを通
じて空気室3の加圧は行われないのでバネSPに
より作用棒6は空気室3側に押され、これに連ら
なるテコの先端に設けられたRLにつらなるユル
メ接点RS、及びALにつらなる作用接点ASは開
放され、かくして直通管SAP内の空気はユルメ
電磁弁RVから排気され無圧状態となり、よつて
ブレーキシリンダBCの圧力も0となる。ブレー
キ弁BVの操作により制御管CPを介し空気室3が
加圧されるとこれにつらなる膜板2の力でバネ
SPに抗して作用棒6が動き、まず始めにユルメ
接点RSが閉成され、これによりユルメ電磁弁RV
は直通管SAPとつらなる排気口EXを閉じ、つい
で作用接点ASの閉成により作用電磁弁AVが動
作となり、供給空気ダメSRの空気を直通管SAP
に送気し、これを昇圧させ、この圧力は電空制御
器1の空気室4にも伝達される。空気室4の圧力
が次第に上昇すると、これにつらなる膜板2に生
ずる力により、作用棒6は空気室3側に移動し、
これら2つの空気室が等圧となつた瞬間、すなわ
ちCPとSAPとが等圧になつた時点で作用接点AS
は開放され、作用電磁弁AVを介しての直通管
SAPの上昇作用は停止する。なおその場合ユル
メ接点RSは閉成されたままである。その後ブレ
ーキ弁BVの操作により更に空気室3を昇圧させ
れば同じ作用をくりかえした後直通管SAPは制
御管CPと等圧となる。
The above is the main configuration of a known electromagnetic direct brake device, but the operation of this device will now be explained. During brake release, the air chamber 3 is not pressurized through the control pipe CP from the brake valve BV, so the action rod 6 is pushed toward the air chamber 3 by the spring SP, and the lever provided at the tip of the lever connected to the spring SP pushes the action rod 6 toward the air chamber 3. The brake contact RS connected to RL and the working contact AS connected to AL are opened, and the air in the direct pipe SAP is exhausted from the brake solenoid valve RV and becomes pressureless, and the pressure in the brake cylinder BC also becomes 0. . When the air chamber 3 is pressurized through the control pipe CP by operating the brake valve BV, the force of the membrane plate 2 connected to this pressurizes the air chamber 3.
The actuating rod 6 moves against SP, first of all the valve contact RS is closed, which causes the valve solenoid valve RV to close.
closes the exhaust port EX which is connected to the direct pipe SAP, and then the working solenoid valve AV is operated by closing the working contact AS, and the air from the supply air tank SR is transferred to the direct pipe SAP.
This pressure is also transmitted to the air chamber 4 of the electro-pneumatic controller 1. As the pressure in the air chamber 4 gradually increases, the force generated on the membrane plate 2 connected thereto causes the action rod 6 to move toward the air chamber 3.
At the moment when these two air chambers become equal pressure, that is, when CP and SAP become equal pressure, the working contact AS
is opened and acts directly through the pipe through the solenoid valve AV
The ascending effect of SAP ceases. Note that in that case, the lid contact RS remains closed. After that, if the pressure in the air chamber 3 is further increased by operating the brake valve BV, the pressure of the direct pipe SAP becomes equal to that of the control pipe CP after the same action is repeated.

つぎにブレーキ弁BVの操作により、制御管CP
を介し、空気室3の圧力を減圧するとそれまで閉
成しつづけたユルメ接点RSは開放され、これに
よりRLを通じ、動作中のユルメ電磁弁RVは不
動作となり、直通管SAPの空気を排気口EXから
排気し、内圧を次第に低下せしめ、これにより電
空制御器1の空気室4の圧力は低下し、次に両空
気室3,4が等圧となつた時点でユルム接点RS
は再び閉成され、これにより制御管CPと直通管
SAPとは等圧に保持される。これらの動作が行
われる毎に供給空気ダメSRの空気を給排気する
ことにより中継弁LVはブレーキシリンダBCの圧
力を直通管SAPの圧力と一定に保持する。
Next, by operating the brake valve BV, the control pipe CP
When the pressure in air chamber 3 is reduced through Exhaust air from the EX and gradually lower the internal pressure, thereby lowering the pressure in the air chamber 4 of the electropneumatic controller 1. Next, when both air chambers 3 and 4 become equal pressure, the Yurum contact RS
is closed again, which connects the control pipe CP and the direct pipe.
It is maintained at equal pressure with SAP. Each time these operations are performed, the relay valve LV maintains the pressure in the brake cylinder BC constant with the pressure in the direct pipe SAP by supplying and discharging air from the supply air tank SR.

以上が当ブレーキ装置の有する主な機能及び作
用であるがこれから明らかなように、ブレーキ弁
BVを操作することにより列車に作用させるべ
き、ブレーキ設定指令値を制御管CPの圧力とし
て設定すると電空制御器1等の作用により全車に
引き通された直通管SAPはその圧力値に追従し
これにつれブレーキシリンダBCの圧力も昇圧す
る。
The above are the main functions and actions of this brake device, but as is clear from this, the brake valve
When the brake setting command value that should be applied to the train by operating the BV is set as the pressure of the control pipe CP, the direct pipe SAP running through all the trains will follow that pressure value due to the action of the electro-pneumatic controller 1 etc. Along with this, the pressure in the brake cylinder BC also increases.

そしてブレーキ設定指令値たる制御管CP圧力
が設定されるとブレーキシリンダ圧力は各車の電
磁弁の作用などにより全車ではほとんど同時にし
かもすみやかにその設定指令値に追従し、その追
従性は列車編成両数によつてはほとんど変化しな
い。
When the control pipe CP pressure, which is the brake setting command value, is set, the brake cylinder pressure follows the set command value almost simultaneously and quickly in all cars due to the action of the solenoid valve of each car. There is almost no change depending on the number.

以上の機能を有する公知の電磁直通ブレーキ装
置において万一直通管圧力制御線たるAL、及び
RLの途中での断線、又は直通管SAPのホース連
結器HC等の破損などがあるとブレーキ設定指令
値たる制御管CPの圧力に対する直通管SAPの圧
力追従性が著しく低下する。例えば、ALが途中
で断線すれば断線の発生した箇所以後の車両の作
用電磁弁AVが動作せず、このため直通管の昇圧
が著しく遅延し、また、直通管からのたとえわず
かでも漏洩があれば電空制御器1は両空気室3及
び4の間の差圧が増大するので一旦その動作が停
止し作用接点ASが開放された後でも再びその接
点を閉成して、直通管SAPへの空気の補給を行
う。さらに直通管SAPのホース連結器HCの破損
やRLの断線が発生すれば直通管SAPから多量の
空気が漏気するので制御管CPが加圧されても直
通管SAPはその圧力まで追従昇圧しないか、あ
るいは昇圧しても再び圧力低下するので直通管圧
力を制御管圧力と等圧にさせるため、作用接点
ASが連続、又は間欠的に動作を繰返すことにな
る。従つてこのような故障が発生すれば、本来は
ブレーキ設定指令値の変化がなければ動作しない
はずの電空制御器1が動作する。すなわちブレー
キ指令値が一定時間以上同一値を保持した状態の
下で本来は動作を停止しているはずの電空制御器
1から出力されるALが動作することになる。そ
こでこのような現象を用いて電磁直通ブレーキに
故障が発生した時にその旨を検知する本発明の一
実施例を第1図に付記したブロツク図を用い述べ
てみよう。
In the well-known electromagnetic direct brake device having the above functions, in the unlikely event that the direct pipe pressure control line AL and
If there is a disconnection in the middle of RL or damage to the hose coupler HC of the direct pipe SAP, etc., the ability of the direct pipe SAP to follow the pressure of the control pipe CP, which is the brake setting command value, will be significantly reduced. For example, if the AL is disconnected midway, the solenoid valve AV of the vehicle after the point where the disconnection occurs will not operate, resulting in a significant delay in boosting the pressure in the through pipe, and even if there is even a small leak from the through pipe. For example, since the differential pressure between the two air chambers 3 and 4 increases, the electro-pneumatic controller 1 temporarily stops its operation and closes the contact again even after the working contact AS is opened and connects the direct pipe SAP. Replenish air. Furthermore, if the hose coupler HC of the direct pipe SAP is damaged or the RL is disconnected, a large amount of air will leak from the direct pipe SAP, so even if the control pipe CP is pressurized, the pressure of the direct pipe SAP will not rise to that pressure. Or, even if the pressure increases, the pressure will drop again, so in order to make the direct pipe pressure equal to the control pipe pressure, the working contact
AS repeats its operation continuously or intermittently. Therefore, if such a failure occurs, the electro-pneumatic controller 1, which would normally not operate unless there is a change in the brake setting command value, operates. In other words, when the brake command value remains the same for a certain period of time or more, the AL output from the electro-pneumatic controller 1, which should normally be inactive, starts operating. An embodiment of the present invention that uses such a phenomenon to detect when a failure occurs in the electromagnetic direct brake will be described using the block diagram attached to FIG. 1.

第1図で点線で図示されるTDは本発明実施の
ため特に本ブレーキ装置に附加された故障検知器
であつて制御管CPの圧力を検知する圧力検知器
PT、公知の微分機構を有する圧力変化検知器
PT′、公知のクロツクを有する時素設定器TR、
及び論理積回路ANDより構成されている。圧力
検知器PTは、制御管CPの圧力を検知しており、
その状況を絶えず圧力変化検知器PT′に出力す
る。
TD indicated by a dotted line in FIG. 1 is a failure detector specifically added to this brake device for implementing the present invention, and is a pressure detector that detects the pressure in the control pipe CP.
PT, pressure change detector with known differential mechanism
PT′, time setter TR with known clock;
and a logical product circuit AND. Pressure detector PT detects the pressure in control pipe CP,
The situation is constantly output to the pressure change detector PT'.

該変化検知器PT′は検知圧力の変化すなわち、
ブレーキ設定指令値変化があつた場合には直ちに
それを検知しその旨を時素設定器TRへ出力す
る。
The change detector PT′ detects a change in the detected pressure, that is,
If there is a change in the brake setting command value, it is immediately detected and a notification to that effect is output to the time setter TR.

該時素設定器TRは指令値の変化があつた旨の
出力をうけた場合、内蔵のクロツク等を用い最も
直近に変化のあつた時点から予め定められた時間
だけ経過した時点を検知するがその時間はブレー
キ装置が正常の場合、ブレーキ設定指令値の変化
が最大であつた時、直通管SAPの圧力がその指
令変化に追従するに要する時間(通常約4秒程
度)すなわち、電空制御器1内の2つの空気室3
及び4内に差圧があつてALが動作となつている
可能性ある最長時間にセツトされている。そして
この時間経過後時素設定器TRは動作となつてそ
の時、すなわち直通管SAP圧力が指令値に追従
するに要する時間が経過した旨の情報を論理積回
路ANDに出力する。
When the time setter TR receives an output indicating that there has been a change in the command value, it uses a built-in clock, etc. to detect the point at which a predetermined amount of time has elapsed from the most recent change. When the brake system is normal, the time required for the pressure in the direct pipe SAP to follow the maximum change in brake setting command value (usually about 4 seconds) is the electro-pneumatic control Two air chambers 3 inside the vessel 1
It is set to the longest possible time that there is a differential pressure between and 4 and the AL is in operation. After this time elapses, the time element setter TR becomes operational and outputs information to the AND circuit AND that the time required for the direct pipe SAP pressure to follow the command value has elapsed.

当回路ANDにはALも入力されている。ブレー
キ指令が行われた際、直通管SAPからの空気の
漏れやRL一部断線などの事態発生により所定の
ブレーキ効果が期待出来ない事態が発生したとし
よう。すると、直通管SAP圧力は所定値を確保
できず、あるいは、例え一旦は所定圧に達して
も、その後、その値は次第に低下する。このよう
な事態が生ずると、指令圧力たる制御管CPの圧
力と直通管SAP圧力との間に乗離が生じる。す
ると、ブレーキ指令が行われた時点から一定時間
が経過し、ALの指令が本来中止されるべき時点
においてすらも、電空制御器1の接点ASが閉成
され、ALに指令出力が加えられる。これによつ
て、故障検知器TDは当該ブレーキ装置の作動が
不良である旨の情報を出力する。
AL is also input to this circuit AND. Suppose that when a brake command is issued, a situation occurs where the desired braking effect cannot be expected due to air leakage from the direct pipe SAP or a partial break in the RL. Then, the direct pipe SAP pressure cannot maintain a predetermined value, or even if it once reaches the predetermined pressure, the value gradually decreases thereafter. When such a situation occurs, a separation occurs between the pressure of the control pipe CP, which is the command pressure, and the pressure of the direct pipe SAP. Then, a certain period of time has passed since the brake command was issued, and even at the time when the AL command should have been stopped, the contact AS of the electro-pneumatic controller 1 is closed and a command output is applied to the AL. . As a result, the failure detector TD outputs information indicating that the brake device is malfunctioning.

このような構成の下においても、ブレーキ弁
BVが操作され、ALに指令が出力された場合に
は、その時点から定められた時間だけ時素設定器
TRから論理積回路ANDへの出力は停止され、
従つてこの間ALの出力があつても故障検知出力
はない。
Even under this configuration, the brake valve
When the BV is operated and a command is output to the AL, the hourly setter is activated for a predetermined period of time from that point onwards.
The output from TR to the AND circuit AND is stopped,
Therefore, even if there is an AL output during this period, there is no failure detection output.

以上述べた故障検知の具体的方法はこれに限定
されるものでなく、要はブレーキ設定指令値が一
定時間以上継続して同一値を保持した状況の下で
ALが動作となることを検知できる方法なら、こ
れにとらわれることはなく他の方法、例えば論理
積回路ANDに代えて継電器を用い、あるいはブ
レーキ設定指令値の変化を制御管CPの圧力変化
を検知することに代えてブレーキハンドルの動き
をとらえることとしてもよく他にいろいろ対応が
考えられる。
The specific method of failure detection described above is not limited to this, but the point is that the brake setting command value remains the same for a certain period of time or more.
You are not limited to this method, as long as you can detect when the AL is activated, you can use other methods, such as using a relay instead of an AND circuit, or detecting changes in the pressure of the control pipe CP based on changes in the brake setting command value. Instead of doing this, it is also possible to capture the movement of the brake handle, and there are many other ways to deal with it.

以上の故障検知方法ではブレーキ設定指令値が
変更になつたとき、直通管SAPの圧力が指令に
追従するに要する時間を一定と見做した。しかし
実際にはこの時間は一定ではなく指令値の変化の
差に応じて異り、差が大きければ当然のことなが
ら直通管SAP内の圧力を給排気させる空気量も
増大するので指令値に追従するまでの時間も増大
する。前述の方法はさきにものべたように指令値
変化の差が最大時の直通管追従所要時間を用いて
故障検知を行つたが所要時間はこれより短い場合
もあり得る訳で、かようなとき必要以上の所要時
間を確保すれば、万一ブレーキ装置に故障のあつ
た場合、その発見も遅延することになる。この対
策としてブレーキ設定指令値の変更があつたと
き、変更された指令値の差に応じ予め求めておい
た変更されたブレーキが有効になるまでいわゆる
ブレーキ作動所要時間をメモリなどから検知し、
この時間が経過した後にALが動作となつたこと
をもつてブレーキ装置の故障検知を行えば前述の
方法は故障検知時間をより短縮でき保安度向上の
上からも好ましい。そこでつぎにこの方法を第1
図における実施例に併設した場合の実施例を第2
図の制御ブロツク図に基づいて述べてみよう。
In the above failure detection method, when the brake setting command value is changed, the time required for the pressure in the direct pipe SAP to follow the command is assumed to be constant. However, in reality, this time is not constant, but varies depending on the difference in the change in command value, and if the difference is large, the amount of air to supply and exhaust the pressure in the direct pipe SAP will naturally increase, so it will follow the command value. The time it takes to do so also increases. As mentioned earlier, the method described above detects a failure using the time required to follow the direct pipe when the difference in command value change is maximum, but the time required may be shorter than this. If the required time is longer than necessary, in the unlikely event that there is a failure in the brake system, detection of the failure will be delayed. As a countermeasure for this, when the brake setting command value is changed, the so-called brake operation time required for the changed brake to become effective, which has been determined in advance according to the difference in the changed command value, is detected from memory etc.
If the failure of the brake device is detected when the AL is activated after this time has elapsed, the above-described method is preferable from the viewpoint of further shortening the failure detection time and improving the safety level. Therefore, we will use this method as the first method.
The second example shows the example when installed together with the example shown in the figure.
Let's explain based on the control block diagram shown in the figure.

図においてブレーキ設定指令値たる制御管CP
の圧力を検知する圧力検知器PTからの出力を入
力してその変化を検知する圧力変化検知器PT′は
指令値が変化した場合、直ちにこれを検知し、動
作となつて公知のゲートGT1にその旨を入力させ
瞬時だけこれを動作させ、圧力検知器PTからの
出力、すなわちブレーキ設定指令値の変化開始時
点の値を公知の記憶素子RAMに入力、記憶させ
る。公知の否定回路NOTは圧力変化検知器
PT′からの出力がなくなつた時点すなわちブレー
キ設定指令値が同一値を保持するようになつた時
点(変化のなくなつた時点)で動作となつてその
旨を公知のゲートGT2に出力してこれを瞬時動作
となし記憶素子RAMに記憶した情報すなわちブ
レーキ設定指令値の変化開始時の値を公知の演算
回路CPに出力する。当回路CPには圧力検知器
PTから常時ブレーキ設定指令値が入力されさら
にゲートGT2を介しての記憶素子RAMからの情
報が入力した時点で動作となつて入力した2つの
情報の差すなわち変更が行われたブレーキ設定指
令値の差異を演算検出し、これを公知のパタン発
生器PGへ出力する。当パタン発生器PGにはブレ
ーキ設定指令値を変更したとき変更された前後指
令値の差に応じて変更されたブレーキが有効な作
動状態になるまでの所要時間がパタンとして内蔵
しており入力した指令値の差異に応じたブレーキ
作動所要時間を検知し、これを公知のクロツクを
内蔵する時素設定器TR′に出力する。当設定器
TR′は圧力変化検知器PT′からブレーキ設定指令
値が変変化した旨の情報を受け、その時点からパ
タン発生器PGが検出し当設定器TR′に出力され
たブレーキ作動所要時間だけ不動作となつてこの
間に限つては論理積回路ANDには何らかの出力
を行わず、その時間経過後当回路ANDに出力を
行う。なお当回路ANDにはALからの出力も入力
されており、双方からの入力を条件としてブレー
キ故障検知情報を出力する構成となつている。か
ような構成において、ブレーキ設定指令値が一定
時間以上継続して同一値の場合には時素設定器
TR′は不動作、よつてこれからの論理積回路
ANDへの出力はあるがALからの出力がなくブレ
ーキ故障検知情報は出力しない。ブレーキ弁BV
を操作することにより、ブレーキ設定指令値が変
更になりALからの出力が生ずると前述の機能に
よつて時素設定器TR′は指令値変更の値に応じた
ブレーキ作動所要時間だけ不動作となるものでこ
れからの出力はなく論理積回路ANDも動作しな
い。しかしブレーキ設定値が変更されてから一定
時間経過後具体的には指令値変更の値に応じたブ
レーキ作動所要時間経過後は、時素設定器TR′は
動作となり、万一この時点でブレーキが作動を完
了せず、或は直通管SAPの漏洩などによりALが
動作すれば直ちに論理積回路ANDが動作となつ
てブレーキ故障検知情報が出力される。かような
方法によれば指令値変更時の時素設定器TR′の不
動作となる時間も短いので万一ブレーキ装置に異
常が発生した場合にもこれをすみやかに検知でき
る。
In the figure, the control pipe CP is the brake setting command value.
When the command value changes, the pressure change detector PT', which inputs the output from the pressure detector PT and detects the change in pressure, immediately detects this and starts operating the well-known gate GT 1 . This is inputted into the controller, and the controller is operated for an instant, and the output from the pressure detector PT, that is, the value at the time when the brake setting command value starts changing, is input and stored in a known storage element RAM. The known negative circuit NOT is a pressure change detector
When the output from PT' disappears, that is, when the brake setting command value comes to hold the same value (no longer changes), it starts operating and outputs a notification to that effect to gate GT 2. This is assumed to be an instantaneous operation, and the information stored in the storage element RAM, that is, the value at the start of change of the brake setting command value, is output to a known arithmetic circuit CP. There is a pressure sensor in this circuit CP.
When the brake setting command value is constantly input from PT and the information from the memory element RAM via gate GT 2 is input, the operation starts and the difference between the two input information, that is, the brake setting command value that has been changed. , and outputs it to a known pattern generator PG. This pattern generator PG has a built-in pattern for the time required for the changed brake to reach an effective operating state according to the difference between the changed command values before and after changing the brake setting command value. The time required for brake operation according to the difference in command values is detected and outputted to the time setter TR' which has a built-in known clock. This setting device
TR' receives information from the pressure change detector PT' that the brake setting command value has changed, and from that point on, it remains inactive for the required brake operation time detected by the pattern generator PG and output to the setter TR'. Therefore, only during this time, no output is made to the AND circuit AND, and after that time has elapsed, an output is made to the circuit AND. Note that the output from AL is also input to this circuit AND, and the configuration is such that brake failure detection information is output based on input from both. In such a configuration, if the brake setting command value remains the same for a certain period of time or more, the time prime setting device
TR′ is non-operating, so the AND circuit of the future
There is an output to AND, but there is no output from AL, so brake failure detection information is not output. Brake valve BV
When the brake setting command value is changed by operating , and an output is generated from AL, the time element setting device TR' will be inactive for the time required for brake operation according to the value of the command value change due to the above-mentioned function. There will be no output from this, and the AND circuit will not work. However, after a certain period of time has elapsed since the brake setting value was changed, specifically, after the time required for brake operation according to the value of the command value change has elapsed, the time setter TR' will be activated, and in the unlikely event that the brake is activated at this point. If the operation is not completed or the AL is activated due to leakage in the direct pipe SAP, the AND circuit AND is activated immediately and brake failure detection information is output. According to such a method, the time period during which the time element setter TR' is inoperative when the command value is changed is shortened, so that even if an abnormality occurs in the brake device, it can be detected promptly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、公知の電磁直通ブレーキ装置の構造
説明図に本発明の一実施例を併記したブロツク
図、第2図は本発明の他の実施例を示すブロツク
図である。 BV…ブレーキ弁、CP…制御管、1…電空制御
器、2…膜板、3,4…空気室、6…作用棒、
RS…ユルメ接点、AS…作用接点、SAP…直通
管、MR…元ダメ管、AV…作用電磁弁、RV…ユ
ルメ電磁弁、SR…供給空気ダメ、LV…中継弁、
BC…ブレーキシリンダ、TD…故障検知器、PT
…圧力検知器、PT′…圧力変化検知器、TR,
TR′…時素設定器、GT1,GT2…ゲート、RAM
…記憶素子、PG…パタン発生器、CP…演算回
路。
FIG. 1 is a block diagram showing an embodiment of the present invention together with a structural explanatory diagram of a known electromagnetic direct brake device, and FIG. 2 is a block diagram showing another embodiment of the present invention. BV...brake valve, CP...control pipe, 1...electro-pneumatic controller, 2...membrane plate, 3, 4...air chamber, 6...action rod,
RS...Yurume contact, AS...Working contact, SAP...Direct pipe, MR...Original useless pipe, AV...Working solenoid valve, RV...Yurme solenoid valve, SR...Supply air failure, LV...Relay valve,
BC...Brake cylinder, TD...Failure detector, PT
…Pressure detector, PT′…Pressure change detector, TR,
TR′...Time setter, GT 1 , GT 2 ...Gate, RAM
...Memory element, PG...Pattern generator, CP...Arithmetic circuit.

Claims (1)

【特許請求の範囲】 1 電磁直通ブレーキ装置において、ブレーキ設
定指令値が一定時間以上継続して同一値を保持し
た状況の下で、電空制御器から出力される直通管
圧力制御線が動作となつたことをもつて、該ブレ
ーキ装置の故障検知を行うことを特徴とする電磁
直通ブレーキの故障検知方法。 2 ブレーキ設定指令値が一定時間以上継続して
同一値を保持した状況の下で、電空制御器から出
力される直通管圧力制御線が動作となつたことを
もつて、該ブレーキ装置の故障検知を行う電磁直
通ブレーキ装置において、ブレーキ設定指令値の
変更が行われた場合、その時点から変更された前
後のブレーキ設定指令値の差に基づいて、変更さ
れたブレーキが有効となるに要する時間を検知す
る機構から出力されるブレーキ作動所要時間が経
過した後に電空制御器から出力される直通管圧力
制御線が動作となつたことをもつて、該ブレーキ
装置の故障検知を行うことを特徴とする電磁直通
ブレーキの故障検知方法。
[Claims] 1. In an electromagnetic direct brake system, under a situation where the brake setting command value remains the same for a certain period of time or more, the direct pipe pressure control line output from the electro-pneumatic controller does not operate. 1. A failure detection method for an electromagnetic direct brake, which comprises detecting a failure of the brake device. 2. If the direct pipe pressure control line output from the electro-pneumatic controller is activated under the condition that the brake setting command value has remained the same for a certain period of time, a failure of the brake device is detected. When the brake setting command value is changed in the electromagnetic direct brake device that performs detection, the time required for the changed brake to become effective based on the difference between the brake setting command values before and after the change. A failure of the brake device is detected when the direct pipe pressure control line output from the electro-pneumatic controller is activated after the required brake operation time output from the mechanism for detecting the brake operation has elapsed. A failure detection method for electromagnetic direct brakes.
JP9853082A 1982-06-10 1982-06-10 Detection of trouble of electromagnetic direct communication brake Granted JPS58218464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9853082A JPS58218464A (en) 1982-06-10 1982-06-10 Detection of trouble of electromagnetic direct communication brake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9853082A JPS58218464A (en) 1982-06-10 1982-06-10 Detection of trouble of electromagnetic direct communication brake

Publications (2)

Publication Number Publication Date
JPS58218464A JPS58218464A (en) 1983-12-19
JPH0315587B2 true JPH0315587B2 (en) 1991-03-01

Family

ID=14222228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9853082A Granted JPS58218464A (en) 1982-06-10 1982-06-10 Detection of trouble of electromagnetic direct communication brake

Country Status (1)

Country Link
JP (1) JPS58218464A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001159B2 (en) * 1988-09-19 2000-01-24 日立機電工業株式会社 Crane brake operation control method
JP2023066591A (en) * 2021-10-29 2023-05-16 株式会社日立製作所 Brake device health determination device and brake device health determination method

Also Published As

Publication number Publication date
JPS58218464A (en) 1983-12-19

Similar Documents

Publication Publication Date Title
EP3636504B1 (en) A system for controlling backup air brake for a locomotive
US4523791A (en) Method for monitoring and controlling hydraulic brake slip control devices supplied with energy from an external source, and an apparatus for implementing this method
CN111801254B (en) Electric equipment for vehicle
JP2912581B2 (en) Control valve device in pneumatic brake system for backup
US6824226B2 (en) Adaptive brake valve cutout scheme during distributed power communication loss
EP0570429B1 (en) Braking system for a vehicle
JPS60255561A (en) Pressure monitor device for auxiliary energy source of slip control brake system of automobile
US7434895B2 (en) Electronic equalizing reservoir controller with pneumatic penalty override and reduction limiting
JPH0466740B2 (en)
JPS6374755A (en) Brake system
CN111315622A (en) Piston-cylinder unit and hydraulic device with diagnostic or monitoring function of control and regulating device
US6089678A (en) Hydraulic braking systems for vehicles
KR100628853B1 (en) A servo brake system, a method for safe operation of said servo brake system, and a circuit for the execution of said method
CN107580573A (en) For running the method and equipment of commercial car parking braking system
US3713702A (en) Modulated spring brake
US5730504A (en) Release assuring arrangement for combined electro-pneumatic/automatic pneumatic brake
JPH0315587B2 (en)
US6746087B1 (en) Electronic equalizing reservoir controller with pneumatic penalty override
US11718281B2 (en) Brake control system
CN115214583A (en) Control system of railway freight car electro-pneumatic brake valve
US5429424A (en) Pneumatic brake for railway locomotives and motor cars
US5803554A (en) Brake monitoring device for railroad cars
JPH0732300Y2 (en) Emergency braking system for pneumatic command vehicles
US4084858A (en) Uncoupling valve with override feature
JP3244132B2 (en) Brake equipment for railway vehicles