JPH03155679A - Vertical mosfet - Google Patents

Vertical mosfet

Info

Publication number
JPH03155679A
JPH03155679A JP1295932A JP29593289A JPH03155679A JP H03155679 A JPH03155679 A JP H03155679A JP 1295932 A JP1295932 A JP 1295932A JP 29593289 A JP29593289 A JP 29593289A JP H03155679 A JPH03155679 A JP H03155679A
Authority
JP
Japan
Prior art keywords
region
diffusion region
source
trench
type diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1295932A
Other languages
Japanese (ja)
Inventor
Yasuo Kitahira
北平 康雄
Toshimaro Koike
小池 理麿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1295932A priority Critical patent/JPH03155679A/en
Publication of JPH03155679A publication Critical patent/JPH03155679A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Abstract

PURPOSE:To protect elements from destruction without electrically conducting a parasitic transistor within an outer peripheral part of a P type diffusion region and within a cell by forming a trench in a diffusion layer in the furthermost outer periphery in depth greater at least than a source region, covering a MOS cell active region and bringing a source electrode into contact this trench as well. CONSTITUTION:A trench 33 is formed in greater depth at least than an N<+> type source region 28 in a P type diffusion region 24 which covers a MOS cell active region so that a source electrode 32 may come into contact the inside of the trench 33. Avalanche breakdown is apt to be generated near a guard ring 25 whose depletion layer's internal electric field is higher. Therefore, the yield current 'i' flows into the furthermost outer peripheral part of the P type diffusion region 24. Since the source electrode is made in contact with a slot of the trench 33 when the current is flowing, the yield current 'i' flows into the source electrode 32 so that it may be impossible to electrically conduct a parasitic transistor 12 in the P type diffusion layer in the furthermost outer peripheral part. Therefore, this construction makes it possible to protect elements from destruction induced by a parasitic transistor effect.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はアバランシェ降伏による破壊耐量を増大した縦
型MOS F ETに関するゆ(ロ)従来の技術 縦型MOSFETは、第4図に示すように、底部に高濃
度N+型層(1)を有するN−型シリコン基板(2)を
ドレインとして、その表面上に所定の間隔でゲート電極
(ポリSiゲート) (3)が配置され、このゲート電
極(3)の下にチャンネル部を作るように基体り2)表
面にP型拡散領域(4)とN+型ソース領域(5)を形
成したもので、ゲートへの電圧印加によってゲート下の
P型拡散領域(4)(チャンネル部)を通るドレイン電
流XD%を制御するようにMOSFETを動作させるも
のである(例えば、特開昭63−260176号公報)
、<6)は、1電極、(7)はガードリングである。
Detailed Description of the Invention (a) Field of Industrial Application The present invention relates to a vertical MOSFET with increased breakdown resistance due to avalanche breakdown. An N- type silicon substrate (2) having a high concentration N+ type layer (1) at the bottom is used as a drain, and gate electrodes (poly-Si gates) (3) are arranged at predetermined intervals on the surface of the substrate. A P-type diffusion region (4) and an N+-type source region (5) are formed on the surface of the substrate so as to form a channel section under the electrode (3). The MOSFET is operated to control the drain current XD% passing through the type diffusion region (4) (channel part) (for example, Japanese Patent Laid-Open No. 63-260176).
, <6) is one electrode, and (7) is a guard ring.

斯る縦型MO3FETは、大電流高速スイッチングが可
能なので、モータ制御、スイッチングレギュレータ、C
RT偏向用として多用されている。
Such a vertical MO3FET is capable of high-speed high-current switching, so it can be used in motor control, switching regulators, and C
It is widely used for RT deflection.

(ハ〉発明が解決しようとする課題 しかしながら、第5図のようにリアクトル負荷(8〉を
MOSトランジスタ(9)でスイッチングする場合、コ
イル負荷り8)を遮断した瞬間に高い電流変化率di/
dtで大きなサージ電圧(10)が発生し、このような
サージ電圧がMOSトランジスタ(9)ノソース・ドレ
イン間に印加されることによりMOSトランジスタ(9
)は容易にアバランシェ領域まで印加される。
(C) Problems to be Solved by the Invention However, when the reactor load (8) is switched by a MOS transistor (9) as shown in Fig. 5, the current change rate di/
A large surge voltage (10) is generated at dt, and this surge voltage is applied between the source and drain of the MOS transistor (9).
) is easily applied up to the avalanche region.

アバランシェ領域まで印加されたMOSトランジスタ(
9)は、第6図に示すように主にP型拡散領域(4)と
N−型基板(2)とが形成する接合ダイオード(11)
がなだれ降伏することにより電流を吸収しようとする。
MOS transistor applied up to the avalanche region (
9) is a junction diode (11) mainly formed by a P-type diffusion region (4) and an N-type substrate (2), as shown in FIG.
tries to absorb the current by avalanche breakdown.

ところが、MOSトランジスタ(9)はN2ソース領域
(5)をエミッタ、P型拡散領域(4)をベース、N−
型基体(2)をフレフタとする寄生トランジスタ(12
)が不可避的に形成されてしまい、また N +ソース
領域(5)の底部はピンチ構造となるため、ソース領域
(5)とP型拡散領域(4)とのPN接合はピンチ抵抗
(13)により順バイアスされる電位差に賽易に達して
寄生トランジスタ(12)が導通してしまう。−旦寄生
トランリスタク12)が導通すると、MOSトランジス
タの阻止耐圧は寄生トランジスタフ12)の■。。まで
低下するので、アバランシェ電流が制御がきかない状態
で能動化したセルを流れ、結果的に素子が破壊されてし
まう現象がある。
However, the MOS transistor (9) uses the N2 source region (5) as the emitter, the P type diffusion region (4) as the base, and the N-
A parasitic transistor (12
) is inevitably formed, and the bottom of the N + source region (5) has a pinch structure, so the PN junction between the source region (5) and the P-type diffusion region (4) has a pinch resistance (13). The parasitic transistor (12) easily reaches a potential difference that is forward biased by the parasitic transistor (12). - Once the parasitic transistor transistor 12) becomes conductive, the blocking voltage of the MOS transistor is the same as that of the parasitic transistor transistor 12). . As a result, avalanche current flows uncontrollably through the activated cell, resulting in destruction of the device.

このように、従来の縦型MOSFETはアバランシェ降
伏に対して無防備であり、破壊に至り易い欠点があった
As described above, conventional vertical MOSFETs are vulnerable to avalanche breakdown and have the disadvantage of being easily destroyed.

(ニ)課題をS決するための手段 本発明は上記従来の欠点に鑑み成されたもので、MOS
セル能動領域を囲むP型拡散領域(24)に少なくとも
NI型ソース領域(28)よりは深くトレンチ(33)
を形成し、ドレンチク33)内にソース電極(32)を
コンタクトさせることによりアバランシェ降伏時の素子
破壊を防止し得る縦型MOSFETを提供するものであ
る。
(d) Means for solving the problem The present invention has been made in view of the above-mentioned drawbacks of the conventional technology.
A trench (33) is formed in the P-type diffusion region (24) surrounding the cell active region at least deeper than the NI-type source region (28).
The present invention provides a vertical MOSFET that can prevent device destruction during avalanche breakdown by forming a source electrode (32) in the trench 33).

(*)作用 本発明によれば、アバランシェ降伏は空乏層(34)の
内部電界が、高いガードリング(25)に近い部分で発
生し易いから、その降伏電流iはP型拡散領域(24)
のうち最外周のP型拡散領域(24)に流れる。その際
、トレンチ(33)の溝部にまでソース電極〈32〉が
コンタクトしているので、降伏電流1はソース電極(3
2)へ流れて最外周のP型拡散領域(24)の寄生トラ
ンジスタ(12)を導通させることができない、従って
、素子を寄生トランジスタ効果による破壊から保護する
ことが出来る。
(*) Effect According to the present invention, since avalanche breakdown is likely to occur in the portion where the internal electric field of the depletion layer (34) is close to the high guard ring (25), the breakdown current i is
It flows into the outermost P-type diffusion region (24). At this time, since the source electrode <32> is in contact with the groove part of the trench (33), the breakdown current 1 is
2) and cannot make the parasitic transistor (12) in the outermost P-type diffusion region (24) conductive. Therefore, the device can be protected from destruction due to the parasitic transistor effect.

〈へ)実施例 以下に本発明の一実施例を図面を参照しながら詳細に説
明する。第1図と第2図は本発明の縦型MO3FETを
示す断面図と拡大断面図、第3図は平面図である。
<Example> An example of the present invention will be described below in detail with reference to the drawings. 1 and 2 are a sectional view and an enlarged sectional view showing a vertical MO3FET of the present invention, and FIG. 3 is a plan view.

共通ドレインとなるシリコン半導体基体(21〉は、裏
面電極形成用のN1型半導体層(22)と、N−型半導
体層(23)との2層構造から成る。N−型半導体層(
23)の表面には、第3図の如くP型拡散領域(24)
が格子状に形成され、その周囲には、P型拡散領域(2
4)を囲むようにP型のガードリング(25)が幾重に
も形成されている。(26)はN“型チヘ・ンネルスト
ッパ、(27)はフィールド電極である。
The silicon semiconductor substrate (21), which becomes the common drain, has a two-layer structure of an N1 type semiconductor layer (22) for forming a back electrode and an N-type semiconductor layer (23).
23), there is a P-type diffusion region (24) as shown in Figure 3.
is formed in a lattice shape, and around it is a P-type diffusion region (2
P-type guard rings (25) are formed in multiple layers so as to surround 4). (26) is an N" type chihe/nnel stopper, and (27) is a field electrode.

P型拡散領域(24)の表面には、格子パターンの格子
を夫々囲むようにし′″cN“型ソース領域(28)が
形成され、ソース領域(28)とN−型半導体層(23
)表面で挾まれたP型拡散領域(24)の表面をチャン
ネル部(29)とする。チャンネル部(29)上には、
シリコン酸化膜から成るゲート絶縁膜(30)を介して
ポリシリコンのゲート電極(31)が格子状パターンの
各網目の上を覆うようにして配置されている。個々に独
立したゲートを極(31)は、櫛歯状のアルミ電極によ
って共通接続され外部接続用の図示せぬポンディングパ
ッドに接続されている。P型拡散領域(24)の表面に
は、P型拡散領域(24)とN+ソース領域(28)の
両方にフンタクトするA、i!、AN−5i等のソース
電極〈32)が櫛歯状に形成されて図示せぬソースポン
ディングパッドに接続されている。
'cN' type source regions (28) are formed on the surface of the P type diffusion region (24) so as to surround each of the gratings of the lattice pattern, and the source region (28) and the N- type semiconductor layer (23)
) The surface of the P-type diffusion region (24) sandwiched between the surfaces is defined as a channel portion (29). On the channel part (29),
A polysilicon gate electrode (31) is arranged to cover each mesh of the lattice pattern with a gate insulating film (30) made of a silicon oxide film interposed therebetween. The individual gate poles (31) are commonly connected by a comb-shaped aluminum electrode and connected to a not-shown bonding pad for external connection. The surface of the P-type diffusion region (24) has A, i! which contacts both the P-type diffusion region (24) and the N+ source region (28). , AN-5i, etc., is formed into a comb-like shape and connected to a source bonding pad (not shown).

格子状パターンの最外周のP型拡散領域(24)には、
ソース領域(28)の外側に格子状パターンを囲むよう
にして素面から数μm掘り下げられたトレンチ(33)
が形成され、ソース1極(32)はこの溝内にもフンタ
クトするようにトレンチ(33)内に埋め込まれる。
In the outermost P-type diffusion region (24) of the grid pattern,
A trench (33) dug several μm from the bare surface so as to surround a grid pattern outside the source region (28)
is formed, and the source 1 pole (32) is buried in the trench (33) so as to be in contact with this trench.

斯る構成の縦型MOSFETにおいて、ソース・ドレイ
ン間にリアクトル負荷の逆起電圧によってアバランシェ
領域を超える逆方向電圧が印加された場合、その降伏電
流iは、空乏層(34〉の内部電界が高い部分つまりガ
ードリング(25)に近い部分で特に生じ易く、そのた
め降伏電流lはP聖域欣領域(24)のうち最外周のも
のに流れる。最外周のP型拡散領域(24)にはトレン
チ〈33〉とソース電極(32)が設けられているので
、P聖域牧領域(24)内の抵抗分は激減されており、
そのため降伏電流iはソース領域(28)とP型拡散領
域(24)とのPN接合を順バイアスすること無くソー
ス電極(32)によって外部に流出する。従って、最外
周部分で寄生トランジスタが導通するはずも無く、また
トレンチ(33)によって降伏電流iを積極的に流出さ
せるので、セル内部が寄生トランジスタ効果に陥ること
も無い。
In a vertical MOSFET with such a configuration, when a reverse voltage exceeding the avalanche region is applied between the source and drain due to the back electromotive force of the reactor load, the breakdown current i is caused by the high internal electric field of the depletion layer (34). The breakdown current l flows to the outermost P-type diffusion region (24), and the breakdown current l flows to the outermost P-type diffusion region (24). 33> and the source electrode (32), the resistance within the P sanctuary area (24) is drastically reduced.
Therefore, the breakdown current i flows out through the source electrode (32) without forward biasing the PN junction between the source region (28) and the P-type diffusion region (24). Therefore, there is no possibility that the parasitic transistor becomes conductive at the outermost peripheral portion, and since the breakdown current i is actively drained by the trench (33), the inside of the cell will not suffer from parasitic transistor effect.

尚、P型拡散領域(24)は電極形成用の高濃度で深い
部分(35)とチャンネル形成用のやや低濃度で浅い部
分(36)との2重構造になっており、トレンチ<33
)はソース領域(28)下部の抵抗分を低減するのが目
的であるから、トレンチ(33〉の深さは少なくともソ
ース領域(28)よりは深く、望ましくは浅い部分(3
6)より深い方が抵抗分減少となる。また、Nゝソース
領域<28)と1・1/ンチ(33)とが接していても
良い。
The P-type diffusion region (24) has a double structure of a deep, high concentration portion (35) for forming an electrode and a shallow portion (36) with a slightly lower concentration for forming a channel.
) is intended to reduce the resistance below the source region (28), so the depth of the trench (33) is at least deeper than the source region (28), and preferably the shallower part (33) is deeper than the source region (28).
6) The resistance decreases as the depth increases. Further, the N source region <28) and the 1.1/inch (33) may be in contact with each other.

(ト)発明の効果 以上に説明した通り、本発明によればトレンチ(33)
とソースtai (32)によりアバランシェ降伏電流
iを積極的に流出させることができるので、P型拡散領
域(24)の外周部分およびセル内部で寄生トランジス
タを導通させずに済み、素子を破壊から保護することが
できる。従って回路設計が容易になり機器を簡素化でき
る。
(g) Effects of the invention As explained above, according to the invention, the trench (33)
Since the avalanche breakdown current i can be actively caused to flow out by the source tai (32) and the source tai (32), there is no need to conduct the parasitic transistor in the outer periphery of the P-type diffusion region (24) and inside the cell, thereby protecting the device from destruction. can do. Therefore, circuit design becomes easy and equipment can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は夫々本発明を説明するための断面図、
拡大断面図、および平面図、第4図〜第6図は夫々従来
例を説明するための断面図、回路図および拡大断面図で
ある。 第1図 第2図
1 to 3 are sectional views for explaining the present invention, respectively;
An enlarged sectional view, a plan view, and FIGS. 4 to 6 are a sectional view, a circuit diagram, and an enlarged sectional view, respectively, for explaining a conventional example. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)共通ドレインとなる一導電型の半導体基体と、 前記半導体基体の表面に形成した逆導電型の拡散領域と
、 前記逆導電型拡散領域の一部を構成しMOSセル能動領
域を囲む最外周の拡散領域と、 前記逆導電型の拡散領域の表面に形成した一導電型のソ
ース領域と、 前記ソース領域と前記基体の表面にはさまれたチャンネ
ル部上に絶縁膜を介して配置したゲート電極と、 前記ソース領域と前記逆導電型拡散領域との両方にコン
タクトするソース電極とを具備する縦型MOSFETに
おいて、 前記最外周の拡散領域に前記MOSセル能動領域を囲む
ように少なくとも前記ソース領域よりは深くトレンチを
形成し、このトレンチ内にも前記ソース電極をコンタク
トさせたことを特徴とする縦型MOSFET。
(1) A semiconductor substrate of one conductivity type serving as a common drain, a diffusion region of an opposite conductivity type formed on the surface of the semiconductor substrate, and a diffusion region of the opposite conductivity type forming a part of the diffusion region of the opposite conductivity type and surrounding the MOS cell active region. a diffusion region at the outer periphery, a source region of one conductivity type formed on the surface of the diffusion region of the opposite conductivity type, and a source region disposed via an insulating film on a channel portion sandwiched between the source region and the surface of the base body. In a vertical MOSFET comprising a gate electrode and a source electrode in contact with both the source region and the reverse conductivity type diffusion region, at least the source is arranged in the outermost diffusion region so as to surround the MOS cell active region. A vertical MOSFET characterized in that a trench is formed deeper than the region, and the source electrode is also in contact with the inside of the trench.
(2)前記ソース電極はアルミ電極であることを特徴と
する請求項第1項に記載の縦型MOSFET。
(2) The vertical MOSFET according to claim 1, wherein the source electrode is an aluminum electrode.
(3)前記逆導電型の拡散領域は、格子状のパターンを
有することを特徴とする請求項第1項に記載の縦型MO
SFET。
(3) The vertical MO according to claim 1, wherein the diffusion region of opposite conductivity type has a lattice pattern.
SFET.
JP1295932A 1989-11-14 1989-11-14 Vertical mosfet Pending JPH03155679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1295932A JPH03155679A (en) 1989-11-14 1989-11-14 Vertical mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1295932A JPH03155679A (en) 1989-11-14 1989-11-14 Vertical mosfet

Publications (1)

Publication Number Publication Date
JPH03155679A true JPH03155679A (en) 1991-07-03

Family

ID=17826987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1295932A Pending JPH03155679A (en) 1989-11-14 1989-11-14 Vertical mosfet

Country Status (1)

Country Link
JP (1) JPH03155679A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310380B1 (en) * 2000-03-06 2001-10-30 Chartered Semiconductor Manufacturing, Inc. Electrostatic discharge protection transistor structure with a trench extending through the source or drain silicide layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310380B1 (en) * 2000-03-06 2001-10-30 Chartered Semiconductor Manufacturing, Inc. Electrostatic discharge protection transistor structure with a trench extending through the source or drain silicide layers

Similar Documents

Publication Publication Date Title
JP3751463B2 (en) High voltage semiconductor element
JP5048273B2 (en) Insulated gate semiconductor device
US5324971A (en) Power semiconductor device having over voltage protection
JP3191747B2 (en) MOS type semiconductor device
JP4277496B2 (en) Semiconductor device
US8541848B2 (en) High-voltage MOSFETs having current diversion region in substrate near fieldplate
JP2692350B2 (en) MOS type semiconductor device
US9159846B2 (en) SiC semiconductor device
US10600897B2 (en) Semiconductor device
US7855453B2 (en) Semiconductor device
JP2019140203A (en) Silicon carbide semiconductor device
JP2003174169A (en) Semiconductor device
CN112216691B (en) Semiconductor power device integrated with clamping diode
JP6011136B2 (en) Semiconductor device
US5959345A (en) Edge termination for zener-clamped power device
JP3793841B2 (en) Junction FET semiconductor device
KR920010675B1 (en) Dual type diode
JPH03180074A (en) Semiconductor device
JP4122113B2 (en) High breakdown strength field effect transistor
JPS62176168A (en) Vertical mos transistor
JP2937185B2 (en) High breakdown voltage MOS type semiconductor device
US6563169B1 (en) Semiconductor device with high withstand voltage and a drain layer having a highly conductive region connectable to a diffused source layer by an inverted layer
JP4177229B2 (en) Semiconductor device and manufacturing method thereof
JP2007511913A (en) IGBT cathode design with improved safe operating area capability
JP3297087B2 (en) High voltage semiconductor device