JPH03155478A - High-frequency resistance welded tube welding equipment - Google Patents

High-frequency resistance welded tube welding equipment

Info

Publication number
JPH03155478A
JPH03155478A JP13924490A JP13924490A JPH03155478A JP H03155478 A JPH03155478 A JP H03155478A JP 13924490 A JP13924490 A JP 13924490A JP 13924490 A JP13924490 A JP 13924490A JP H03155478 A JPH03155478 A JP H03155478A
Authority
JP
Japan
Prior art keywords
welding
frequency
seam
inductor
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13924490A
Other languages
Japanese (ja)
Other versions
JP2819778B2 (en
Inventor
Yuji Ishizaka
石坂 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP13924490A priority Critical patent/JP2819778B2/en
Publication of JPH03155478A publication Critical patent/JPH03155478A/en
Application granted granted Critical
Publication of JP2819778B2 publication Critical patent/JP2819778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PURPOSE:To improve welded joint quality of a thick-wall tube by providing the specified dimensional relation and frequency on an inductor arranged for preheating the edges on this side of a V-seam weld zone of high-frequency resistance welded tube welding equipment. CONSTITUTION:At the time of arranging the inductor 11 for preheating the facing edges on this side of the V-seam weld zone on the high-frequency resistance welded tube welding equipment to form tube raw material 1 in a tubular shape having a V-shaped gap and weld continuously the facing edges of the V-shaped gap, the inductor 11 has an edge heating conductor 14 and magnetic iron cores 17 and 18 are provided on the tubular body outer and inner periphery sides of the inductor and the relation of W>=S/2 (W and S denote dimensions where the outer and inner peripheral iron cores 17 and 18 lap on the one side edge and the interval between the facing edges, respectively) is maintained and electric power having <=50kHz frequency is supplied to the inductor 11. By this method, the generation of spatters, oxide contamination on the weld zone and the occurrence of pinholes can be prevented and welded joint quality can be improved.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は高周波電縫管溶接装置に関する。[Detailed description of the invention] A. Industrial application field The present invention relates to a high frequency electric resistance welding pipe welding device.

B0発明の概要 この発明はV字状ギャップを有する管状に成形し、対向
する縁部を接続して溶接する厚内管の高周波電縫管溶接
装置において、 対向スル縁部間に加熱導体を有し、縁部を予熱す、誘導
子をVシーム溶接部の手前に設け、この94子I: 5
0 k Hz以下の周波数の電力を供給することにより
、 厚肉管の溶接においても良好な溶接ができるようにした
ものである。
B0 Summary of the Invention This invention is a high-frequency electric resistance welding device for thick inner tubes that is formed into a tube shape having a V-shaped gap, and that connects and welds opposite edges. and preheat the edges.An inductor is provided in front of the V-seam weld, and this 94-element I: 5
By supplying power with a frequency of 0 kHz or less, it is possible to perform good welding even when welding thick-walled pipes.

C6従来の技術 高周波電縫管溶接としては特願昭61−45680号(
特開昭62−203684号)や特願昭61−5587
6号(特開昭62−176085号)などが提案されて
いる。前者のものは高周波電流を0.1m5ec 〜0
.1 secの間隔で周期的に断・続又は高低して通電
することによって高周波電流によって誘起される電磁力
をほぼ一定周期で消失又は低減させるものである。一方
、後者のものは管素材のVシーム溶接部の手前に20k
Hz以下の周波数の電力で予熱するコイルを配設したも
のである。
C6 Conventional technology For high-frequency electric resistance welding pipe welding, Japanese Patent Application No. 1983-45680 (
Japanese Patent Application Publication No. 62-203684) and Patent Application No. 5587/1983
No. 6 (Japanese Unexamined Patent Publication No. 62-176085) has been proposed. The former has a high frequency current of 0.1 m5ec ~ 0
.. The electromagnetic force induced by the high frequency current is eliminated or reduced at approximately constant intervals by periodically turning on and off or increasing and decreasing the current at intervals of 1 sec. On the other hand, in the latter case, there is a 20k
It is equipped with a coil that preheats with power at a frequency of Hz or less.

D9発明が解決しようとする課題 高周波電縫管溶接装置は一般に比較的、薄肉の電縫管に
適用することがほとんどであるため、厚肉の電縫管を製
造すると次のような問題が生じる。
D9 Problems to be solved by the invention Since high-frequency ERW pipe welding equipment is generally applied to relatively thin-walled ERW pipes, the following problems arise when thick-walled ERW pipes are manufactured. .

(イ)厚肉における溶接に難かしさかある。(a) There is some difficulty in welding thick walls.

(ロ)良好な溶接のための溶接条件の範囲が狭い。(b) The range of welding conditions for good welding is narrow.

(ハ)特に管の材質がCr、Mo、Mn等の合金成分を
含有する材質の場合には、これらの合金成分が酸化物と
なり易いことなどで許容幅が狭くなる 次に、上記(イ)の理由について述べる。
(c) In particular, when the material of the pipe is a material containing alloy components such as Cr, Mo, Mn, etc., the tolerance range becomes narrow because these alloy components tend to become oxides.Next, the above (a) I will explain the reasons for this.

電縫管溶接においては加熱接合されるエツジ部(縁部)
は第14図Bに示すように、先端部から同じ深さで平坦
に加熱されることが好ましい。そして、先端部がスクイ
ズロール部(加圧ロール部)で突き合わされて加圧接合
される際、画先端部の加熱溶融した部分は内外周側に押
し出されて健全な溶接部となる。これが電縫管溶接の基
本条件である。
Edges that are heated and joined in ERW pipe welding
As shown in FIG. 14B, it is preferable that the heating is done flatly at the same depth from the tip. Then, when the tips are butted against each other by a squeeze roll section (pressure roll section) and joined together under pressure, the heated and melted portions of the image tips are pushed out toward the inner and outer circumferential sides, forming a sound welded portion. This is the basic condition for ERW pipe welding.

然るに厚肉管の場合には肉厚tの増大により、第14図
Aに示すように、両エツジ先端部のフラットな加熱が難
かしくなる。特に、内、外のコーナ一部分が昇温するの
に反して中央部が昇温されす、第14図Aに示すような
加熱部となり易い。
However, in the case of a thick-walled tube, the increase in wall thickness t makes it difficult to flatly heat the tips of both edges, as shown in FIG. 14A. In particular, while the inner and outer corner portions are heated, the central portion is heated, which tends to result in a heated portion as shown in FIG. 14A.

これは電流の近接効果を利用して効率良く加熱溶接を行
うため、通常100〜400kHzの高い周波数の電力
が使用される結果、エツジ効果も強く働いて電流の多く
がコーナ一部分に集中して流れるためである。そして、
両エツジの加熱部が第14図Aに示すような状態(図示
斜線部)になると、内・外周のコーナ一部分に生じた溶
融金属が電磁力によってスパッタとなって飛散し排出さ
れたり、また突き合わせ溶接の際に第14図Cに示すよ
うに両コーナ一部分の溶融金属(図示斜線部)が完全に
排出されずに、溶接部内に残留してしまうので、ピンホ
ールや酸化物の巻き込み等が生じて溶接部の健全性が喪
失される。このことが厚肉管の電縫管溶接における第1
の問題点である。
This uses the proximity effect of current to efficiently perform heat welding, so power at a high frequency of usually 100 to 400 kHz is used, and as a result, the edge effect is also strong and most of the current flows concentrated in one corner. It's for a reason. and,
When the heated parts of both edges are in the state shown in Fig. 14A (shaded area in the figure), the molten metal generated at the corners of the inner and outer peripheries becomes spatter due to electromagnetic force, is sputtered, and is ejected, or when the edges are butted together. During welding, as shown in Figure 14C, the molten metal from a portion of both corners (the shaded area in the figure) is not completely discharged and remains within the weld, resulting in pinholes and oxide entrainment. The integrity of the weld is lost. This is the first reason for welding thick-walled ERW pipes.
This is the problem.

電縫管溶接においては特開昭62−203684号公報
に詳細に記載されているような現象が生じる。そして、
健全な溶接部を得るためには、溶接部に供給する高周波
電力量(溶接入熱)を適正な範囲内にする必要がある。
In electric resistance welding pipe welding, a phenomenon as described in detail in Japanese Patent Application Laid-Open No. 62-203684 occurs. and,
In order to obtain a healthy weld, it is necessary to keep the amount of high-frequency power (welding heat input) supplied to the weld within an appropriate range.

上記公報には周期TがO<T≦0.1秒となる入熱範囲
が記載されている。このことは電縫管溶接全般について
のことであるが、特に厚肉管になる程、前記のコーナー
部分への高周波電流の集中が起き易いことなども重なる
ので、機械的圧接点■と電流折り返し衝合点Wの振動に
よる悪影響が顕著となり、適正入力条件の範囲(幅)も
狭くなるなど健全な溶接部を得るための困難性が大とな
る。この点が第2の問題点である。
The above publication describes a heat input range in which the period T satisfies O<T≦0.1 seconds. This applies to ERW pipe welding in general, but in particular, the thicker the pipe, the more likely it is that the high-frequency current will concentrate at the corners, so it is important to consider mechanical pressure contacts and current return. The adverse effects of vibration at the abutting point W become significant, and the range (width) of appropriate input conditions becomes narrower, making it more difficult to obtain a sound weld. This point is the second problem.

前記の特開昭62−203684号の公報の[作用]の
項に詳細に記載されているように溶接点近傍で電磁力に
よる溶融金属の排出が繰り返されてスパッタの発生とな
る。しかも厚肉管では前記のように内・外周のコーナ一
部が過熱されて、この部分に生じた溶融金属が排出され
ることも重なってスパッタの発生も多く、管自身やスク
イズロールなどに付着凝固し、管に庇が生じたり、ロー
ルをいためたりする。この点が第3の問題点である。
As described in detail in the ``Function'' section of the above-mentioned Japanese Unexamined Patent Publication No. 62-203684, molten metal is repeatedly discharged by electromagnetic force in the vicinity of the welding point, resulting in spatter. Moreover, in thick-walled pipes, some of the inner and outer corners are overheated as mentioned above, and the molten metal generated in these parts is discharged, which also causes a lot of spatter, which adheres to the pipe itself and squeeze rolls. It solidifies, causing eaves to form on the tube and damaging the roll. This point is the third problem.

また、前記のように加熱電力の周波数が高いため、両エ
ツジの先端部分のみが急峻な温度勾配で加熱される。こ
のため、溶接後には溶接部の熱量が急速に円周方向の両
側に移動し、溶接部が急冷される。この結果、溶接部の
硬度が上昇することになる。そして、溶接部の延性を回
復するために、再加熱による焼鈍が必要となり、このた
め、多大の電力量を必要とするようになる。この点が第
4の問題点である。
Furthermore, since the frequency of the heating power is high as described above, only the tip portions of both edges are heated with a steep temperature gradient. Therefore, after welding, the amount of heat in the welded portion rapidly moves to both sides in the circumferential direction, and the welded portion is rapidly cooled. As a result, the hardness of the weld increases. Then, in order to restore the ductility of the welded part, annealing by reheating is required, which requires a large amount of electric power. This point is the fourth problem.

この発明は上記の事情に鑑みてなされたもので、厚肉管
の溶接においても良好な溶接とすることができるように
した高周波電縫管溶接装置を提供することを目的とする
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-frequency electric resistance welding pipe welding device that can perform good welding even when welding thick-walled pipes.

E1課題を解決するための手段 この発明は管素材をV字状ギャップを有する管状に成形
し、このV字状ギャップの対向する縁部を連続して電気
溶接する高周波電縫管溶接ラインにて、■シーム溶接部
の手前に対向する縁部を予熱する誘導子を配設した電縫
管溶接装置において、前記誘導子は開口して対向する縁
部間に配置される縁部加熱導体を有し、該導体の管体外
周側および内周側に磁気鉄心を備えるとともにWkS/
2(W:外周および内周鉄心が片側の縁部とラップする
寸法、S二対向する縁部間の間隔)の関係を有し、かつ
該誘導子に50kHz以下の周波数の電力を供給して縁
部を予熱することを特徴とするものである。
E1 Means for Solving the Problem This invention uses a high frequency electric resistance welding pipe welding line that forms a pipe material into a tubular shape having a V-shaped gap and continuously electrically welds opposing edges of this V-shaped gap. , ■ In an electric resistance welding pipe welding device in which an inductor is provided for preheating opposing edges in front of a seam welding part, the inductor has an edge heating conductor that is open and disposed between the opposing edges. The conductor is provided with magnetic cores on the outer circumferential side and the inner circumferential side of the tube body, and is equipped with WkS/
2 (W: the dimension in which the outer and inner cores overlap with one edge, S2 the distance between the opposing edges), and the inductor is supplied with power at a frequency of 50 kHz or less. It is characterized by preheating the edges.

また、予熱および溶接用電源装置であって、順変換部を
共用とし、夫々に出力調整し得る逆変換部を並列に備え
た電源装置を備えたことを特徴とするものである。
Further, the present invention is a power supply device for preheating and welding, and is characterized in that it includes a power supply device that shares a forward conversion section and is provided in parallel with an inverse conversion section that can respectively adjust the output.

さらに、Vシーム溶接部の手前に対向する縁部の予熱手
段を備えるとともに、Vシーム溶接部の後方にVシーム
溶接部に近接してポスト・シーム。ヒーターを配設し、
溶接部の残留熱量を利用して引き続き溶接部の後熱処理
を行うことを特徴とするものである。
Further, a preheating means is provided for the opposite edge in front of the V-seam weld, and a post seam is provided adjacent to the V-seam weld at the rear of the V-seam weld. Install a heater,
This method is characterized in that the residual heat of the welded part is utilized to subsequently perform post-heat treatment of the welded part.

さらにまた、Vシーム溶接部の手前に対向する縁部の予
熱手段を設けるとともに、Vシーム溶接部に供給する溶
接電力の周波数を最大で従来の約3倍に相当する1、5
00  kHz近傍まで高めることを特徴とするもので
ある。
Furthermore, in addition to providing a preheating means for the opposite edge in front of the V-seam weld, the frequency of the welding power supplied to the V-seam weld is increased to 1.5, which is approximately three times the conventional frequency.
It is characterized by increasing the frequency to around 0.00 kHz.

F1作用 前記誘導子に50kHz以下の周波数の電力を供給して
、素材の両縁部を溶融点以下の所定の温度まで予熱する
。この予熱により両縁部はエツジ効果も少なく、円周方
向に広い範囲に亘って加熱される。
F1 action Power with a frequency of 50 kHz or less is supplied to the inductor to preheat both edges of the material to a predetermined temperature below the melting point. Due to this preheating, both edges have little edge effect and are heated over a wide range in the circumferential direction.

また、予熱および溶接用電源装置をそれぞれ別々に調整
して送出するため、電力の節減になる。
Furthermore, since the preheating and welding power supplies are adjusted and delivered separately, power is saved.

さらに、溶接完了後に再加熱を行って素材に焼鈍を施し
て溶接部の硬度を低下させるとともに靭性を回復させる
Further, after welding is completed, reheating is performed to anneal the material to reduce the hardness of the weld and restore toughness.

また、素材の両縁部の予熱を行うとともにVシーム溶接
部に供給する溶接電力周波数を高めることにより、Vシ
ーム溶接部での電磁反撥力を減じて溶接部の品質を高め
る。
In addition, by preheating both edges of the material and increasing the frequency of welding power supplied to the V-seam weld, electromagnetic repulsion at the V-seam weld is reduced and the quality of the weld is improved.

G、実施例 以下この発明の実施例を図面に基づいて説明するに、ま
ず第1の問題点を解決する実施例について述べる。
G. Embodiments Below, embodiments of the present invention will be described based on the drawings. First, an embodiment that solves the first problem will be described.

第1図はその実施例の斜視図で、この第1図において、
■は管素材、2a、2bは加圧ロール、4はVシーム溶
接点、5はV字状ギャップ、5a。
FIG. 1 is a perspective view of the embodiment, and in this FIG.
(2) is a tube material, 2a and 2b are pressure rolls, 4 is a V-seam welding point, 5 is a V-shaped gap, and 5a.

5bは両縁部、6a、6bは接触子、7は電源で、この
部分がVシーム溶接部になる。この■シーム溶接部の手
前にて管素材1の対向する縁部1a。
5b is both edges, 6a and 6b are contacts, 7 is a power source, and this portion becomes a V-seam weld. Opposing edges 1a of the tube material 1 in front of this seam weld.

lb間に予熱用の誘導子11を設ける。この誘導子11
に例えば50kHz以下の比較的低い周波数の電源19
から電力を供給して対向する縁部1a、lb近傍を予熱
する。誘導子11は外部導体12.13と対向する縁部
1a、lb間に配設される板状の縁部加熱導体14とで
1ターンコイルが形成されるように構成されている。1
5.16は電源19との接続のための一対の端子である
An inductor 11 for preheating is provided between lb. This inductor 11
For example, a relatively low frequency power supply 19 of 50 kHz or less
Electric power is supplied to preheat the vicinity of the opposing edges 1a and lb. The inductor 11 is configured such that a one-turn coil is formed by an outer conductor 12.13 and a plate-shaped edge heating conductor 14 disposed between opposing edges 1a and lb. 1
5.16 is a pair of terminals for connection to the power source 19.

17は外周鉄心である。17 is a peripheral iron core.

前記誘導子11の詳細構造を第2図から第4図に示すに
、第2図は平面図、第3図は側面図、第4図は第3図に
おけるY−Y線矢視断面拡大図である。第2図から第4
図において、縁部加熱導体14の外周および内周側には
それぞれ外周鉄心17および内周鉄心18が配置されて
いて、これら鉄心17.18は例えば硅素鋼板を積層す
るなどにより形成される。12aは外部導体12内に設
けられている冷却水孔で、外部導体13および縁部加熱
導体14内にも同様に冷却水孔がそれぞれ設けられてい
て、図示を省略した給・排、水口からそれらに冷却水が
通水される。
The detailed structure of the inductor 11 is shown in FIGS. 2 to 4. FIG. 2 is a plan view, FIG. 3 is a side view, and FIG. 4 is an enlarged cross-sectional view taken along the Y-Y line in FIG. 3. It is. Figures 2 to 4
In the figure, an outer circumferential core 17 and an inner circumferential core 18 are arranged on the outer and inner circumferential sides of the edge heating conductor 14, respectively, and these cores 17 and 18 are formed, for example, by laminating silicon steel plates. 12a is a cooling water hole provided in the outer conductor 12, and cooling water holes are also provided in the outer conductor 13 and the edge heating conductor 14, respectively, from supply/drainage and water ports (not shown). Cooling water is passed through them.

上記のように構成された誘導子11においては第4図に
示す各部の寸法関係を次式のように設定する。
In the inductor 11 configured as described above, the dimensional relationship of each part shown in FIG. 4 is set as shown in the following equation.

W ≧ S/2 但し、S:対向する縁部間の間隔。W≧S/2 However, S: the distance between opposing edges.

W:外周および内周鉄心が片側の縁部とラップする寸法
W: Dimension where the outer and inner cores overlap with one edge.

上記のように式を設定するのは縁部加熱導体14を流れ
る交番電流によって生じる磁束のうち、縁部1a、lb
と交叉して縁部1a、lbを加熱する有効磁束φ1 を
増加せしめ反対に無効磁束φ2の比率を減じることによ
って縁部加熱導体14による縁部の加熱電気効率を高め
るためのものである。
The equation is set as above because the magnetic flux generated by the alternating current flowing through the edge heating conductor 14 is
This is intended to increase the electrical efficiency of heating the edge by the edge heating conductor 14 by increasing the effective magnetic flux φ1 that crosses over the edges 1a and 1b to heat the edges 1a and lb, and conversely decreasing the ratio of the invalid magnetic flux φ2.

ここで上記W≧S/2 の式の導出手段について述べる
。この式は磁気抵抗の条件を決めるためのもので、磁束
を有効に材料に鎖交させるためのものである。磁気抵抗
Rは磁束通路の長さ(L)に比例し、断面積Aに逆比例
する。
Here, the means for deriving the above equation W≧S/2 will be described. This formula is used to determine the conditions for magnetic resistance, and is used to effectively link magnetic flux to the material. Magnetic resistance R is proportional to the length (L) of the magnetic flux path and inversely proportional to the cross-sectional area A.

Rcc L/A R(有効)−(L/2 + L/2)/W −L/WR
(無効)−(L/2 + t + L/2) /(S−
B)/2− (2L+2t)/(S−B)ここでR(有
効)くR(無効)とすると、上記両式は次のようになる
Rcc L/A R (valid) - (L/2 + L/2)/W -L/WR
(Invalid) - (L/2 + t + L/2) / (S-
B)/2-(2L+2t)/(S-B) Here, if R (valid) x R (invalid), the above equations become as follows.

L/W < (2L+2 t)/(S−B)次に、t<
<Lとすると、上記式は (S−B)/2  < Wとなる。
L/W < (2L+2 t)/(S-B) Then, t<
<L, the above formula becomes (S-B)/2<W.

また、S>>Bとすると、 S/2  < Wとなる。Also, if S>>B, S/2<W.

前記誘導子11には電源19より、例えば50kHz以
下の低い周波数の電力を供給する。電力の周波数が低い
ほど、エツジ効果が少なく、また誘導電流の表面からの
滲透深さも大となるので、第4図中に示すように対向す
る縁部1a、lbの加熱はほぼ平坦に、かつ端部から円
周方向に広い範囲が加熱される。なお、第4図中は加熱
部位を示す。
The inductor 11 is supplied with power at a low frequency of, for example, 50 kHz or less from a power source 19. The lower the frequency of the power, the smaller the edge effect and the deeper the induced current penetrates from the surface, so that the opposing edges 1a and lb are heated almost flat and evenly, as shown in Fig. 4. A wide range is heated in the circumferential direction from the end. Incidentally, FIG. 4 shows the heated portion.

このようにして両縁部を溶融点以下の所定の温度まで予
熱した後、第1図に示すVシーム溶接部にて100〜4
00kHzの高い周波数の電力を縁部5a、5bに供給
して両縁部5a、5bを更に溶融点以上の温度まで加熱
し、加圧ロール2a。
After preheating both edges to a predetermined temperature below the melting point in this way, weld the V-seam as shown in Fig.
00kHz high frequency power is supplied to the edges 5a, 5b to further heat both edges 5a, 5b to a temperature equal to or higher than the melting point, and the pressure roll 2a is heated.

2bにて縁部同志を圧接して溶接を行う。Welding is performed by pressing the edges together at 2b.

このときの縁部5a、5bの昇温曲線を示すと第5図の
ようになる。なお従来の予熱なしの場合の縁部の昇温曲
線を示すと第6図(A)に示すような特性曲線になり、
図中の■、■、■は第6図(B)に示す部位a、b、c
における温度分布である。なお、第5図における■、■
、■も上記と同じ部位の温度分布を示す。
The temperature rise curves of the edges 5a and 5b at this time are shown in FIG. The temperature rise curve at the edge in the conventional case without preheating is a characteristic curve as shown in Figure 6 (A).
■, ■, ■ in the figure are parts a, b, c shown in Figure 6 (B)
This is the temperature distribution at . In addition, ■, ■ in Figure 5
, ■ also shows the temperature distribution at the same location as above.

上述した実施例を用いると、素材1の縁部の内。Using the embodiment described above, within the edges of the blank 1.

外のコーナ一部aが過熱されることなく、縁部はコーナ
一部a1中央部すにわたって平坦に近い加熱昇温か行わ
れるので厚内管の溶接においても薄肉管の溶接の場合と
同様に健全な溶接部を得ることができる。このことはま
た、前記の厚肉管の溶接における適正熱条件の狭さによ
る溶接の困難性を大きく緩和して溶接を容易にすると共
に、スパッタの発生量を大幅に減少せしめることにもな
るので第2および第3の問題点を解決する実施例でもあ
る。また更に、第6図(B)の0部を含めて広い範囲が
加熱されるので、溶接部の急冷が緩和されて溶接部の硬
度が低下する。このことにより管の材質によっては溶接
後の焼鈍を省略することができる。これは第4の問題点
を解決する実施例にもなる。
The outer corner part a is not overheated, and the edge part is heated almost flat over the center part of corner part a1, so welding of thick inner pipes is as sound as welding of thin walled pipes. A welded part can be obtained. This also greatly alleviates the difficulty in welding thick-walled pipes due to the narrowness of the appropriate thermal conditions, making welding easier, and also greatly reducing the amount of spatter generated. This is also an embodiment that solves the second and third problems. Furthermore, since a wide range including the 0 part in FIG. 6(B) is heated, the rapid cooling of the welded part is relaxed and the hardness of the welded part is reduced. This makes it possible to omit annealing after welding depending on the material of the pipe. This is also an example for solving the fourth problem.

次に第1図に示した電源7.19について述べる。電源
7,19は夫々独立した別個の電源としてもよいが、第
15図にブロック図を示すように、順変換部30を縁部
予熱用の逆変換部31(50kHz以下)およびVシー
ム溶接用の逆変換部32 (150〜450kHz)の
両者ニ対シテ共用に設ける構成とすることが好適である
Next, the power supply 7.19 shown in FIG. 1 will be described. The power supplies 7 and 19 may be independent and separate power supplies, but as shown in the block diagram in FIG. It is preferable that the inverse conversion section 32 (150 to 450 kHz) is provided for both sites.

第16図は第15図に示したプロ・ツク図の具体的な回
路図の一例で、第16図において30aは変圧器、30
bは整流回路、31a、32aは電子管、31b、32
bは電子管31a、32aのグリッド回路に設けられた
GTO(ゲート・タンオフサイリスタ)等を用いた半導
体スイッチ回路、31c、32cは整合トランスである
Fig. 16 is an example of a specific circuit diagram of the program diagram shown in Fig. 15. In Fig. 16, 30a is a transformer;
b is a rectifier circuit, 31a and 32a are electron tubes, 31b and 32
31c and 32c are matching transformers.

上記のように共通の順変換部30の出力を予熱用と溶接
用の逆変換部31.32に供給するが、逆変換部31.
32の電子管31a、32aのグリッド回路に設けられ
た半導体スイッチ回路31b、32bにより夫々の発振
出力をPWM制御し、オン期間を調整することにより、
それぞれの出力は互いに無関係に制御できるようになる
As described above, the output of the common forward converter 30 is supplied to the inverse converters 31 and 32 for preheating and welding, but the inverse converter 31.
The semiconductor switch circuits 31b and 32b provided in the grid circuits of the 32 electron tubes 31a and 32a perform PWM control on their respective oscillation outputs and adjust their on periods.
Each output can be controlled independently of the other.

このように共通の順変換部30を設ける構成とすること
によって、夫々に別個の順変換部を設けた場合に比べて
電源装置を小形化できると共に、必要とする商用電力を
大幅に節減することができる。例えば縁部予熱用の電力
として700 kW(30kHz) 、Vシーム溶接用
の電力として500 kW (300kHz)を必要と
する場合、夫々別個に順変換部を設けた構成では合計で
約2゜4 Q Q kVAの商用電力を消費するが、第
15図に示すように順変換部30を共用する構成とする
ことにより、図中に数値で示すように商用電力の消費量
を1.900kVAに低減することができる。
By configuring a common forward converter 30 in this way, the power supply device can be made more compact than in the case where separate forward converters are provided, and the required commercial power can be significantly reduced. Can be done. For example, if 700 kW (30 kHz) is required for edge preheating and 500 kW (300 kHz) is required for V-seam welding, a configuration in which separate forward conversion sections are provided for each requires a total of approximately 2°4 Q. Q kVA of commercial power is consumed, but by adopting a configuration in which the forward converter 30 is shared as shown in Fig. 15, the commercial power consumption is reduced to 1.900 kVA as shown numerically in the figure. be able to.

次に第2.第3の問題点を解決する実施例について述べ
る。
Next is the second one. An embodiment that solves the third problem will be described.

前記のように、Vシーム溶接部の手前に誘導子を備えた
縁部予熱部を設けて50kHz以下の周波数の電力にて
対向する縁部を予熱して縁部の先端部をほぼ平坦な加熱
昇温状態とすることによって、第2.第3の問題点を大
幅に改善することができた。
As mentioned above, an edge preheating section equipped with an inductor is provided in front of the V-seam weld, and the opposing edges are preheated with power at a frequency of 50 kHz or less, and the tip of the edge is heated almost flat. By raising the temperature, the second. The third problem could be significantly improved.

しかし、前述のように第2.第3の問題点は、特開昭6
2−203684の公報に詳細に記載されているような
■シーム溶接部における溶接点Wの移動現象によるとこ
ろが大きい。そして厚肉管の溶接において、溶接点Wの
移動周期の少なくとも2倍以上早い周期で溶接電流を断
続もしくは低減せしめることによって更に効果が得られ
た。
However, as mentioned above, the second. The third problem is that
This is largely due to the phenomenon of movement of the welding point W at the seam weld part, as described in detail in Publication No. 2-203684. In welding thick-walled pipes, further effects were obtained by intermittent or reducing the welding current at a cycle that is at least twice as fast as the movement cycle of the welding point W.

実際には、第16図に回路図を示した電源を使用して、
管素材1の搬送速度(ライン速度)ごとに溶接電流の断
続または高低の1/2周期間におけるVシーム部での管
素材の移動長が2I菖以下となるように、半導体スイッ
チ回路32bによる発振出力のPWM制御の周波数を選
択して溶接電流のPWM制御を行うことによって大きな
効果が得られた。即ち厚肉管の溶接において健全な溶接
部を得るための適正入熱条件の範囲が拡大されて溶接の
困難性が大きく緩和されると共にスパッタの発生量を大
幅に減少せしめる効果が得られた。
Actually, using the power supply whose circuit diagram is shown in Figure 16,
Oscillation is performed by the semiconductor switch circuit 32b so that the moving length of the tube material at the V-seam part during the intermittent or high-low 1/2 cycle period of the welding current is 2I or less for each transport speed (line speed) of the tube material 1. Great effects were obtained by selecting the frequency of PWM control of the output and performing PWM control of the welding current. That is, in welding thick-walled pipes, the range of appropriate heat input conditions for obtaining a sound weld is expanded, the difficulty of welding is greatly alleviated, and the amount of spatter generated is greatly reduced.

なお溶接電流のPWM制御周波数の選択は次式に従って
行えばよい。
Note that the PWM control frequency of the welding current may be selected according to the following equation.

pitch(移動長) −vii+/see X  l
 /2H<  2V:管素材の搬送速度(ライン速度)
pitch (travel length) -vii+/see X l
/2H<2V: Conveying speed of tube material (line speed)
.

H;高周波溶接電流のPWMチョッピング周波数。H: PWM chopping frequency of high frequency welding current.

例えば、v −60m/m1n(v −1000+am
/5ec)のときH=500Hzとすることによりpi
tch=  1 0 0 0   X   1  /2
X500 −   I IImv= 180m/QIi
n (v=3000+I/5ec)のときH=1500
Hzとすることにより pitch −3000X  1 /2X1500− 
1 in+両方ともpitch (移動長)が1mmに
て2菖菖以下になる。
For example, v -60m/m1n (v -1000+am
/5ec), by setting H=500Hz, pi
tch= 1 0 0 0 X 1 /2
X500-I IImv= 180m/QIi
H=1500 when n (v=3000+I/5ec)
pitch -3000X 1/2X1500-
1 inch + both have a pitch (travel length) of 1 mm and are less than 2 irises.

次に第4の問題点を解決するための実施例について述べ
る。従来、溶接部は溶接後に急冷状態となるため、硬度
が上昇し、かつそのままでは靭性が良くないため、後工
程にて再加熱焼鈍を施すことが必要であった。第7図は
従来の溶接−再加熱焼鈍の機器の構成図で、第8図は溶
接部の温度スケジュール特性曲線を示す。第7図におい
て、TFは整合トランス、PHはポスト壷シームΦヒー
ター群である。
Next, an embodiment for solving the fourth problem will be described. Conventionally, since the welded part is rapidly cooled after welding, the hardness increases and the toughness is not good as it is, so it has been necessary to perform reheating annealing in a post-process. FIG. 7 is a block diagram of a conventional welding-reheat annealing equipment, and FIG. 8 shows a temperature schedule characteristic curve of a welded part. In FIG. 7, TF is a matching transformer, and PH is a post pot seam Φ heater group.

溶接部は対向する縁部の先端のみが加熱されて溶接され
るので、溶接完了後は急速に温度が下がり、200℃か
らポスト・シーム9ヒーターにより再加熱を行って焼鈍
を施し、溶接部の硬度を低下せしめると共に靭性を回復
せしめる。このため、再加熱焼鈍に大きな電力を必要と
した。
Since only the tips of the opposing edges of the weld are heated and welded, the temperature drops rapidly after welding is completed, and the post seam 9 heater is used to reheat the weld from 200°C to perform annealing. Reduces hardness and restores toughness. Therefore, a large amount of electric power was required for reheating and annealing.

従来、このような方式では溶接部の余熱を利用すべくポ
スト0シーム・ヒーターPHを加圧ロール2a、2bの
直後に近づけても、溶接後の冷却が早いため思うような
効果が得られなかった。ポスト・シーム・ヒーターPH
を加圧ロール2a。
Conventionally, in this type of method, even if the post 0 seam heater PH was brought close to immediately after the pressure rolls 2a and 2b in order to utilize the residual heat of the welded part, the desired effect could not be obtained because the post-weld cooling cooled quickly. Ta. Post seam heater PH
Pressure roll 2a.

2bの直後に近づけるには機器の配列上の困難性もある
。そのため、工夫をしてそれを近づけて見てもボスト0
シーム畳ヒーターPHの電力の低減などの効果が余り得
にくかった。
There are also difficulties in arranging the equipment to get it close to 2b. Therefore, even if you try to make it closer and look at it, the boss is 0.
It was difficult to obtain effects such as reducing the power consumption of the seam tatami heater PH.

ところが本実施例では低い周波数で素材の縁部の予熱を
施すので、対向する縁部1a、lbはその先端部のみな
らず更に広い範囲にわたって、しかもコーナ一部および
中央部とも平均した予熱が施されるようになる。溶接部
の溶接完了後の冷却速度は中央部も含めて、従来の予熱
なしの場合に比較してはるかにゆっくりしたものとなる
However, in this embodiment, since the edges of the material are preheated at a low frequency, the opposing edges 1a and 1b are preheated not only at their tips but also over a wider range, and in addition, the average preheating is applied to part of the corner and the center. will be done. After welding is completed, the cooling rate of the welded area, including the central part, is much slower than in the conventional case without preheating.

従って管の素材の材質(鋼種)によっては焼鈍を不要と
することもできる。そして、溶接後の再加熱が必要な場
合にもポスト・シーム・ヒータを溶接部の加圧ロール2
a、2bの直後に近づけて配置することによってボスト
拳シームψヒーターの電力の低減等大きな効果を生み出
すことができる。
Therefore, depending on the material (steel type) of the tube, annealing may be unnecessary. Also, if reheating is required after welding, the post seam heater is installed on the pressure roll 2 of the welding area.
By arranging them close to each other immediately after a and 2b, great effects such as a reduction in the power of the Bost fist seam ψ heater can be produced.

第9図に本実施例方式の機器構成例を示し、第1O図に
溶接部の温度スケジュール特性曲線図を示す。第10図
からも判るように溶接完了後の溶接部の温度低下が従来
よりはるかにゆるやかなので、溶接部の余熱を利用して
鋼の場合、オーステナイト状態のまま850〜900℃
等の温度にてポスト会シームOヒーターPHにて所定時
間の保熱を行った後、冷却せしめることによって溶接部
の硬度上昇や靭性の低下を防ぐことができる。
FIG. 9 shows an example of the equipment configuration of this embodiment method, and FIG. 1O shows a temperature schedule characteristic curve diagram of a welded part. As can be seen from Figure 10, the temperature of the welded part after welding is completed drops much more slowly than before, so in the case of steel, the residual heat of the welded part can be used to maintain the austenitic state at 850 to 900°C.
After heat retention is carried out for a predetermined period of time using a post seam O heater PH at a temperature such as 0.05 to 1.00, by cooling the welded part, it is possible to prevent an increase in hardness and a decrease in toughness of the welded part.

従って、溶接部の温度低下(200℃)後の再加熱によ
る従来の熱処理と異なり、溶接部の余熱を利用して溶接
部の温度の低下を防ぐための熱量をポスト・シーム瘉ヒ
ーターによって補給して所定温度に保持したり、徐冷せ
しめるので、以下の効果が得られる。
Therefore, unlike conventional heat treatment that involves reheating after the temperature of the weld zone has dropped (200°C), the residual heat of the weld zone can be used to replenish the amount of heat to prevent the temperature of the weld zone from decreasing using a post seam heater. Since the temperature is maintained at a predetermined temperature or the temperature is gradually cooled, the following effects can be obtained.

(1)第7図および第9図の実施例中に示すようにポス
ト・シーム・ヒーターの所要電力量を従来の600X4
−2,400kW(第7図)から700kW(第9図)
に大幅に低減できる。
(1) As shown in the embodiments of FIGS.
-2,400kW (Figure 7) to 700kW (Figure 9)
can be significantly reduced.

なお、Vシーム溶接部の手前にて縁部の予熱を行うこと
も含めて、第7図および第9図の実施例中に示すように
溶接およびポスト・ヒートのための全所要電力量につい
ても従来の700+2.400−3.100kW(第7
図)から700+500+700−1,900kW(第
9図)に大幅に低減せしめることができる。
In addition, the total power required for welding and post-heating as shown in the examples in Figures 7 and 9, including preheating the edge before the V-seam weld, is also Conventional 700+2.400-3.100kW (7th
) to 700 + 500 + 700 - 1,900 kW (Fig. 9).

(2)管の素材の材質が鋼の場合、オーステナイト状態
の温度にて引き続きポスト・シーム・ヒーターで加熱で
きるので、恒温熱処理等を施して溶接部にすぐれた強度
や靭性を付与することができる。
(2) If the material of the pipe is steel, it can be continued to be heated with a post seam heater at the temperature of the austenitic state, so it is possible to apply constant temperature heat treatment etc. to give the welded part excellent strength and toughness. .

次に、■シーム溶接部の手前に対向する縁部の予熱手段
を備えるとともに、電源からVシーム溶接部に供給する
溶接電力の周波数を従来より最高で約3倍程度高い周波
数として溶接を行った実施例について述べる。
Next, we installed a preheating means for the opposite edge in front of the seam weld, and welded by setting the frequency of the welding power supplied from the power source to the V seam weld to be about three times higher than the conventional one. An example will be described.

第1図にてVシーム溶接部において溶接を行うために電
源7から接触子6a、6bを介してVシーム溶接部に供
給される電力については一般にその周波数が高い方が溶
接のための電力効率を高めることができて好ましい。し
かしながら前述のように周波数が高くなる程エツジ効果
が強く働いて第14図(A)に示したように縁部の内、
外周のコーナ一部分がオーバーヒートして端面からの平
坦な加熱が得られなくなる。
In Figure 1, in order to perform welding at the V-seam weld, power is supplied from the power source 7 to the V-seam weld through the contacts 6a and 6b, and generally speaking, the higher the frequency, the more efficient the power for welding. It is preferable to be able to increase the However, as mentioned above, the higher the frequency, the stronger the edge effect becomes, and as shown in FIG.
A portion of the outer corner overheats, making it impossible to obtain flat heating from the end surface.

また、周波数が高くなる程表皮効果も強まって電流が表
面部分に集中して流れるようになり、端面からの有効な
加熱深さが得られなくなる。これらのことから周波数が
余り高すぎると良好な溶接結果が得られなくなるので従
来100kHzから高くても450kHz位までの周波
数の電力が使用されていた。
Furthermore, as the frequency becomes higher, the skin effect becomes stronger, and the current flows in a concentrated manner on the surface, making it impossible to obtain an effective heating depth from the end face. For these reasons, if the frequency is too high, good welding results cannot be obtained, so conventionally, electric power with a frequency of 100 kHz to about 450 kHz has been used.

第11図はVシーム溶接部に供給される溶接のための電
力の容量と周波数の関係を図示したものである。図中■
−■−■の曲線は誘導加熱コイルを使用した誘導式の、
また■−■−〇の曲線は第1図に示した接触式のいづれ
も従来の場合の例を示したものである。両者の曲線とも
容量の大きい範囲で周波数が低くなっているのは、主に
容量が大きくなるに従って回路構成上から周波数が高い
ま\では溶接部への電力の投入を有効に行いにくくなる
ためである。
FIG. 11 illustrates the relationship between the capacity and frequency of the welding power supplied to the V-seam weld. In the diagram■
The −■−■ curve is an induction type using an induction heating coil.
Moreover, the curves (■-■-〇) show examples of the conventional contact type shown in FIG. The reason why the frequency is low in the range of large capacity for both curves is mainly because as the capacity increases, it becomes difficult to effectively input power to the welding part at a high frequency due to the circuit configuration. be.

ところで、前述のようにVシーム溶接部の手前に予熱手
段を備えた50kHz以下の周波数の電力を供給して対
向する縁部の予熱を行った場合には、Vシーム溶接部に
供給する溶接のための電力の周波数を従来に比べて格段
に高くすることができる。
By the way, when the opposite edge is preheated by supplying power with a frequency of 50 kHz or less with a preheating means before the V-seam weld as described above, the welding power supplied to the V-seam weld The frequency of the power used for this purpose can be made much higher than in the past.

第12図に本実施例方式の機器構成例を示し、第13図
に溶接部の温度スケジュール特性曲線図を示す、11は
予熱手段であって電源19から整合トランスTFを介し
て予熱のための電力が供給される。7は溶接のための電
源であって、整合トランスTFを介して1.100  
kHzの周波数の電力がVシーム溶接部に供給される。
Fig. 12 shows an example of the equipment configuration of this embodiment method, and Fig. 13 shows a temperature schedule characteristic curve diagram of the welded part. Power is supplied. 7 is a power source for welding, and 1.100 through a matching transformer TF.
Power at a frequency of kHz is supplied to the V-seam weld.

第13図に示すように管素材の縁部は予熱手段11によ
って900℃まで加熱昇温される。そしてこの際の加熱
電力の周波数が50kHz以下と低いので前記のように
縁部はコーナ一部および中央部にわたって平坦に近い加
熱昇温か行われると共に端面からの深い範囲までの加熱
が行われている。そしてVシーム溶接部では溶融温度ま
での追加の加熱昇温を行って溶接することになるので溶
接のための電力の周波数を高くしても前記のような不具
合が生じることが格段に少ない。また管素材の材質が鋼
管である場合には、予熱によって縁部はすでにキューリ
ー点以上の非磁性領域の温度まで昇温しでいるので溶接
電力の周波数を高くしても周知のように電流の浸透深さ
:△(cm)−5,03J p/μ・f(但しp:管素
材の固有抵抗率(μΩ−cm)、μ:比透磁率、f:周
波数(HZ ))の値が磁性領域に比べて大きいので表
皮効果の影響が生じにくい。従って溶接のための電力の
周波数を従来に比べて格段に高くすることができる。
As shown in FIG. 13, the temperature of the edge of the tube material is heated to 900° C. by the preheating means 11. Since the frequency of the heating power at this time is as low as 50 kHz or less, as mentioned above, heating is performed in a nearly flat manner over some of the corners and the center of the edges, and heating is performed to a deep range from the end surface. . Further, since the V-seam welded part is welded by additionally heating and raising the temperature to the melting temperature, the above-mentioned problems are much less likely to occur even if the frequency of the electric power for welding is increased. In addition, if the pipe material is a steel pipe, the temperature at the edge has already risen to a temperature in the non-magnetic region above the Curie point due to preheating, so even if the frequency of welding power is increased, the current Penetration depth: △ (cm) -5,03J p/μ・f (where p: specific resistivity of tube material (μΩ-cm), μ: relative magnetic permeability, f: frequency (Hz)) is magnetic Since it is large compared to the area, it is difficult to be influenced by the skin effect. Therefore, the frequency of electric power for welding can be made much higher than in the past.

そして溶接のための電力の周波数を種々に変えて溶接を
行った結果、従来の約3倍以上の周波数に相当する1、
500  kHzでも従来以上に良好な溶接結果を得る
ことができた。第11図中に示す■−■−■の曲線は本
実施例方式に従って縁部の予熱を行った場合の例を従来
例と対比して示したちのであって斜線を付した■の範囲
の周波数にていづれも良好な溶接結果を得ることができ
た。
As a result of welding by changing the frequency of the electric power for welding, we found that the frequency was 1, which corresponds to more than three times the conventional frequency.
Even at 500 kHz we were able to obtain better welding results than before. The curve ■-■-■ shown in Fig. 11 shows an example of the case where edge preheating is performed according to the method of this embodiment in comparison with the conventional example, and the frequency range is within the shaded range ■. Good welding results were obtained in all cases.

なお容量の大きい範囲で周波数が低くなっているのは前
記と同じ理由によるものである。
Note that the reason why the frequency is lower in the range where the capacitance is large is due to the same reason as mentioned above.

そしてこのように溶接のための電力の周波数を高めるこ
とによって電気効率を高めて電源の容量を低減すること
ができた。また周波数を高くした場合、Vシーム溶接部
に供給する溶接電力の電圧値を大として電流値を小さ(
することができる。
By increasing the frequency of electric power for welding in this way, it was possible to increase electrical efficiency and reduce the capacity of the power source. Also, when the frequency is increased, the voltage value of the welding power supplied to the V-seam weld is increased and the current value is decreased (
can do.

このことはVシーム部を流れる溶接電流の値を小さくす
ることになるので電磁反撥力を減少せしめることができ
る。従って溶接点近傍での電磁力による溶融金属の排出
の繰り返しやスパッタの発生を少なくするとともに溶接
部の脈動を軽減し、酸化物の巻き込みやペネトレータ欠
陥の発生を防止し、また溶接ビードを滑らかにできるな
ど良好な溶接結果を得るうえで大きな効果が有った。そ
してこれらのことは前記の第3の問題点等の解決に大き
く寄与するものである。
This reduces the value of the welding current flowing through the V-seam portion, thereby reducing electromagnetic repulsion. Therefore, it reduces the repeated ejection of molten metal and spatter caused by electromagnetic force near the welding point, reduces pulsation in the weld, prevents oxide entrainment and penetrator defects, and smooths the weld bead. This had a great effect on obtaining good welding results. These things greatly contribute to solving the third problem mentioned above.

H1発明の効果 以上述べたように、この発明によれば、厚肉管の溶接に
おいて次のような効果が得られる。
H1 Effects of the invention As described above, according to the invention, the following effects can be obtained in welding thick-walled pipes.

(a)溶接が行われる際のスパッタの発生が激減するの
で管口体の庇の発生を防いで管の品質の向上を図るとと
もに加圧ロール等の損傷や絶縁劣化を防ぎ保護できる。
(a) Since the generation of spatter during welding is drastically reduced, it is possible to prevent the generation of eaves at the pipe mouth body, improve the quality of the pipe, and protect the pressure roll etc. from damage and insulation deterioration.

(b)溶接部への酸化物の巻き込みやピンホール等の欠
陥の発生を防止し、また溶接ビードを滑らかにして溶接
部の品質の向上を図ることができる。
(b) The inclusion of oxides in the weld zone and the occurrence of defects such as pinholes can be prevented, and the quality of the weld zone can be improved by smoothing the weld bead.

(c)健全溶接のための許容溶接入熱条件の範囲が拡大
されるので厚肉管溶接における難しさが大幅に緩和され
、溶接作業が容易になると共に不良率の低減を図ること
ができる。
(c) Since the range of allowable welding heat input conditions for sound welding is expanded, the difficulty in welding thick-walled pipes is greatly alleviated, making welding work easier and reducing the defective rate.

(d)素材のエツジ(縁部)の加熱領域が平坦に近くな
り中央部の温度が十分な溶接温度となるので、良好な溶
接部を得るのに、従来のように加圧ロールでの過度の加
圧力をしないですむ。
(d) The heating area at the edge of the material becomes nearly flat, and the temperature at the center becomes sufficient for welding. Therefore, in order to obtain a good weld, it is difficult to use an excessive pressure roll as in the conventional method. There is no need to apply pressure.

(e)溶接部の硬度が低下してすぐれた靭性を有する溶
接部が得られると共に管を切断するときの切断機へのダ
メージを軽減できる。
(e) The hardness of the welded part is reduced, resulting in a welded part with excellent toughness, and damage to the cutting machine when cutting the pipe can be reduced.

(f)管の材質が鋼の場合、溶接部をオーステナイト状
態からポスト・ヒート(後熱処理)できるので、オース
・テンパー等の恒温熱処理を施してすぐれた強度と靭性
を付与することなどができる。
(f) When the material of the pipe is steel, the welded part can be post-heated (post-heat treated) from the austenitic state, so it is possible to apply constant temperature heat treatment such as aus tempering to impart excellent strength and toughness.

(g)溶接部のポスト・ヒート(後熱処理)のための所
要電力量や、更には溶接を含めた全所要電力量を大幅に
低減することができる。
(g) It is possible to significantly reduce the amount of power required for post-heating (post-heat treatment) of the welded part, and furthermore, the amount of power required for the entire amount of power including welding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す斜視図、第2図から第
4図は第1図の実施例における誘導子の詳細を示すもの
で、第2図は平面図、第3図は側面図、第4図は第3図
のY−Y線矢視断面拡大図、第5図はこの発明の実施例
における縁部の昇温曲線図、第6図(A)は従来の縁部
の昇温曲線図、第6図(B)は素材の縁部の加熱昇温分
布を示す説明図、第7図はポストヒータを組み合わせた
ときの従来例を示す構成図、第8図は第7図における温
度スケジュール特性曲線図、第9図はポストヒータを組
み合わせたときのこの発明の他の実施例を示す構成図、
第10図は第9図における温度スケジュール特性曲線図
、第11図はVシーム溶接部の出力電力と周波数の関係
図、第12図はこの発明の他の実施例を示す構成図、第
13図は第12図における温度スケジュール特性図、第
14図A、B、Cは素材のエツジ部の加温昇温分布状態
を示す説明図、第15図はこの発明の他の実施例を示す
ブロック図、第16図は第15図の具体的な回路図であ
る。 11・・・誘導子、12.13・・・外部導体、14・
・・縁部加熱導体、15.16・・・端子、17.18
・・・鉄心、19・・・電源。 外2名 14 第2図 第3図 第4図 (Y−Y餠岳侃) 第5図 (本文) 500 1000  1500 容量(にW)
Figure 1 is a perspective view showing an embodiment of the invention, Figures 2 to 4 show details of the inductor in the embodiment of Figure 1, Figure 2 is a plan view, and Figure 3 is a side view. 4 is an enlarged cross-sectional view taken along the Y-Y line in FIG. Temperature rise curve diagram, Figure 6 (B) is an explanatory diagram showing the heating temperature distribution at the edge of the material, Figure 7 is a configuration diagram showing a conventional example when a post heater is combined, and Figure 8 is a diagram showing the heating temperature distribution at the edge of the material. Figure 9 is a temperature schedule characteristic curve diagram, Figure 9 is a configuration diagram showing another embodiment of the present invention when a post heater is combined,
FIG. 10 is a temperature schedule characteristic curve diagram in FIG. 9, FIG. 11 is a diagram of the relationship between output power and frequency of the V-seam weld, FIG. 12 is a configuration diagram showing another embodiment of the present invention, and FIG. 13 is a temperature schedule characteristic diagram in FIG. 12, FIGS. 14A, B, and C are explanatory diagrams showing the heating temperature distribution state of the edge portion of the material, and FIG. 15 is a block diagram showing another embodiment of the present invention. , FIG. 16 is a specific circuit diagram of FIG. 15. 11...Inductor, 12.13...Outer conductor, 14.
...Edge heating conductor, 15.16...Terminal, 17.18
... Iron core, 19... Power supply. 2 people outside 14 Figure 2 Figure 3 Figure 4 (Y-Y Yue Yue) Figure 5 (text) 500 1000 1500 Capacity (W)

Claims (4)

【特許請求の範囲】[Claims] (1)管素材をV字状ギャップを有する管状に成形し、
このV字状ギャップの対向する縁部を連続して電気溶接
する高周波電縫管溶接ラインにて、Vシーム溶接部の手
前に対向する縁部を予熱する誘導子を配設した電縫管溶
接装置において、前記誘導子は開口して対向する縁部間
に配置される縁部加熱導体を有し、該導体の管体外周側
および内周側に磁気鉄心を備えるとともにW≧S/2(
W:外周および内周鉄心が片側の縁部とラップする寸法
、S:対向する縁部間の間隔)の関係を有し、かつ該誘
導子に50kHz以下の周波数の電力を供給して縁部を
予熱することを特徴とする高周波電縫管溶接装置。
(1) Forming the tube material into a tube shape with a V-shaped gap,
In a high-frequency ERW pipe welding line that continuously electrically welds the opposing edges of this V-shaped gap, welded ERW pipes with an inductor installed to preheat the opposing edges in front of the V-seam weld. In the device, the inductor has an edge heating conductor that is open and disposed between opposing edges, and has magnetic cores on the outer and inner circumferential sides of the tube body of the conductor, and W≧S/2 (
W: the dimension in which the outer and inner cores overlap with one edge; S: the distance between the opposing edges), and by supplying power at a frequency of 50 kHz or less to the inductor, A high-frequency electric resistance welding pipe welding device characterized by preheating.
(2)予熱および溶接用電源装置であって、順変換部を
共用とし、夫々に出力調整し得る逆変換部を並列に備え
た電源装置を備えたことを特徴とする請求項1に記載の
高周波電縫管溶接装置。
(2) A power supply device for preheating and welding, characterized in that the power supply device is equipped with a power supply device that shares a forward conversion section and is provided in parallel with an inverse conversion section whose output can be adjusted. High frequency electric resistance welding pipe welding equipment.
(3)管素材をV字状ギャップを有する管状に成形し、
このV字状ギャップの対向する縁部を連続して電気溶接
する高周波電縫管溶接ラインにて、Vシーム溶接部の手
前に対向する縁部の予熱手段を備えるとともに、Vシー
ム溶接部の後方にVシーム溶接部に近接してポスト・シ
ーム・ヒーターを配設し、溶接部の残留熱量を利用して
引き続き溶接部の後熱処理を行うことを特徴とする高周
波電縫管溶接装置。
(3) Forming the tube material into a tube shape with a V-shaped gap,
In a high frequency electric resistance welding pipe welding line that continuously electrically welds the opposite edges of this V-shaped gap, a preheating means for the opposite edges is provided in front of the V-seam weld, and a means for preheating the opposite edge is provided in the rear of the V-seam weld. A high-frequency electric resistance welding pipe welding device characterized in that a post seam heater is disposed close to the V-seam welding part, and the residual heat of the welding part is used to continuously perform post-heat treatment of the welding part.
(4)管素材をV字状ギャップを有する管状に成形し、
このV字状ギャップの対向する縁部を連続して電気溶接
する高周波電縫管溶接装置にて、Vシーム溶接部の手前
に対向する縁部の予熱手段を備えて50kHz以下の周
波数の電力を供給して縁部の予熱を行うとともに、電源
からVシーム溶接部に供給する溶接電力の周波数を高め
て最高で1,500kHz近傍までの高い周波数とした
ことを特徴とする高周波電縫管溶接装置。
(4) Forming the tube material into a tube shape with a V-shaped gap,
A high frequency electric resistance welding pipe welding device that continuously electrically welds the opposing edges of this V-shaped gap is equipped with a means for preheating the opposing edges in front of the V-seam welding part, and uses electric power with a frequency of 50 kHz or less. A high-frequency electric resistance welding pipe welding device is characterized in that the frequency of the welding power supplied from the power source to the V-seam welding area is increased to a high frequency of around 1,500kHz at the highest. .
JP13924490A 1989-08-07 1990-05-29 High frequency ERW pipe welding equipment Expired - Lifetime JP2819778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13924490A JP2819778B2 (en) 1989-08-07 1990-05-29 High frequency ERW pipe welding equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-204305 1989-08-07
JP20430589 1989-08-07
JP13924490A JP2819778B2 (en) 1989-08-07 1990-05-29 High frequency ERW pipe welding equipment

Publications (2)

Publication Number Publication Date
JPH03155478A true JPH03155478A (en) 1991-07-03
JP2819778B2 JP2819778B2 (en) 1998-11-05

Family

ID=26472113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13924490A Expired - Lifetime JP2819778B2 (en) 1989-08-07 1990-05-29 High frequency ERW pipe welding equipment

Country Status (1)

Country Link
JP (1) JP2819778B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223683A (en) * 1991-07-23 1993-06-29 Kabushiki Kaisha Meidensha High frequency electronic welding system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223683A (en) * 1991-07-23 1993-06-29 Kabushiki Kaisha Meidensha High frequency electronic welding system

Also Published As

Publication number Publication date
JP2819778B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
US3860778A (en) Melt welding by high frequency electrical current
CN107803593A (en) A kind of high frequency lasers silk filling composite welding apparatus and method
US7459053B2 (en) Flux guide induction heating device and method of inductively heating elongated and nonuniform workpieces
US3015018A (en) Heating apparatus
JPH03155478A (en) High-frequency resistance welded tube welding equipment
JP2981159B2 (en) Strip plate induction heating device
JPS6397373A (en) Method and device for welding high frequency electric welded pipe
JPS62234679A (en) Butt welding method for plate and equipment therefor
JP2905398B2 (en) How to join billets
JP3556061B2 (en) Open pipe edge preheating device
JP2017035707A (en) Single-side spot welding method and welding device
JP2924675B2 (en) Manufacturing method of welded section steel
JP2511335Y2 (en) Induction hardening coil for steering rack shaft
JP2004114108A (en) Method and equipment for welding metallic member
JPH06297182A (en) Welding method for high silicon electromagnetic steel sheets
JPS62176085A (en) Method and apparatus for radio frequency electric pipe welding
JP2910335B2 (en) High frequency ERW pipe welding equipment
SU893471A1 (en) Method of thermomechanic treatment of welded joints
JPS62134181A (en) Heat input controlling method for high frequency seam welding jointly using laser beam
JPH0740051A (en) Method and equipment for welding steel structure
JPS622919B2 (en)
JPS63215387A (en) Welding equipment
JP2905393B2 (en) Method of joining billets in hot rolling
JPH10162946A (en) Edge preheater for steel forging line
JPH0371947B2 (en)