JPH03154876A - Instrument for measuring solution resistivity - Google Patents

Instrument for measuring solution resistivity

Info

Publication number
JPH03154876A
JPH03154876A JP29401389A JP29401389A JPH03154876A JP H03154876 A JPH03154876 A JP H03154876A JP 29401389 A JP29401389 A JP 29401389A JP 29401389 A JP29401389 A JP 29401389A JP H03154876 A JPH03154876 A JP H03154876A
Authority
JP
Japan
Prior art keywords
circuit
oscillation
resistivity
sine wave
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29401389A
Other languages
Japanese (ja)
Other versions
JP2801304B2 (en
Inventor
Seiichi Nakahara
誠一 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP29401389A priority Critical patent/JP2801304B2/en
Publication of JPH03154876A publication Critical patent/JPH03154876A/en
Application granted granted Critical
Publication of JP2801304B2 publication Critical patent/JP2801304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the accuracy of measurement with measuring liquids of a wide range by having an oscillation circuit which generates a pseudo sinusoidal wave AC signal formed by distorting a sinusoidal wave. CONSTITUTION:The oscillation circuit 1 is so operated that the oscillation amplitude is satd. The pseudo sinusoidal wave formed by distorting the sinusoidal wave is generated in the output thereof. An AC constant voltage circuit 2 is for setting the amplitude of the pseudo sinusoidal wave AC signal outputted by the oscillation circuit 1 at a prescribed stable value and is constituted of, for example, Zener diodes 2a and 2b which are connected in series in the directions opposite from each other. The Zener diodes 2a and 2b reverse connected in such a manner have the temp. characteristics reverse from each other and the fluctuation of the AC constant voltage circuit 2 by a temp. change is prevented in such a manner. The accuracy of the measurement is thus maintained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般的に溶液抵抗率測定装置に係り、より詳細
には、純水や電解質溶液の抵抗率或いは導電率を測定す
る溶液抵抗率測定装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention generally relates to a solution resistivity measuring device, and more particularly, to a solution resistivity measuring device for measuring the resistivity or conductivity of pure water or an electrolyte solution. This relates to a measuring device.

〔従来の技術) 純水や電解質溶液の抵抗率或いは導電率を測定する場合
、セルと呼ばれる測定電極が使用される。
[Prior Art] When measuring the resistivity or conductivity of pure water or an electrolyte solution, a measuring electrode called a cell is used.

この測定電極は、その形状、大きさ、対向電極間の距離
、印加する交流信号の周波数によって決まるセル定数k
(am−’)と呼ばれる固有の値をもっている。このよ
うなセル定数k(co+−’)を有する測定電極の電極
間の等価電気抵抗をR(kΩ)、溶液の抵抗率をρ(k
Ω・cm)、導電率をσ(mS / cm )とすれば
、下式の関係が成立する。
This measurement electrode has a cell constant k determined by its shape, size, distance between opposing electrodes, and frequency of the applied alternating current signal.
It has a unique value called (am-'). The equivalent electrical resistance between the measurement electrodes having such a cell constant k (co+-') is R (kΩ), and the resistivity of the solution is ρ (k
Ω·cm) and conductivity as σ (mS/cm), the following relationship holds true.

ρ=R/に、σ=に/R,ρ=1/σ  ・・・(1)
ここで、セル定数kが一定の値を維持するならば、電極
間の等価電気抵抗Rを測定することによって、上式(1
)より抵抗率ρ或いは導電率σを容易に求めることがで
きる。
ρ=R/to, σ=to/R, ρ=1/σ...(1)
Here, if the cell constant k maintains a constant value, by measuring the equivalent electrical resistance R between the electrodes, the above formula (1
), resistivity ρ or conductivity σ can be easily determined.

上記測定電極のセル定数を測定する場合には、第4図に
示す測定装置を使用する。この測定装置では、高精度発
振回路aが発生する所定の振幅及び周波数の正弦波交流
信号が印加されるブリッジ回路すの一辺にセル定数の不
明な測定電極Cを接続しJこの測定電極Cを抵抗率ρ或
いは導電率σが既に分かっている溶液り中に浸け、可変
抵抗dを調整しながらブリッジ回路すが平衡したことを
電位差計eにより確認し、そのときの可変抵抗dの値に
より電極間の等価電気抵抗Rを読み取る。
When measuring the cell constant of the above-mentioned measurement electrode, a measuring device shown in FIG. 4 is used. In this measuring device, a measuring electrode C with an unknown cell constant is connected to one side of a bridge circuit to which a sinusoidal AC signal of a predetermined amplitude and frequency generated by a high-precision oscillation circuit a is applied. Immerse it in a solution whose resistivity ρ or conductivity σ is already known, and use a potentiometer e to check that the bridge circuit is balanced while adjusting the variable resistance d. Read the equivalent electrical resistance R between.

なお、ブリッジ回路すの抵抗f及びgは等しい値のもの
である。このことにより、上式(1)に基づいてそのと
きの溶液りの例えば導電率σにより、k−σ ・ R によって、セル定数kを計算により求めることができる
。このとき、溶液りの導電率σは、基準器となる高精度
導電率計或いは抵抗率針で事前に測定され、その値が判
明しているものとする。
Note that the resistances f and g of the bridge circuit have the same value. As a result, the cell constant k can be calculated based on the above equation (1) using, for example, the electrical conductivity σ of the solution at that time and k−σ·R. At this time, it is assumed that the conductivity σ of the solution is measured in advance with a high-precision conductivity meter or a resistivity needle serving as a standard, and its value is known.

上述のようにして測定した既知のセル定数を有する測定
電極Cを使用して任意の溶液の抵抗率ρ及び導電率σを
測定する場合、従来は、正弦波或いは矩形波からなる交
流信号を抵抗を介して測定電極に印加し、このときの測
定電極の電極間電圧を測、定し、この測定した電圧に基
づいて溶液の抵抗率ρ或いは導電率σを計算により求め
るようにしているーこのため、交流信号の振幅が変動す
ると測定値が変化して正確な測定ができなくなる。
When measuring the resistivity ρ and conductivity σ of an arbitrary solution using the measurement electrode C having a known cell constant measured as described above, conventionally, an alternating current signal consisting of a sine wave or a rectangular wave is The interelectrode voltage of the measuring electrode at this time is measured and determined, and the resistivity ρ or conductivity σ of the solution is calculated based on this measured voltage. If the amplitude of the AC signal fluctuates, the measured value will change, making accurate measurement impossible.

そこで、正弦波交流信号を使用する場合には、交流発生
回路として例えば、第5図に示すようにオペアンプOP
 tの出力端子に極性を逆向きにして接続された2個の
ダイオードD1及びD2と、このダイオードD+及びり
、とオペアンプOP。
Therefore, when using a sine wave AC signal, for example, an operational amplifier OP as shown in Fig. 5 is used as an AC generating circuit.
Two diodes D1 and D2 are connected to the output terminal of t with opposite polarities, these diodes D+ and D2, and the operational amplifier OP.

の反転入力端子との間に接続された固定抵抗R1により
発振振幅を安定させたウィーン・ブリッジ型発振回路や
、第6図に示すようにオペアンプOP2の出力回路にダ
イオードD3及びり、と抵抗Rs〜Rhからなる発振振
幅安定化のための構成部品を有するクワドラチャ型発振
回路が使用されていた。
A Wien bridge type oscillation circuit in which the oscillation amplitude is stabilized by a fixed resistor R1 connected between the inverting input terminal of the operational amplifier OP2 and a diode D3 in the output circuit of the operational amplifier OP2 as shown in FIG. A quadrature oscillation circuit having components for stabilizing the oscillation amplitude consisting of ~Rh was used.

上記ウィーン・ブリッジ型発振回路の場合は、第5図に
示すように、正帰還回路を形成するRCブロックの2個
の抵抗R2と2個のコンデンサCIにより、下式(2)
に示す周波数r oscで発振する。
In the case of the above Wien bridge type oscillator circuit, as shown in Fig. 5, the following formula (2) is obtained using two resistors R2 and two capacitors CI of the RC block forming a positive feedback circuit.
It oscillates at the frequency r osc shown in .

rosc  = 1/ 2 x ・Cl−R1・・(2
)この交流発生回路では、オペアンプOPの出力と反転
入力との間の抵抗値をrI、反転入力とアース間の抵抗
値をr!とすれば、帰還回路の電圧利得Aζ3で発振し
、下式(3)が成り立つ。
rosc = 1/2 x ・Cl-R1・・(2
) In this AC generating circuit, the resistance value between the output of the operational amplifier OP and the inverting input is rI, and the resistance value between the inverting input and ground is r! If so, oscillation occurs with the voltage gain Aζ3 of the feedback circuit, and the following formula (3) holds true.

rt−TI/ (A  I)         ・・”
(3)そして、発振振幅の安定した正弦波の発生を維持
するには、上述したような構成部品が必、要になる。
rt-TI/ (A I)...”
(3) In order to maintain the generation of a sine wave with a stable oscillation amplitude, the above-mentioned components are necessary.

この点、矩形波交流信・号を使用する場合には、発振振
幅の安定化が比較的簡単で交流発生回路としては例えば
、第7図に示すように極め・て簡単な構成の回路のもの
を使用することができる。
In this respect, when using a rectangular wave alternating current signal, it is relatively easy to stabilize the oscillation amplitude, and the alternating current generating circuit is, for example, a circuit with an extremely simple configuration as shown in Figure 7. can be used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述のように矩形波交流信号を用いると、抵抗
率或いは導電率の小さなものから大きなものまで広範囲
に亘って測定するとセル定数の値が大きく変化してしま
う、すなわち、第4図において、例えば測定電極Cの未
知の5、セル定・数kを調べるに際し、周波数1kHz
の矩形波交流信号を使用した場合のデータは、下表1に
示すようなる。
However, when using a rectangular wave alternating current signal as described above, the value of the cell constant changes greatly when measuring over a wide range from small to large resistivity or conductivity. In other words, in FIG. For example, when investigating the unknown cell constant/number k of measurement electrode C, the frequency is 1kHz.
The data when using the rectangular wave alternating current signal is as shown in Table 1 below.

表1 上表■のように、導電率σの値が2桁変化する範囲で、
セル定数の値は、k=0.100cm−’を基準とする
と、−3%〜+53%変化する。従って、溶液の抵抗率
或いは導電率の良好な測定精度を維持できないため、直
線化回路を必要とするなど、演算回路が複雑で高価にな
り、測定精度も得られにくいという欠点があった。
Table 1 As shown in the table ■ above, within the range where the value of conductivity σ changes by two orders of magnitude,
The value of the cell constant changes by -3% to +53% when k=0.100 cm-' is used as a reference. Therefore, it is not possible to maintain good measurement accuracy of the resistivity or conductivity of the solution, so the arithmetic circuit becomes complicated and expensive, such as requiring a linearization circuit, and it is difficult to obtain measurement accuracy.

一方、正弦波交流信号を利用する場合には、セル定数の
値の変化が少ない。すなわち、周波数1kHzの正弦波
交流信号を使用した場合のデータは、下表■に示すよう
なる。
On the other hand, when a sinusoidal AC signal is used, the cell constant value changes less. That is, the data when using a sine wave AC signal with a frequency of 1 kHz is as shown in Table 3 below.

表■ 上表■から明らかなように、導電率σΦ値が2桁変化す
る範囲で、セル定数の値は、k−0,100cm−’を
基準とすると、−3%〜+7%しか変化しないので、演
算回路に特別な工夫をしなくても測定の精度が得られる
。しかし、上述したように正弦波発振回路では、発振振
幅を安定させるための工夫が必要になり、回路が複雑で
高価になるという欠点があった。
Table■ As is clear from the above table■, within the range where the conductivity σΦ value changes by two orders of magnitude, the cell constant value changes only by -3% to +7% when k-0,100cm-' is the standard. Therefore, measurement accuracy can be obtained without any special modifications to the arithmetic circuit. However, as described above, the sine wave oscillation circuit requires measures to stabilize the oscillation amplitude, which has the drawback of making the circuit complex and expensive.

よって本発明は、上述した従来の問題点に鑑み、広い範
囲の抵抗率或いは導電率を測定しても電極のセル定数の
値の変化が少なく、測定の精度を維持すると共に、回路
が簡単で、安価な溶液抵抗率測定装置を提供することを
課題としている。
Therefore, in view of the above-mentioned problems of the conventional art, the present invention is designed to reduce the change in the value of the cell constant of the electrode even when measuring resistivity or conductivity over a wide range, maintain measurement accuracy, and simplify the circuit. , our objective is to provide an inexpensive solution resistivity measuring device.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明により成された溶液抵抗
率測定装置は、発振振幅が飽和されて動作され、正弦波
を歪ませた擬似正弦波交流信号を発生する発振回路と、
該発振回路より出力される擬似正弦波交流信号が一端に
供給される固定抵抗と、該固定抵抗に直列に接続された
測定電極と、前記固定抵抗及び測定電極の接続点から出
力される交流電圧を整流する整流回路と、該整流回路よ
り出力される直流電圧により抵抗率或いは導電率を演算
する演算回路と、該演算回路による演算結果により測定
結果を表示する表示器とを備えることを特徴としている
In order to solve the above problems, the solution resistivity measurement device according to the present invention includes an oscillation circuit that is operated with the oscillation amplitude saturated and generates a pseudo sine wave alternating current signal that is a distorted sine wave;
a fixed resistor to which a pseudo sine wave alternating current signal output from the oscillation circuit is supplied; a measuring electrode connected in series to the fixed resistor; and an alternating current voltage output from a connection point between the fixed resistor and the measuring electrode. A rectifying circuit that rectifies the voltage, an arithmetic circuit that calculates resistivity or conductivity based on the DC voltage output from the rectifying circuit, and a display that displays measurement results based on the calculation results of the arithmetic circuit. There is.

〔作用〕[Effect]

上記構成において、固定抵抗を介して測定電極に加える
交流信号として、発振振幅が飽和されて動作される発振
回路が発生する正弦波を歪ませた擬似正弦波交流信号を
使用しているので、広い範囲の導電率の溶液を測定した
とき、正弦波交流信号程精度のよい測定はできないが、
矩形波交流信号を使用した場合に比べた場合、波形形状
が正弦波に近いので、正弦波交流信号に近い精度の測定
結果を得ることができる。しかも、擬似正弦波交流信号
は発振回路を飽和状態で動作させて発生させたものであ
るので、その振幅の変動がなく、正弦波発振回路が必要
とするような発振振幅安定化のための回路部品を必要と
しない。
In the above configuration, as the AC signal applied to the measurement electrode via the fixed resistor, a pseudo sine wave AC signal is used, which is a distorted sine wave generated by an oscillation circuit that operates with the oscillation amplitude saturated. When measuring solutions with a range of conductivities, it is not as accurate as a sinusoidal AC signal, but
Compared to the case where a rectangular wave alternating current signal is used, since the waveform shape is close to a sine wave, it is possible to obtain measurement results with accuracy close to that of a sine wave alternating current signal. Moreover, since the pseudo sine wave AC signal is generated by operating the oscillation circuit in a saturated state, there is no fluctuation in its amplitude, and a circuit for stabilizing the oscillation amplitude, which is required for a sine wave oscillation circuit, is not required. No parts required.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明による溶液抵抗率測定装置の一実施例を
示す図であり、同図において、1は交流発生回路として
の発振回路、2は発振回路lが出力する交流波の振幅を
一定に保持する交流定電圧回路、3は交流定電圧回路2
の出力に一端が接続された抵抗値が既知の固定抵抗、4
は固定抵抗3の他端とアース間に接続され、抵抗率を測
定すべき溶液りに浸けられる測定電極、5は固定抵抗3
と測定電極4との接続点Xに入力が接続され、この接続
点Xに発生する交流電圧を整流する整流回路、6は整流
回路5が交流を整流して出力する直流電圧に基づいて抵
抗率或いは導電率を演算する演算回路、7は演算回路6
が出力する抵抗率或いは導電率を示すアナログ信号をデ
ジタル信号に変換するA/D変換回路、8はA/D変換
回路7からのデジタル信号に基づいて抵抗率或いは導電
率をデジタル値で表示するデジタル表示器である。
FIG. 1 is a diagram showing an embodiment of the solution resistivity measuring device according to the present invention. In the figure, 1 is an oscillation circuit as an AC generating circuit, and 2 is an oscillation circuit that keeps the amplitude of the AC wave outputted by the oscillation circuit l constant. 3 is the AC constant voltage circuit 2 which maintains the AC constant voltage circuit.
A fixed resistor with a known resistance value, one end of which is connected to the output of 4
is a measuring electrode connected between the other end of the fixed resistor 3 and the ground and immersed in the solution whose resistivity is to be measured; 5 is the fixed resistor 3;
An input is connected to the connection point X between the electrode 4 and the measurement electrode 4, and a rectifier circuit rectifies the AC voltage generated at the connection point Or an arithmetic circuit that calculates conductivity, 7 is an arithmetic circuit 6
8 is an A/D conversion circuit that converts the analog signal indicating the resistivity or conductivity outputted by the A/D conversion circuit 7 into a digital signal, and 8 displays the resistivity or conductivity as a digital value based on the digital signal from the A/D conversion circuit 7. It is a digital display.

上記発振回路1は発振振幅が飽和するように動作され、
その出力には正弦波を歪ませた擬似正弦波を発生する0
発振回路lとしては、例えば帰還回路の電圧利得Aζ3
で発振する第2図に示すような回路構成のウィーンブリ
ッジ型発振回路が使用され、その電年利得Aを3以上、
例えばA−3゜1に設定して発振振幅を飽和させること
により、発振周波数、発振振幅共に安定した歪みを含ん
だwi(JIJ正弦波交流信号を発生させることができ
る。
The oscillation circuit 1 is operated so that the oscillation amplitude is saturated,
Its output generates a pseudo sine wave that is a distorted sine wave.
As the oscillation circuit l, for example, the voltage gain Aζ3 of the feedback circuit
A Wien bridge type oscillator circuit with a circuit configuration as shown in Fig. 2 is used, which oscillates with a gain A of 3 or more.
For example, by setting the oscillation amplitude to A-3°1 and saturating the oscillation amplitude, it is possible to generate a wi (JIJ sine wave alternating current signal) containing stable distortion in both the oscillation frequency and the oscillation amplitude.

第2図の回路において、発振周波数r oscはオペア
ンプ11の出力と非反転入力との間に接続された正帰還
回路12を構成する2個の抵抗12a及び12bの値R
I!と2個のコンデンサ12c及び12dの値C1!に
より下式によって決定される。
In the circuit shown in FIG. 2, the oscillation frequency r osc is determined by the value R of the two resistors 12a and 12b constituting the positive feedback circuit 12 connected between the output of the operational amplifier 11 and the non-inverting input.
I! and the value C1 of the two capacitors 12c and 12d! It is determined by the following formula.

fosc ” 1/ 21t ・Ctz” Rra  
    ・・’(4)また、オペアンプ11の出力と反
転入力との間に接続されている抵抗13及び14の値R
I!及びRI4と電圧利得Aとの間には下式が成立する
fosc ” 1/21t・Ctz” Rra
...'(4) Also, the value R of the resistors 13 and 14 connected between the output and the inverting input of the operational amplifier 11
I! The following equation holds true between RI4 and voltage gain A.

Rra−R1s/ (A  l)          
・・・(5)よって、電圧利得Aを3.1に設定するに
は、抵抗13の値R13と抵抗14の値R14とを下式
が成立するような関係に設定すればよい。
Rra-R1s/ (A l)
(5) Therefore, in order to set the voltage gain A to 3.1, the value R13 of the resistor 13 and the value R14 of the resistor 14 may be set in a relationship such that the following formula holds.

Rls= 2. I Rra 上記交流定電圧回路2は、発振回路1が出力する擬似正
弦波交流信号の振幅を所定の安定した値に設定するため
のもので、例えば第3図に示すように、互いに逆方向に
直列に接続したツェナーダイオード2a及び2bによっ
て構成される。このように逆接続したツェナーダイオー
ド2a及び2bは互いに逆の温度特性を有するようにな
り、これによって温度変化により交流定電圧回路2の出
力が変動することを防止することもできる。
Rls=2. I Rra The AC constant voltage circuit 2 is for setting the amplitude of the pseudo sine wave AC signal outputted by the oscillation circuit 1 to a predetermined stable value. For example, as shown in FIG. It is composed of Zener diodes 2a and 2b connected in series. The Zener diodes 2a and 2b connected in opposite directions in this manner have opposite temperature characteristics, which can also prevent the output of the AC constant voltage circuit 2 from varying due to temperature changes.

上記交流定電圧回路2が出力する交流電圧V。AC voltage V outputted by the AC constant voltage circuit 2.

は、抵抗値R0の抵抗3とこの抵抗3に直列に接続され
た測定電極4とに印加される。このことによって測定電
極4は、上式(1)に示した既知のセル定数にと未知の
被測定溶液の抵抗率ρとの関係により、その等価電気抵
抗値R=k・ρを呈するようになる。今、接続点Xに発
生する交流電圧の大きさをV、とすると、下式が成立す
る。
is applied to a resistor 3 having a resistance value R0 and a measuring electrode 4 connected in series to this resistor 3. As a result, the measurement electrode 4 exhibits an equivalent electrical resistance value R=k・ρ due to the relationship between the known cell constant shown in the above equation (1) and the unknown resistivity ρ of the solution to be measured. Become. Now, if the magnitude of the AC voltage generated at the connection point X is V, the following formula holds true.

■。=[k・ρ/(R0+k・ρ)] ・v!・・・(
6) この式を変形すると、下式となり、未知の被測定溶液の
抵抗率ρを求めることができる。
■. = [k・ρ/(R0+k・ρ)] ・v! ...(
6) By modifying this equation, it becomes the following equation, and the resistivity ρ of the unknown solution to be measured can be obtained.

ρ= (R@ /k)   [V、/ (Vi−v。)
]・・・(7) 更に、上式(1)における導電率σと抵抗率ρとの関係
から、下式(8)により導電率σを求めることができる
ρ= (R@ /k) [V, / (Vi-v.)
]...(7) Further, from the relationship between the conductivity σ and the resistivity ρ in the above formula (1), the conductivity σ can be determined by the following formula (8).

a= (k/R,)  ・ C(v、−Vl )/vo
 ]・−(8) 上記接続点Xに発生する交流電圧V、は整流回路5に入
力され、ここで整流されて直流電圧に変換される。この
直流電圧V、は演算回路6に供給され、この直流電圧v
0により上式(′r)又は(8)に基づいて抵抗率ρ又
は導電率σの演算が行われる。
a= (k/R,) ・C(v, -Vl)/vo
].-(8) The alternating current voltage V generated at the connection point X is input to the rectifier circuit 5, where it is rectified and converted into a direct current voltage. This DC voltage V is supplied to the arithmetic circuit 6, and this DC voltage v
0, the resistivity ρ or conductivity σ is calculated based on the above equation ('r) or (8).

演算回路6における演算結果はアナログ電圧信号で出力
され、このアナログ電圧信号がA/D変換回路7におい
てデジタル信号に変換され、このデジタル信号に基づい
て測定結果がデジタル表示器8にデジタル表示される。
The calculation result in the calculation circuit 6 is output as an analog voltage signal, this analog voltage signal is converted into a digital signal in the A/D conversion circuit 7, and the measurement result is digitally displayed on the digital display 8 based on this digital signal. .

上述のように発振回路1が発生する擬似正弦波交流信号
を使用した場合には、矩形波交流信号を用いる従来のも
のに比べて、導電率σの値の小さなものから大きなもの
まで広範囲に亘って測定してもセル定数の値が大きく変
化することがない。
As described above, when the pseudo sine wave AC signal generated by the oscillation circuit 1 is used, the conductivity σ ranges over a wide range from small to large values, compared to the conventional method using a rectangular wave AC signal. The value of the cell constant does not change significantly even if the cell constant is measured.

すなわち、第1図において、例えば測定電極の未知のセ
ル定数kを調べるに際し、周波数1kHzの擬似正弦波
交流信号を使用した場合のデータは、下表■に示すよう
なる。
That is, in FIG. 1, when a pseudo sine wave alternating current signal with a frequency of 1 kHz is used to investigate, for example, the unknown cell constant k of the measurement electrode, the data is as shown in Table 2 below.

が7 u 37cm 〜700 u S/ctn程度の
範囲では、周波数1kHzの正弦波、擬似正弦波、矩形
波の交流信号を印加した場合、測定電極のセル定数は、
k 〜0.100cm−’を基準とすると、下表■のよ
うに変化する。
In the range of approximately 7 u 37 cm to 700 u S/ctn, when a sine wave, pseudo sine wave, or square wave alternating current signal with a frequency of 1 kHz is applied, the cell constant of the measurement electrode is
When k ~0.100 cm-' is used as a reference, it changes as shown in Table 3 below.

表■ 上表■のように、導電率σの値が2桁変化する範囲で、
セル定数の値は、k−0,100cm−’を基準とする
と、矩形波交流信号の場合の一3%〜53%に比べて極
めて小さな一3%〜+16%しか変化せず、良好な測定
精度を維持できる。
Table ■ As shown in the table ■ above, within the range where the value of conductivity σ changes by two orders of magnitude,
Based on k-0,100cm-', the value of the cell constant changes by only 13% to +16%, which is extremely small compared to 13% to 53% in the case of a rectangular wave AC signal, which indicates good measurement. Accuracy can be maintained.

以上のことを要約すると、被測定液の導電率σ表■ 上表■から明らかなように、擬似正弦波交流信号の場合
は、矩形波に比べて著しく改善され、正弦波に準じた変
化の値になり、精度のよい抵抗率或いは導電率の測定を
行うことができる。
To summarize the above, as is clear from the above table, the conductivity of the liquid under test is significantly improved compared to the rectangular wave, and the change is similar to that of a sine wave. value, and it is possible to measure resistivity or conductivity with high accuracy.

また、発振回路が飽和状態で発振しているのでその発振
振幅が安定し、発振回路の振幅安定化の必要もなく、回
路構成の簡素化によるコストダウンをも図ることができ
る。
Furthermore, since the oscillation circuit oscillates in a saturated state, the oscillation amplitude is stable, and there is no need to stabilize the amplitude of the oscillation circuit, and costs can be reduced by simplifying the circuit configuration.

なお、実施例においては、発振回路lの出力に交流定電
圧回路2を接続しているが、発振回路1が希望するレベ
ルの発振出力を発生するものであるときには、省略する
ことができる。
In the embodiment, the AC constant voltage circuit 2 is connected to the output of the oscillation circuit 1, but it can be omitted if the oscillation circuit 1 generates an oscillation output at a desired level.

〔効果〕〔effect〕

以上説明したように本発明によれば、擬似正弦波交流信
号を使用しているため、測定の精度の大きな要因となる
広い範囲の被測定液の導電率に対するセル定数の一定性
が保持されるようになり、また、擬似正弦波交流信号を
発生する発振回路′が発振振幅が飽和されて動作されて
いるので、正弦波発振回路が必要とするような発振振幅
安定化のための回路部品がな(でも振幅が変動せず、広
い範囲の抵抗率或いは導電率を測定しても電極のセル定
数の値の変化が少なく、測定の精度を維持することがで
きると共に、回路が簡単で、安価な溶液抵抗率測定装置
が得られる。
As explained above, according to the present invention, since a pseudo sine wave AC signal is used, the cell constant can be maintained over a wide range of conductivity of the liquid to be measured, which is a major factor in measurement accuracy. Also, since the oscillation circuit 'that generates the pseudo sine wave AC signal is operated with the oscillation amplitude saturated, circuit components for stabilizing the oscillation amplitude, which are required by the sine wave oscillation circuit, are not required. However, the amplitude does not fluctuate, and even when measuring resistivity or conductivity over a wide range, there is little change in the cell constant of the electrode, and measurement accuracy can be maintained, and the circuit is simple and inexpensive. A solution resistivity measuring device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による溶液抵抗率測定装置の一実施例を
示す図、 第2図は第1図中の一部分の具体的な回路例を示す回路
図、 第3図は第1図中の他の一部分の具体的な回路例を示す
回路図、 第4図はセル定数を測定するための一般的な測定装置を
示す図、 第5図乃至第7図は従来の溶液抵抗率測定装置において
使用されて発振回路例を示す回路図である。 l・・・発振回路、3・・・固定抵抗、4・・・測定電
極、5・・・整流回路、6・・・演算回路、8・・・デ
ジタル表示器。
FIG. 1 is a diagram showing an embodiment of the solution resistivity measuring device according to the present invention, FIG. 2 is a circuit diagram showing a specific example of a part of the circuit in FIG. 1, and FIG. A circuit diagram showing a specific example of the other part of the circuit, Figure 4 is a diagram showing a general measuring device for measuring cell constants, and Figures 5 to 7 are diagrams showing a conventional solution resistivity measuring device. FIG. 2 is a circuit diagram showing an example of an oscillation circuit used. l... Oscillator circuit, 3... Fixed resistance, 4... Measuring electrode, 5... Rectifier circuit, 6... Arithmetic circuit, 8... Digital display.

Claims (1)

【特許請求の範囲】 発振振幅が飽和されて動作され、正弦波を歪ませた擬似
正弦波交流信号を発生する発振回路と、該発振回路より
出力される擬似正弦波交流信号が一端に供給される固定
抵抗と、 該固定抵抗に直列に接続された測定電極と、前記固定抵
抗及び測定電極の接続点から出力される交流電圧を整流
する整流回路と、 該整流回路より出力される直流電圧により抵抗率或いは
導電率を演算する演算回路と、 該演算回路による演算結果により測定結果を表示する表
示器とを備える、 ことを特徴とする溶液抵抗率測定装置。
[Claims] An oscillation circuit that is operated with the oscillation amplitude saturated and generates a pseudo sine wave alternating current signal that is a distorted sine wave, and a pseudo sine wave alternating current signal output from the oscillation circuit is supplied to one end. a fixed resistance, a measurement electrode connected in series to the fixed resistance, a rectifier circuit that rectifies the AC voltage output from the connection point of the fixed resistance and the measurement electrode, and a DC voltage output from the rectification circuit. A solution resistivity measurement device comprising: a calculation circuit that calculates resistivity or conductivity; and a display that displays measurement results based on the calculation results of the calculation circuit.
JP29401389A 1989-11-14 1989-11-14 Solution resistivity measuring device Expired - Fee Related JP2801304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29401389A JP2801304B2 (en) 1989-11-14 1989-11-14 Solution resistivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29401389A JP2801304B2 (en) 1989-11-14 1989-11-14 Solution resistivity measuring device

Publications (2)

Publication Number Publication Date
JPH03154876A true JPH03154876A (en) 1991-07-02
JP2801304B2 JP2801304B2 (en) 1998-09-21

Family

ID=17802123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29401389A Expired - Fee Related JP2801304B2 (en) 1989-11-14 1989-11-14 Solution resistivity measuring device

Country Status (1)

Country Link
JP (1) JP2801304B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262185A (en) * 2011-04-26 2011-11-30 无锡捷威电子有限公司 Test circuit for water resistance of instant heating-type electric water heater
CN110596221A (en) * 2019-09-20 2019-12-20 华东师范大学 Flexible three-electrode sodium ion detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262185A (en) * 2011-04-26 2011-11-30 无锡捷威电子有限公司 Test circuit for water resistance of instant heating-type electric water heater
CN110596221A (en) * 2019-09-20 2019-12-20 华东师范大学 Flexible three-electrode sodium ion detection device

Also Published As

Publication number Publication date
JP2801304B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
US7772854B2 (en) High-conductivity contacting-type conductivity measurement
US3933046A (en) Logarithmic resistance-to-frequency converter
US4160946A (en) Device for measuring conductivity of a solution
JPH09511056A (en) Material property measurement system
US3959724A (en) Electronic wattmeter
US3311826A (en) Measuring system standard utilizing amplifier with rectifier in negative feedback path to compensate rectifier forward voltage drop
US4321544A (en) Method and improved apparatus for obtaining temperature-corrected readings of ion levels and readings of solution temperature
JPH04248472A (en) Method of measuring resistance value
US5248934A (en) Method and apparatus for converting a conventional DC multimeter to an AC impedance meter
JPH03154876A (en) Instrument for measuring solution resistivity
US3448378A (en) Impedance measuring instrument having a voltage divider comprising a pair of amplifiers
US3068410A (en) Expanded scale electrical measuring system having high temperature stability
CN213455309U (en) Handheld electronic thickness and distance measuring instrument
SU993365A1 (en) Device for measuring internal resistance of electrochemical current source
JPS62207968A (en) Conductivity meter circuit
JPS6023993Y2 (en) Hall element residual voltage adjustment circuit
JPH0658333B2 (en) Conductivity measuring method and measuring apparatus therefor
JP3045664B2 (en) Electric conductivity measuring device
WO2001075459A1 (en) Electrical conductivity measurement circuit
CN113484370A (en) Conductivity measurement method and equipment
JPH09257682A (en) Viscosity sensor
JPS60201266A (en) Digital resistance meter
JPH0738863Y2 (en) Differential frequency meter
SU132330A1 (en) Device for measuring the ratio of two alternating voltages
RU2085962C1 (en) Magnetic-field metering device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees