JPH0315441A - Cardiac sound meter - Google Patents

Cardiac sound meter

Info

Publication number
JPH0315441A
JPH0315441A JP14944489A JP14944489A JPH0315441A JP H0315441 A JPH0315441 A JP H0315441A JP 14944489 A JP14944489 A JP 14944489A JP 14944489 A JP14944489 A JP 14944489A JP H0315441 A JPH0315441 A JP H0315441A
Authority
JP
Japan
Prior art keywords
sound
heart
cardiac sound
circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14944489A
Other languages
Japanese (ja)
Inventor
Kazuhiko Higuchi
和彦 樋口
Hiroshi Takeda
博 竹田
Koichi Sato
功一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP14944489A priority Critical patent/JPH0315441A/en
Publication of JPH0315441A publication Critical patent/JPH0315441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PURPOSE:To obtain a cardiac sound meter, in which a diagnosis can be more objectively performed through improved diagnostic accuracy of the cardiac sound meter, by mounting a plurality of cardiac sound sensors on the breast, calculating intensity distribution of a cardiac sound by a plurality of cardiac sound signals simultaneously obtained from the sensors and diagnosing a heart disease from a feature of the intensity distribution. CONSTITUTION:A detection signal from a cardiac sound sensor 1i, arranged in each position, is amplified to a predetermined voltage value respectively by an amplifier 2i, thereafter a low-pitched sound part is attenuated by a high pass filter 3i to obtain the flat frequency characteristic, converted into a digital signal by an A/D converter 4i and given to a time division circuit 7. In the digital signal, contraction and expansion phases are set based on a time division signal from a waveform recognizing circuit 6 in the time division circuit 7, further each magnetism is equally divided in a plurality of sections. The time division digital signal is given to a band pass filter circuit 8 and divided into a signal of each component of low, intermediate and high frequency in each divided section. In an intensity arithmetic circuit 9, cardiac sound intensity of division section is calculated from a time series data in each frequency and each division timing, and an arithmetic result can be utilized for diagnosis by displaying the result on a display medium of CRT.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、心臓病の診断に使用する心音計に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a phonocardiograph used for diagnosing heart disease.

〔従来の技術〕[Conventional technology]

心音とは、心臓が収縮と拡張とを繰り返して血液を各組
織に送り出す際に房室弁・半月弁の開閉や心房→心室→
大血管への血流によって弓き起こされる音である。
Heart sounds are the opening and closing of the atrioventricular valves and semilunar valves and the sounds from the atria to the ventricles when the heart repeatedly contracts and expands to pump blood to each tissue.
This is the sound caused by blood flow to large blood vessels.

ところで心臓弁膜症や動脈瘤などの各種の心臓疾患は、
それぞれの疾患部が変形・変質するために血流により特
有の音(心雑音)が発生する。このため従来から医師が
この心音を聴取して心臓疾患の有無のチェック、疾患名
の同定といった診断に利用している。ところがこの心音
による心臓病の診断は、心臓の専門医以外の医師にとっ
ては比較的困難な状況にある。
By the way, various heart diseases such as heart valve disease and aneurysm,
As each diseased area deforms and changes in quality, a unique sound (heart murmur) is generated by blood flow. For this reason, doctors have traditionally listened to these heart sounds and used them for diagnosis, such as checking for the presence of heart disease and identifying the name of the disease. However, diagnosing heart disease based on heart sounds is relatively difficult for doctors other than heart specialists.

このため、診断を容易にするために心音計という装置が
考案されている。この装置は、胸の所定の位置に取り付
けたマイクロホンなどの心音センサにより心音を検出し
て電気信号に変換し、時間波形として記録紙に記録し(
心音図)、その波形の特徴から診断を行うことを目的に
開発されたものであが、波形のみから心臓病を診断する
ことは困難であるこどが分かっており、現状では医師の
診断所見に客観性を持たせるためのハソクデータとして
利用されているに過ぎない状況にある。
For this reason, a device called a phonocardiograph has been devised to facilitate diagnosis. This device detects heart sounds using a heart sound sensor such as a microphone attached to a predetermined position on the chest, converts it into an electrical signal, and records it on recording paper as a time waveform (
Phonocardiogram) was developed for the purpose of diagnosis based on the characteristics of its waveform, but it is known that it is difficult to diagnose heart disease from the waveform alone, and currently it is difficult to diagnose heart disease from the waveform alone. The situation is such that it is merely being used as Hassoku data to provide objectivity.

以下添付の心音図によって心音の特徴を説明する。第7
図は、上から心電図、正常な心音図、各種心臓疾患に対
応する心音図A−Gをそれぞれ心尖部の心音について模
型的に図示したものである。
The characteristics of heart sounds will be explained below using the attached phonocardiogram. 7th
The figure schematically illustrates, from the top, an electrocardiogram, a normal phonocardiogram, and phonocardiograms A to G corresponding to various heart diseases, each regarding heart sounds at the apex of the heart.

第7図においてI音は、心臓の左房・左室間の僧帽弁及
び右房・右室間の三尖弁の開閉時に生じる音とされ、ま
た■音は、左心室・大動脈間の大動脈弁、右心室・肺動
脈間の肺動脈弁の開閉する音であるとされている。前記
I音,■音は、心音図ではそれぞれ特定のピーク波形と
して捉えることができる。そして前記I音と■音との間
は心室の収縮時期、H音と次の区間の■音との間は心室
の拡張期に相当し,これらの時期に生じる波形が心雑音
であり、前者を収縮期雑音、後者を拡張期雑音と呼んで
いる。
In Figure 7, the I sound is the sound that occurs when the mitral valve between the left atrium and left ventricle of the heart and the tricuspid valve between the right atrium and right ventricle open and close, and the ■ sound is the sound that occurs between the left ventricle and the aorta. It is said to be the sound of the aortic valve, the pulmonary artery valve between the right ventricle and the pulmonary artery opening and closing. The I sound and the ■ sound can each be captured as specific peak waveforms in a phonocardiogram. The period between the I sound and the ■ sound corresponds to the systolic period of the ventricle, and the period between the H sound and the next section of the ■ sound corresponds to the ventricular diastole period. The waveform that occurs during these periods is the heart murmur, and the former The latter is called a systolic murmur, and the latter is called a diastolic murmur.

第7図のA−G図から明らかなように、心雑音がどの時
期に生しているか、また大きさがどのように変化するか
(漸増性、漸減性、漸増漸減性、一定など)、高音成分
が強いか、低音威分が強いかといった心雑音の特徴から
ある程度疾患の種類がわかる。
As is clear from diagrams A-G in Figure 7, when does the heart murmur occur and how does its size change (gradually increasing, decreasing, gradually increasing, constant, etc.)? The type of disease can be determined to some extent by the characteristics of the heart murmur, such as whether the high-pitched sound component is strong or the low-pitched sound component is strong.

次に各周波数帯域毎に心音を記録した場合の実際の波形
を第8図及び第9図に例示する。即ち第8図は、収縮期
雑音を生しる例として僧帽弁閉鎖不全症患者の心音図を
低音カットして高音を強調するハイパスフィルタ、低音
を強調するローパスフィルター、前記の中間である呉デ
ィアムフィルタ、人間の聴感特性を模擬したイアライク
フィルターによって4種類の周波数帯域乙こ、即ちそれ
ぞれ前記順にH,L,M,Eの帯域に分けて記録したも
のであり、収縮期に一定の大きさの心雑音が続くという
第7図Cの特徴を有している。
Next, actual waveforms when heart sounds are recorded for each frequency band are illustrated in FIGS. 8 and 9. That is, FIG. 8 shows, as an example of a systolic murmur, a phonocardiogram of a patient with mitral regurgitation, using a high-pass filter that cuts low frequencies and emphasizes high frequencies, a low-pass filter that emphasizes low frequencies, and a Wu filter that is intermediate between the above. Recordings were made using a medium filter and an ear-like filter that simulated the human auditory characteristics, dividing them into four types of frequency bands, namely H, L, M, and E bands in the above order. The patient has the characteristics of Figure 7C, with a continuous heart murmur.

同様に第9図は、拡張期雑音を生しる例で、心尖部にお
ける僧帽弁狭窄症の心音を前記帯域毎に分けて記録した
ものである。この波形は、拡張期に漸減漸増性の心雑音
を発生するという第7図Eの特徴を示している。
Similarly, FIG. 9 shows an example of a diastolic murmur, in which heart sounds due to mitral stenosis at the apex of the heart are recorded separately for each band. This waveform shows the characteristic of FIG. 7E, which is a progressively increasing heart murmur during diastole.

前記のとおり現在の心音図は、診断の際のハックデータ
としての利用が主なものであるが、以上に示した各心音
図から明らかなように、各心臓疾患によって心音の特徴
が異なるので、これを利用して心音計を直接の診断に利
用する試みが行われている。
As mentioned above, current phonocardiograms are mainly used as hack data for diagnosis, but as is clear from the phonocardiograms shown above, the characteristics of heart sounds differ depending on each heart disease. Utilizing this, attempts are being made to use the phonocardiograph for direct diagnosis.

例えば特公昭56−39220号公報の発明は、胸部に
複数の心音センサを取リイ」け、心音の包絡線検波を行
い、包路線による心音信号の各瞬時値の最大値を取り出
す波形合威器、■音、■音などの各波形の識別器及び各
波形について基準値と比較する比較器、その比較結果か
ら正常者と要精密検査者とを判別する判別表示器とを供
えた心音スクリーニング装置である。
For example, the invention disclosed in Japanese Patent Publication No. 56-39220 is a waveform synthesizer that installs a plurality of heart sound sensors in the chest, detects the envelope of the heart sound, and extracts the maximum value of each instantaneous value of the heart sound signal based on the envelope. A heart sound screening device equipped with a discriminator for each waveform such as , ■sound, and ■sound, a comparator that compares each waveform with a reference value, and a discrimination display that distinguishes between a normal person and a person who requires detailed examination based on the comparison result. It is.

[発明が解決しようとする課題] ところで、前記心音スクリーニング装置は、複数の心音
センサの心音信号から最大の値を与える信号を取り出し
、この信号を基準値と比較して診断の精度を上げるもの
であるので、複数の心音センサから出力された心音情報
を充分利用していないという問題があり、診断精度を上
げるためにはなお改善の必要が認められる。
[Problems to be Solved by the Invention] By the way, the heart sound screening device extracts the signal giving the maximum value from the heart sound signals of a plurality of heart sound sensors, and compares this signal with a reference value to improve the accuracy of diagnosis. Therefore, there is a problem in that the heart sound information output from a plurality of heart sound sensors is not fully utilized, and further improvements are recognized to be necessary in order to increase diagnostic accuracy.

本発明は、複数の心音センサを胸部上に取り付け、これ
らのセンザから同時に得た複数の心音信号により、心音
の強度分布を算出し,強度分布の特徴から心臓病の診断
をするようにして、一心音計の診断精度を向上させ、よ
り客観的に診断できるようにした心音計を提供すること
を目的としている。
The present invention includes a plurality of heart sound sensors attached to the chest, a plurality of heart sound signals obtained simultaneously from these sensors, calculating the intensity distribution of the heart sound, and diagnosing heart disease from the characteristics of the intensity distribution. The purpose of the present invention is to provide a phonocardiograph that improves the diagnostic accuracy of a single phonocardiograph and enables more objective diagnosis.

〔課匙を解決するための手段〕[Means to solve the problem]

以上の目的を達威するための本発明の心音計の構或は、
被検者の胸部の所定領域を覆って取り付ける複数の心音
センサから或る心音検出部と、前記各心音センサから与
えられる心音信号をそれぞれ複数の周波数帯域に濾波す
る手段並びに心音信号の1周期を■音・■音を基準に複
数の期間に分割する手段を有し、前記周波数帯域毎に、
且つ前記分割勘間毎に前記所定領域上での心音強度分布
を算出する演算部を有することを特徴としている。
The structure of the phonocardiograph of the present invention to achieve the above objects,
A heart sound detection unit selected from a plurality of heart sound sensors attached to cover a predetermined region of the chest of the subject, a means for filtering the heart sound signals provided from each of the heart sound sensors into a plurality of frequency bands, and a means for filtering one cycle of the heart sound signal. ■Sound・■It has means for dividing the sound into a plurality of periods based on the sound, and for each frequency band,
Further, the present invention is characterized in that it includes a calculation unit that calculates the heart sound intensity distribution on the predetermined area for each of the divided intervals.

本発明に使用する単位心音センサには、従来から使用さ
れるセンサを使用することができる。
A conventionally used sensor can be used as the unit heart sound sensor used in the present invention.

該単位センサは、胸部上の複数部位に配置する。The unit sensors are placed at multiple locations on the chest.

その数は、特に限定しないが医師が診断上必要と判断す
る数カ所から数十カ所の肋間に両面粘着テープ等によっ
て密着させて使用する。
Although the number is not particularly limited, they are used by being closely attached to several to several dozen intercostal spaces using double-sided adhesive tape or the like as determined by the doctor to be necessary for diagnosis.

本発明の心音計は、各周波数帯域毎に心音1周期内を複
数の期間に分割し、該分割期間毎の心雑音強度分布を算
出する。その際、前記I音■音を基準に複数の期間に分
割する方法としては、心音波形からI音,■音を分離し
、前記収縮期雑音、拡張期雑音を取り出し、それそれの
雑音期について、複数期間、例えばそれぞれの雑音期別
に等分割することによって行うことができる。
The phonocardiograph of the present invention divides one cycle of heart sounds into a plurality of periods for each frequency band, and calculates the heart murmur intensity distribution for each divided period. At that time, the method of dividing into multiple periods based on the I sound and ■ sound is to separate the I sound and the ■ sound from the heart waveform, extract the systolic murmur and diastolic murmur, and then divide the murmur period into each period. , this can be done by equally dividing into multiple periods, for example, each noise period.

前記心雑音の分離は、正確な心雑音強度を算出するため
のものであり、いずれの測定部位に対しても、前記のと
おりI音、■音などの正常な心臓でも生ずる心音を除外
するように行う。
The heart murmur separation described above is for calculating accurate heart murmur intensity, and as mentioned above, heart sounds that occur even in a normal heart, such as the I sound and the ■ sound, are excluded for any measurement site. to be done.

前記分離は、心臓の拡張、収縮などによって発生するI
音、■音などの特徴音を捉えて分割のタイミングとする
ことによって行う。■音,■音区間は心音波形だけから
でも捉えることができるが、通常は同時に測定した心電
波形の特徴部分を検出し、これらを基準に1音、■音領
域、収縮期・拡張期なとを設定する。そしてそれぞれの
刈間内を所定数に分割する。
The separation occurs due to expansion, contraction, etc. of the heart.
This is done by capturing characteristic sounds such as sounds and ■ sounds and determining the timing of division. ■Sounds and ■sound intervals can be determined from the cardiac waveform alone, but usually characteristic parts of the electrocardiogram waveforms measured at the same time are detected, and based on these, one sound, ■sound area, systole and diastole are determined. and set. Then, each karima is divided into a predetermined number of sections.

1作 川] 本発明の心音計は、心音を複数の周波数帯域に濾波し、
且つ前記I音及び■音を基準にして心音1周期を複数の
期間に分割することにより周波数41}域及び1!J1
間毎に心音強度分布を演算している。このため心臓の異
常によって生しる心音の特徴をその胸壁上の強度分布に
よって際立たせることができるので、精度の高い診断を
することか可能となる。
1 work Kawa] The phonocardiograph of the present invention filters heart sounds into multiple frequency bands,
Furthermore, by dividing one heart sound cycle into a plurality of periods based on the I sound and the ■ sound, the frequency range 41} and 1! J1
The heart sound intensity distribution is calculated for each interval. Therefore, the characteristics of heart sounds caused by cardiac abnormalities can be highlighted by the intensity distribution on the chest wall, making it possible to make highly accurate diagnoses.

〔実施例] 以下添付の図面を対照しなから一実施例を用いて具体的
に説明する。
[Example] An example will be specifically described below with reference to the accompanying drawings.

第l図は、本実施例の心音計の概要を示すブロノク図で
あり、第2図は、第1図に使用する心音センザを被検者
の胸部に取り付けた位置を示す図である。
FIG. 1 is a Bronnoch diagram showing an outline of the phonocardiograph of this embodiment, and FIG. 2 is a diagram showing the position where the heart sound sensor used in FIG. 1 is attached to the chest of the subject.

本実施例では、8mmφの円筒状の加速度ピックアンプ
から成る心音センサ1+(i−1〜30、以下同し)を
使用し、第2図に示すように被検者の胸部の肋骨に沿っ
て横方向に6列、縦方向鎖骨中線A上に7点、前腋窩線
B上に3点配置し、残りの4列については、これらに平
行して図のように5点づつ配置し、全部で30個使用し
て心音検出部を構威した。前記心音セン′り′1、は、
両面粘着テープ等によって胸部に密着さゼ゜た。
In this example, a heart sound sensor 1+ (i-1 to 30, hereinafter the same) consisting of an 8 mm diameter cylindrical acceleration pick amplifier is used, and as shown in FIG. 6 rows in the horizontal direction, 7 points on the longitudinal midclavicular line A, 3 points on the anterior axillary line B, and for the remaining 4 rows, 5 points each are placed parallel to these as shown in the figure. A total of 30 pieces were used to construct the heart sound detection unit. The heart sound sensor'ri'1 is,
It was attached tightly to the chest using double-sided adhesive tape.

なお、本発明の実用化段階では、測定の目的によって測
定点数を本実施例より減らしても、診断に必要な心音強
度分布を得ることが可能であると考えられる。
In addition, at the stage of practical application of the present invention, it is considered possible to obtain the heart sound intensity distribution necessary for diagnosis even if the number of measurement points is reduced from this embodiment depending on the purpose of measurement.

またI音、■音を検出し、時分割信号を得るために第2
図に図示しない心電計を、同様に図示しない被検者の右
手首.左足首を取り付ける第■誘導を用いて取り付けた
In addition, a second
An electrocardiograph (not shown) was placed on the subject's right wrist (also not shown). The left ankle was attached using lead ①.

第1図において、前記各位置に配置した30個の前記心
音センザ1,からの検出信号は、それぞれ増幅器2,に
よって所定の電圧値に増幅された後、ハイパスフィルタ
ー3,によって低音部を滅衰させてフラッ1・な周波数
特性とし、A/D変換器4、によってディジタル信号に
変換され、時分割回路7に与えられる。
In FIG. 1, the detection signals from the 30 heart sound sensors 1 arranged at each position are each amplified to a predetermined voltage value by an amplifier 2, and then a high-pass filter 3 attenuates the bass part. This signal has a flat frequency characteristic, is converted into a digital signal by the A/D converter 4, and is provided to the time division circuit 7.

前記ディジタル信号は、時分割回路7で波形認識回路6
からの時分割信号をもとに収縮期、拡張期が設定され、
更に各磁気は複数の区間に等分される。
The digital signal is sent to a waveform recognition circuit 6 by a time division circuit 7.
The systole and diastole are set based on the time-shared signal from
Further, each magnetic field is equally divided into a plurality of sections.

前記時分割信号は次の手順によって得た。即ち、心電セ
ンサ5(第1図)からの心電信号を、心音信号と同様に
増幅器2cで増幅した後、A/D変換器4cによってデ
ィシタル信号に変換し、波形認識回路6に与えられる。
The time-division signal was obtained by the following procedure. That is, the electrocardiographic signal from the electrocardiographic sensor 5 (FIG. 1) is amplified by the amplifier 2c in the same manner as the heart sound signal, and then converted into a digital signal by the A/D converter 4c, which is then provided to the waveform recognition circuit 6. .

波形認識回路6において、該信号から心電図のR波を認
識し、このR波のピークを基準としてI音,l音領域を
それぞれ同定することによって時分割信号が得られる。
In the waveform recognition circuit 6, the R wave of the electrocardiogram is recognized from the signal, and the I sound and L sound regions are respectively identified using the peak of the R wave as a reference, thereby obtaining a time-division signal.

9 1 0 時分割されたディジタル信号は、帯域ろ波回路8に与え
られ各分割区間ごとに低周波、中周波、高周波の各成分
の信号に分けられる。
9 1 0 The time-divided digital signal is given to the bandpass filter circuit 8 and is divided into signals of low frequency, medium frequency, and high frequency components for each division section.

本実施例では、前記時分割信号を用いて、第3図に示す
ように、1心音区間波形からI音■音を除去した残りの
心雑音部分について各周波数帯域毎に収縮期及び各拡張
期をそれぞれ3期に等分割し、全体で第3図に示すよう
に1期〜6期の心雑音信号を得た。
In this embodiment, as shown in FIG. 3, using the time-division signal, the remaining heart murmur portion after removing the I and ■ sounds from the waveform of one heart sound section is divided into systolic and diastolic periods for each frequency band. was equally divided into three periods, and the heart murmur signals of periods 1 to 6 were obtained as a whole, as shown in FIG.

前記強度濱算回路9では、各周波数及び時分割された各
時期毎の時系列データから該分割区間の心音強度が算出
される。該演算回1路9の演算結果は、CRTなどの表
示媒体上に色別図、等強線図によって表示したり、数値
表示したり、あるいは既に登録されている強度分布のパ
ターンとパターンマッチングすることにより診断に利用
することができる。
The intensity calculation circuit 9 calculates the heart sound intensity in the divided section from the time-series data for each frequency and time-divided period. The calculation results of the calculation circuit 1 and 9 are displayed on a display medium such as a CRT in the form of a color-coded diagram or an isointensity diagram, numerically displayed, or pattern-matched with an already registered intensity distribution pattern. This can be used for diagnosis.

本実施例では演算回路9の演算結果の処理例の一つとし
て、前記心雑音強度の分布を前記時期毎且つ前記周波数
毎に図示しないCRT上に等強線図で出力した。その結
果の一例を第4図〜第6図に示す。
In this embodiment, as one example of processing the calculation results of the calculation circuit 9, the distribution of the heart murmur intensity is outputted as a contour map on a CRT (not shown) for each period and each frequency. Examples of the results are shown in FIGS. 4 to 6.

第4図は僧帽弁閉鎖不全症の低周波帯域・拡張早期(第
1期)の心雑音分布で、心尖部に最強点があることが分
かる。第5図は心室中隔欠損症(第7図D)の中周波帯
域・収縮中期の心雑音分布図である。また第6図は大動
脈弁狭窄症(第7図B)の中間周波帯域・収縮中期の心
雑音分布図で、同じ周波数帯域・同し時期でも最強点の
位置が明らかに異なっている。したがって、心雑音強度
の分布特徴と心臓疾患名とを対応させて分類整理するこ
とにより、心臓疾患の診断を従来より晶かに客観的に行
うことが可能になることが理解される。
Figure 4 shows the heart murmur distribution in the low frequency band and early diastole (first stage) of mitral regurgitation, and it can be seen that the strongest point is at the apex of the heart. FIG. 5 is a heart murmur distribution map in the middle frequency band and mid-systole of ventricular septal defect (D in FIG. 7). Furthermore, Fig. 6 is a heart murmur distribution map in the intermediate frequency band and mid-systole of aortic valve stenosis (Fig. 7B), in which the positions of the strongest points are clearly different even in the same frequency band and at the same time. Therefore, it is understood that by correlating the distribution characteristics of the heart murmur intensity with the names of heart diseases and categorizing them, it becomes possible to diagnose heart diseases more clearly and objectively than before.

[発明の効果] 以上説明したとおり本発明の心音計は、心音の1音と■
音との間の収縮期及び■音と次の心音周期の■音との間
の拡張期について、予め定めた複数の周波数帯域と時分
割区間に分けて心音強度を求め、該強度の分布状況から
診断する11 12 4, ように構成したので、従来の心音では検出することがで
きなかった心臓病の特徴を捉え、診断に役立てることが
できるという効果が得られる。
[Effect of the invention] As explained above, the phonocardiograph of the present invention can detect one heart sound and ■
For the systolic period between the sound and the diastolic period between the sound and the sound of the next heart sound cycle, the heart sound intensity is calculated by dividing it into multiple predetermined frequency bands and time division intervals, and the distribution of the intensity is calculated. 11 12 4. Since the configuration is as follows, it is possible to capture the characteristics of heart disease that could not be detected by conventional heart sounds, and to make it useful for diagnosis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一実施例による本発明の心音計の構威の概要を
示すブロック回路図、第2図は第1図に使用した心音セ
ンサの取り付け位置を示す図、第3図は心音信号を時分
割した様子を示すグラフ図、第4図は〜第6図は心音強
度分布を等強線図によって示した図、第7図は典型的な
心電図、正常心臓の心音図、各種の心臓疾患の心音図を
それぞれ模型的に示したグラフ図、第8図〜第9図はそ
れぞれ心雑音のある心音を低周波〜高周波までの4段階
に濾波した様子を示した図である。 1・・・単位心音センサ、2・・・増幅器、3・・・ハ
イパスフィルタ、4・・・A/D変換器、5・・・心電
センサ、6・・・波形認識回路、7・・・時分割回路、
8・・・帯域ろ波退路、9・・・心音強度演算回路。 13 ・j 臂 籾 巴
FIG. 1 is a block circuit diagram showing the outline of the structure of the phonocardiograph of the present invention according to an embodiment, FIG. 2 is a diagram showing the mounting position of the heart sound sensor used in FIG. 1, and FIG. Graphs showing time-divided conditions, Figures 4 to 6 are isointensity diagrams of heart sound intensity distribution, and Figure 7 is a typical electrocardiogram, a phonocardiogram of a normal heart, and various heart diseases. FIGS. 8 to 9 are graphs each schematically showing a phonocardiogram, and each of FIGS. 8 and 9 is a diagram showing how heart sounds with heart murmurs are filtered into four stages from low frequency to high frequency. DESCRIPTION OF SYMBOLS 1... Unit heart sound sensor, 2... Amplifier, 3... High pass filter, 4... A/D converter, 5... Electrocardiogram sensor, 6... Waveform recognition circuit, 7...・Time division circuit,
8...Band filter retreat path, 9...Heart sound intensity calculation circuit. 13 ・j Armpit

Claims (1)

【特許請求の範囲】[Claims] 被検者の胸部の所定領域を覆って取り付ける複数の心音
センサから成る心音検出部と、前記各心音センサから与
えられる心音信号をそれぞれ複数の周波数帯域に濾波す
る手段並びに心音信号の1周期を I 音・II音を基準に
複数の期間に分割する手段を有し、前記周波数帯域毎に
、且つ前記分割期間毎に前記所定領域上での心音強度分
布を算出する演算部とを有する心音計。
A heart sound detecting unit consisting of a plurality of heart sound sensors attached to cover a predetermined area of the chest of the subject, means for filtering the heart sound signals provided from each of the heart sound sensors into a plurality of frequency bands, and a means for filtering one cycle of the heart sound signal. A phonocardiograph having means for dividing into a plurality of periods based on sound and II sound, and comprising a calculation unit for calculating a heart sound intensity distribution on the predetermined region for each of the frequency bands and for each of the divided periods.
JP14944489A 1989-06-14 1989-06-14 Cardiac sound meter Pending JPH0315441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14944489A JPH0315441A (en) 1989-06-14 1989-06-14 Cardiac sound meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14944489A JPH0315441A (en) 1989-06-14 1989-06-14 Cardiac sound meter

Publications (1)

Publication Number Publication Date
JPH0315441A true JPH0315441A (en) 1991-01-23

Family

ID=15475252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14944489A Pending JPH0315441A (en) 1989-06-14 1989-06-14 Cardiac sound meter

Country Status (1)

Country Link
JP (1) JPH0315441A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290919A (en) * 1985-06-18 1986-12-20 松下電器産業株式会社 Heating cooker
JP2001224564A (en) * 2000-02-18 2001-08-21 Nippon Colin Co Ltd Cardiac sound detector and pulse wave propagating speed information measuring instrument using it
JP2006512168A (en) * 2002-12-30 2006-04-13 カーディアック・ペースメーカーズ・インコーポレーテッド Method and apparatus for monitoring diastolic hemodynamics
US7147251B2 (en) 2004-06-24 2006-12-12 Key Safety Systems, Inc. Seat belt pretensioner
US8419652B2 (en) 2008-03-04 2013-04-16 Koninklijke Philips Electronics N.V. Non invasive analysis of body sounds
JP2014113183A (en) * 2012-12-06 2014-06-26 Jvc Kenwood Corp Cardiac sound information processing device, cardiac sound information processing method and program
US8951205B2 (en) 2002-12-30 2015-02-10 Cardiac Pacemakers, Inc. Method and apparatus for detecting atrial filling pressure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290919A (en) * 1985-06-18 1986-12-20 松下電器産業株式会社 Heating cooker
JP2001224564A (en) * 2000-02-18 2001-08-21 Nippon Colin Co Ltd Cardiac sound detector and pulse wave propagating speed information measuring instrument using it
JP2006512168A (en) * 2002-12-30 2006-04-13 カーディアック・ペースメーカーズ・インコーポレーテッド Method and apparatus for monitoring diastolic hemodynamics
US8048001B2 (en) 2002-12-30 2011-11-01 Cardiac Pacemakers, Inc. Method and apparatus for detecting atrial filling pressure
US8403860B2 (en) 2002-12-30 2013-03-26 Cardiac Pacemakers, Inc. Method and apparatus for detecting atrial filling pressure
US8951205B2 (en) 2002-12-30 2015-02-10 Cardiac Pacemakers, Inc. Method and apparatus for detecting atrial filling pressure
US7147251B2 (en) 2004-06-24 2006-12-12 Key Safety Systems, Inc. Seat belt pretensioner
US8419652B2 (en) 2008-03-04 2013-04-16 Koninklijke Philips Electronics N.V. Non invasive analysis of body sounds
JP2014113183A (en) * 2012-12-06 2014-06-26 Jvc Kenwood Corp Cardiac sound information processing device, cardiac sound information processing method and program

Similar Documents

Publication Publication Date Title
Choudhary et al. Automatic detection of aortic valve opening using seismocardiography in healthy individuals
US20170188862A1 (en) System and Method of Extraction, Identification, Marking and Display of Heart Valve Signals
CN103313662B (en) System, the stethoscope of the risk of instruction coronary artery disease
AU2017285334B2 (en) Quantitative seismocardiography
Haghighi-Mood et al. A sub-band energy tracking algorithm for heart sound segmentation
JP2012513858A (en) Method and system for processing heart sound signals
EP1792570A1 (en) Method and apparatus of estimating pulmonary artery pressures of a patient
CN107106118B (en) Method for detecting dicrotic notch
US10004473B2 (en) Heart rate detection method and device using heart sound acquired from auscultation positions
US20230020419A1 (en) Non-invasive type electrocardiogram monitoring device and method
CN107249466B (en) Risk indication for coronary artery disease
WO2017120138A1 (en) System and method of extraction, identification, making and display of the heart valve signals
JPH0315441A (en) Cardiac sound meter
Ghaffari et al. Phonocardiography signal processing for automatic diagnosis of ventricular septal defect in newborns and children
Ari et al. On a robust algorithm for heart sound segmentation
Azad et al. Spatial distribution of seismocardiographic signals
US7479113B2 (en) Method and device for automatically determining heart valve damage
JP7244509B2 (en) Risk assessment for coronary artery disease
Udawatta et al. Knowledge on heart patients through stethoscopic cardiac murmur identification for E-healthcare
JPH03133426A (en) Cardiac sound meter
JPS61199836A (en) Apparatus for detecting information of living body
EP4326145A1 (en) Multi sensor and method
WO2023245228A1 (en) A phonocardiogram sensing device
JPH01131642A (en) Phonocardiograph
Bernatík Sensing and Processing of Phonocardiographic Signal By PC Sound Card