JPH03133426A - Cardiac sound meter - Google Patents

Cardiac sound meter

Info

Publication number
JPH03133426A
JPH03133426A JP27035689A JP27035689A JPH03133426A JP H03133426 A JPH03133426 A JP H03133426A JP 27035689 A JP27035689 A JP 27035689A JP 27035689 A JP27035689 A JP 27035689A JP H03133426 A JPH03133426 A JP H03133426A
Authority
JP
Japan
Prior art keywords
sound
signal
circuit
heart
cardiac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27035689A
Other languages
Japanese (ja)
Inventor
Koichi Sato
功一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP27035689A priority Critical patent/JPH03133426A/en
Publication of JPH03133426A publication Critical patent/JPH03133426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PURPOSE:To separate a I sound, a II sound and cardiac noise with high accuracy and to exactly calculate cardiac noise distribution by adding the I sound and the II sound which can be detected simultaneously by plural cardiac microphones and enlarging the amplitude. CONSTITUTION:Cardiac sound signals detected by each cardiac sound microphone 11-130 are amplified by amplifiers 21-230, and converted from analog signals to digital signals by A/D converters 31-330. These cardiac sound signals are attenuated as to its high frequency components by low-pass filter circuits 41-430, become positive side waveforms by absolute value circuits 51-530, a signal obtained by adding simultaneously the positive side waveforms from each channel by an adder 6 is inputted to a smoothing circuit 8 and a fine undulation is eliminated and a I II sound extracting signal is obtained. By applying a cardiogram signal from a cardiogram sensor 7 to a time division circuit 9 in addition to this I II sound extracting signal, a time division signal for discriminating the I sound and each start time point and end time point of the I sound is outputted, and by applying this time division signal an the cardiac sound signal to an arithmetic circuit 10, cardiac noise intensity distribution is calculated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、心臓病の診断に使用する心音計に関し、更に
詳細には、心音信号からの心雑音を分離抽出をより容易
に且つ高精度で行うことのできる心音計に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a phonocardiograph used for diagnosing heart disease, and more particularly, to a phonocardiograph that facilitates the separation and extraction of heart murmurs from heart sound signals with high precision. This relates to phonocardiography that can be performed at

〔従来の技術] 心音とは、心臓が収縮と拡張とを繰り返して血液を各組
織に送り出す際に房室弁、半月弁の開閉や心房→心室→
大血管への血流によって引き起される音である。心音は
第4図に示すように収縮初期に発生する■音、収縮期に
発生する収縮期心雑音、拡張初期に発生する■音、そし
て拡張期に発生する拡張期心雑音から成る。健常者では
収縮期雑音、拡張期雑音は聴取されないが、心臓に異常
が認められる場合、症例固有の特徴を持つ心雑音が聴取
される。心臓病を診断する際に■音、■音などの心音の
情報も利用されるが、多くの場合、心雑音の時間変化、
強度、音色、心雑音の胸部上の発生位置などによって診
断がなされる。
[Prior art] Heart sounds are the opening and closing of the atrioventricular valves and semilunar valves and the sound of the atria → ventricle → when the heart repeatedly contracts and expands to pump blood to various tissues.
This is the sound caused by blood flow to the large blood vessels. As shown in FIG. 4, the heart sounds consist of the ``■'' sound that occurs at the beginning of systole, the systolic heart murmur that occurs during the systole, the ``■'' sound that occurs during the early diastole, and the diastolic heart murmur that occurs during the diastole. In healthy individuals, systolic murmurs and diastolic murmurs are not audible, but when abnormalities are observed in the heart, heart murmurs with characteristics unique to each case are audible. When diagnosing heart disease, information on heart sounds such as ■sound, ■sound, etc. is also used, but in many cases, temporal changes in heart murmur,
Diagnosis is made based on the intensity, tone, and location of the heart murmur on the chest.

心雑音の強度を計算するには■音、■音を識別し、一般
に■音と■音との間を収縮期、■音と■音との間を拡張
期として、その区間内の心雑音の平均2乗振幅を求める
ことによって行なわれる。
To calculate the intensity of a heart murmur, identify the ■sound and ■sound, and generally define the period between the ■sound and ■sound as the systolic phase, and the period between the ■sound and ■sound as the diastole, and calculate the heart murmur within that interval. This is done by finding the mean square amplitude of .

ところが、一般に心雑音に較べて心音成分(■音及び■
音)は、振幅が大きいため、例えば、収縮期の設定を誤
り、I音頭域一部を取り込んだ場合、収縮期雑音として
■音の一部を含んでしまうため、正確に収縮期を設定し
た場合の心雑音強度分布に比べて大きく異なってしまう
という問題がある。したがって、心雑音強度を十分精度
よく計測するには、■音、■音と心雑音とを正しく識別
することが重要である。
However, compared to heart murmurs, heart sound components (■ sounds and ■
(sound) has a large amplitude, so for example, if the systolic setting is incorrect and a part of the I sound is captured, part of the ■ sound will be included as a systolic murmur, so the systolic period must be set correctly. There is a problem in that the heart murmur intensity distribution differs greatly compared to the heart murmur intensity distribution. Therefore, in order to measure the heart murmur intensity with sufficient accuracy, it is important to correctly distinguish between the ■ sound, the ■ sound, and the heart murmur.

従来、心音波形から■音、■音を識別するには、単一測
定点からの心音波形に包絡線検波を行ったり、又は胸壁
の複数点に配置した心音セサンからの心音信号に対して
包路線検波を行い、これらの複数の包路線検波信号を検
出時点を合わせて加算するか又はこれらの信号を最大値
合成することによって、特に■音、■音が顕著となった
信号を作った後、■音、■音と心雑音とを識別している
Conventionally, in order to distinguish ■ sounds and ■ sounds from heart sound waveforms, envelope detection was performed on heart sound waveforms from a single measurement point, or envelope detection was performed on heart sound signals from heart sound sensors placed at multiple points on the chest wall. After performing route detection and adding these multiple envelope route detection signals by matching the detection points or combining these signals to the maximum value, a signal in which ■ sound and ■ sound are particularly noticeable is created. , ■Sound, ■Distinguishes sound from heart murmur.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、心雑音が大きい場合や、■音、■音に引続い
て心雑音が発生している場合、あるいは■音、■音が滅
弱している場合は、■音、■音と心雑音との境界が不明
瞭となるために識別が難しく、上記の方法は総ての症例
に対して有効な方法とは言えない。
However, if the heart murmur is loud, if the heart murmur occurs following the ■ sound, ■ sound, or if the ■ sound, ■ sound is weak, the heart murmur is accompanied by the ■ sound, ■ sound. The above method cannot be said to be effective for all cases, as the boundary between the two is unclear, making identification difficult.

本発明は、上記の問題点に着目し、検出した心音信号の
■音、■音と心雑音との境界が不明瞭な場合でも、■音
、■音と心雑音とを容易且つ精度よく分離でき、より正
確に心雑音分布を算出することのできる心音計を提供す
ることを目的とするものである。
The present invention focuses on the above-mentioned problems, and even when the boundary between the detected heart sound signal ■, ■, and the heart murmur is unclear, the present invention can easily and accurately separate the ■, ■, and the heart murmur. The object of the present invention is to provide a phonocardiograph that can calculate heart murmur distribution more accurately.

〔課題を解決するための手段〕[Means to solve the problem]

以上の目的を達成するための本発明の心音計の構成は、
複数の心音マイクロフォンを胸壁上の複数位置に配置し
、前記の各心音マイクロフォンが検出した心音信号を、
低域濾波回路に与え、この低域濾波回路からの出力信号
の絶対値をとり正側波形を作る絶対値回路に与え、この
絶対値回路の出力する各心音マイクロフォンごとの絶対
値信号を検出時点を合わせて加算する加算回路に与え、
この加算回路が出力する信号を平滑化回路に与えて波形
を平滑化し、この平滑化された信号を、またはこの平滑
化された信号と心電信号とを、時分割回路に与えて■音
及び■音のそれぞれの開始時点及び終了時点を識別する
時分割信号を出力させ、この時分割信号と前記心音信号
とを演算回路に与えて心雑音強度分布を算出するもので
ある。
The configuration of the phonocardiograph of the present invention to achieve the above objects is as follows:
A plurality of heart sound microphones are placed at multiple positions on the chest wall, and the heart sound signals detected by each of the heart sound microphones are
The absolute value of the output signal from this low-pass filter circuit is taken and applied to an absolute value circuit that creates a positive waveform, and the absolute value signal for each heart sound microphone output from this absolute value circuit is detected at the time of detection. are given to the adder circuit that adds them together,
The signal output from this adder circuit is given to a smoothing circuit to smooth the waveform, and this smoothed signal, or this smoothed signal and electrocardiographic signal, is given to a time division circuit to (2) A time-division signal for identifying the start and end points of each sound is output, and the time-division signal and the heart sound signal are fed to an arithmetic circuit to calculate the heart murmur intensity distribution.

〔作 用〕[For production]

本発明は、■音、■音が胸壁上の比較的広い範囲で聴取
されるのに対し、心雑音は極く一部の範囲に限局して聴
かれること、並びに1音。
The present invention is based on the following points: ① and ② sounds can be heard over a relatively wide range on the chest wall, whereas heart murmurs can be heard only in a very limited range, and only one sound.

■音が低周波成分からなるのに対して、心雑音信号が高
周波性弁を多く含むという性質に着目して完成したもの
である。即ち低域濾波回路が入力信号の高周波成分を減
衰させて出力し、前記絶対値回路が、人力された波形の
負側の波を正側に反転して出力し、この心音マイクロフ
ォンごとの絶対値信号を前記加算回路で加算することに
よって、複数の心音マイクロフォンで同時に検出できる
■音、■音が加算されて振幅を大きくし、また、前記限
局性の心雑音は、各心音マイクロフォンに共通の信号と
ならず、且つ高周波成分を減衰させているので絶対値信
号を加算しても振幅が大きくならない。したがって、前
記加算回路が出力した信号、即ちInn油抽出信号、■
音、■音と心雑音との波形の山部及び谷部を分離強調し
て識別を容易にする。
■It was developed based on the fact that while sound consists of low-frequency components, heart murmur signals contain many high-frequency valves. That is, the low-pass filter circuit attenuates and outputs the high frequency components of the input signal, and the absolute value circuit inverts the negative wave of the manually input waveform to the positive side and outputs it, and the absolute value for each heart sound microphone is output. By adding the signals in the adding circuit, the ■ sounds and ■ sounds that can be detected simultaneously by multiple heart sound microphones are added to increase the amplitude, and the localized heart murmurs are added to the signals common to each heart sound microphone. In addition, since the high frequency components are attenuated, the amplitude does not increase even when the absolute value signals are added. Therefore, the signal outputted by the adding circuit, that is, the Inn oil extraction signal,
The peaks and troughs of the waveforms of sounds and heart murmurs are separated and emphasized to facilitate identification.

■音、収縮期雑音、■音及び拡張期雑音の識別は、前記
Inn油抽出信号心電信号とを時分割回路に入力するこ
とにより、容易且つ精度よ(識別するすることができる
。また別の手段として前記■■音油抽出信号、以下に具
体的に説明するように1音、■音が心雑音と明確に分離
できるので、この信号単独でも識別することができる。
■Sound, systolic murmur, ■Sound and diastolic murmur can be easily and accurately identified by inputting the above-mentioned Inn oil extraction signal and electrocardiographic signal into a time division circuit. As a means for this, the sound oil extraction signal (1) and (2) can be clearly separated from the heart murmur, as will be explained in detail below, so this signal alone can be used to identify the heart murmur.

〔実施例〕〔Example〕

以下添付の図面を対照して、一実施例により本発明を具
体的に説明する。
Hereinafter, the present invention will be explained in detail by way of an example with reference to the accompanying drawings.

第1図は本実施例の心音計のブロック回路図である。図
において、11〜l、。はそれぞれ心音マイクロフォン
、即ち心音を検出するセンサであり、本実施例では図示
しない被検者の胸壁上の30箇所に装着した。21〜2
.。は増幅器、31〜33゜はA/D変換器、4.〜4
.。は低域濾波回路、5.〜5.。は絶対値回路、6は
各チャンネル、即ち各心音マイクロフォン1、−1 、
FIG. 1 is a block circuit diagram of the phonocardiograph of this embodiment. In the figure, 11-l. Each of these microphones is a heart sound microphone, that is, a sensor for detecting heart sounds, and in this example, they were attached to 30 locations on the chest wall of the subject (not shown). 21-2
.. . 4. is an amplifier; 31 to 33 degrees is an A/D converter; 4. ~4
.. . is a low-pass filter circuit, 5. ~5. . is an absolute value circuit, 6 is each channel, that is, each heart sound microphone 1, -1,
.

ごとの心音信号を同時加算する加算器、7は心電センサ
、8は加算器6が出力する信号波形から細かい起伏を取
り除く平滑回路、9はInn油抽出信号心電信号とから
■音、■音を識別し、時分割信号を作る時分割回路、l
Oは前記各チャンネルの心音波形から各周波数帯域ごと
、且つ各時間ごとの強度分布を算出する心雑音強度分布
を計算する演算回路である。
7 is an electrocardiographic sensor; 8 is a smoothing circuit that removes fine undulations from the signal waveform output by the adder 6; 9 is an inn oil extraction signal and an electrocardiographic signal; A time division circuit that identifies sounds and creates time division signals, l
O is an arithmetic circuit that calculates a cardiac murmur intensity distribution, which calculates an intensity distribution for each frequency band and each time from the cardiac waveform of each channel.

以上の回路構成において、各心音マイクロフォン1.〜
13゜が検出した心音信号は、増幅器2、〜2.。で増
幅され、A/D変換器3I〜3.。
In the above circuit configuration, each heart sound microphone 1. ~
The heart sound signal detected by 13° is transmitted to amplifiers 2, -2. . and is amplified by A/D converters 3I to 3. .

でアナログ信号からデジタル信号に変換する。Converts an analog signal to a digital signal.

A/D変換器31〜3.。が出力した心音信号は、低域
濾波回路4.〜4.。で高周波成分が減衰され、絶対値
回路51〜5.。で正側波形にし、各チャンネルからの
正側波形を加算器6で同時加算して得た信号を平滑回路
8に入力して細かい起伏を取り除いて■■音油抽出信号
得る。正常者の1音の周波数上限値はほぼ250Hzで
あり、また■音の上限値はほぼ300)1zであるとさ
れるが、本実施例に使用した低域濾波回路4I〜43゜
は、濾波周波数の上限がほぼ100H2のものを使用し
た。
A/D converters 31-3. . The heart sound signal outputted by the low-pass filter circuit 4. ~4. . The high frequency components are attenuated by the absolute value circuits 51 to 5. . The positive side waveforms from each channel are simultaneously added by an adder 6, and the resulting signal is input to a smoothing circuit 8 to remove fine undulations to obtain a sound oil extraction signal. The upper limit of the frequency of one sound in a normal person is approximately 250 Hz, and the upper limit of the sound of ■ is approximately 300) 1 z. However, the low-pass filter circuits 4I to 43° used in this example A device with an upper frequency limit of approximately 100H2 was used.

第2図及び第3図によって、本実施例のInn油抽出信
号ついて説明する。第2図は、大動脈弁狭窄症患者の第
4肋間胸骨左縁の心音波形(上段)とI■音油抽出信号
下段)とを比較したグラフ図である。第2図から理解さ
れるように、■音に引き続いて心雑音が発生している場
合でも、心雑音を発生する場所が第4肋間胸骨左縁付近
に限局されているので、心音マイクロフォン1.〜l、
。について加算したInn油抽出信号、r音、■音を強
調した波形とすることができ、容易に心雑音と識別する
ことができる。
The Inn oil extraction signal of this embodiment will be explained with reference to FIGS. 2 and 3. FIG. 2 is a graph comparing the heart waveform (upper row) of the left sternal border of the fourth intercostal space of a patient with aortic valve stenosis and the I■ sound oil extraction signal (lower row). As can be understood from FIG. 2, even when a heart murmur occurs following the sound ■, the location where the heart murmur occurs is localized near the left edge of the sternum in the fourth intercostal space, so the heart sound microphone 1. ~l,
. The Inn oil extraction signal added for the above, the r sound, and the ■ sound can be made into a waveform that emphasizes the sound, and can be easily distinguished from a heart murmur.

また第3図は、心室中隔欠損症患者の第2肋間胸骨右縁
の心音波形(上段)と、この患者のInn油抽出信号下
段)とを比較したグラフ図である。第3図の上段の波形
のようにI音が滅弱していて、■音と収縮期心雑音が極
めて識別困難な場合でも、I■音油抽出信号■音、■音
と心雑音との間の境界が極小点となって明瞭に区分する
ことができる。極小点がない場合には、■音、■音のピ
ーク値から前後に一定時間内で、このピーク値の高さに
比べて、十分に低くなるところを心雑音とI音、■音と
境界とすることができる。本実施例の場合、前記一定時
間を、■音に対して前後各70ミリ秒、■音に対して前
後各60ミリ秒、即ちI音に対して幅140ミリ秒、■
音に対して幅120ミリ秒の範囲内で十分低い値となる
位置を境界とした。
FIG. 3 is a graph comparing the heart waveform of the right sternal border of the second intercostal space of a patient with ventricular septal defect (upper row) and the Inn oil extraction signal of this patient (lower row). Even when the I sound is weak and it is extremely difficult to distinguish between the ■ sound and the systolic heart murmur, as shown in the upper waveform of Figure 3, the I sound oil extraction signal ■ sound, the ■ sound and the heart murmur can be distinguished. The boundary between them becomes a minimum point and can be clearly distinguished. If there is no minimum point, the boundary between the heart murmur, the I sound, and the ■ sound is the point where the sound becomes sufficiently lower than the height of this peak value within a certain period of time before and after the peak value of the ■ sound. It can be done. In the case of this embodiment, the above-mentioned fixed time is: (1) 70 milliseconds before and after the sound, (2) 60 milliseconds before and after the sound, that is, a width of 140 milliseconds for the I sound, (1)
The boundary was defined as a position where the value was sufficiently low for the sound within a width of 120 milliseconds.

時分割回路9には、前記Inn油抽出信号外に、心電セ
ンサ7から与えられた心電信号を増幅器2cで増幅した
後A/D変換器3cでデジタル信号に変換した心電信号
が与えられる。時分割回路9では、心電信号からR波を
求め、このR波を基準に前記■■音油抽出信号ら1音、
■音を識別した後、■音の開始時点、終了時点、■音の
開始時点、終了時点を設定する。このようにして決めた
I音の終了時点から■音の開始時点までが収縮期であり
、■音の終了時点から1音の開始時点までが拡張期であ
る。前記収縮期及び拡張期の信号によって時分割信号が
得られる。またこの時分割信号を更に前記収縮期及び拡
張期の信号を複数の期間に分割することによりより診断
資料として有用な心雑音強度分布の時間変化を算出する
ための時分割信号を得ることもできる。
In addition to the Inn oil extraction signal, the time division circuit 9 is supplied with an electrocardiographic signal obtained by amplifying the electrocardiographic signal from the electrocardiographic sensor 7 with an amplifier 2c and converting it into a digital signal with an A/D converter 3c. It will be done. The time division circuit 9 obtains an R wave from the electrocardiogram signal, and based on this R wave, one sound from the sound oil extraction signal,
■After identifying the sound, ■Set the start and end points of the sound; ■Set the start and end points of the sound. The period from the end of the I sound determined in this manner to the start of the ■ sound is the systolic period, and the period from the end of the ■ sound to the start of the first sound is the diastolic period. A time-shared signal is obtained by the systolic and diastolic signals. Further, by further dividing the systolic and diastolic signals into a plurality of periods, it is possible to obtain a time-divided signal for calculating temporal changes in heart murmur intensity distribution, which is useful as diagnostic data. .

前記時分割信号と、各チャンネルのA/D変換器31〜
3.。が出力するデジタル化した心音信号とを演算回路
10に与えて心雑音強度を算出する。なお本実施例の演
算回路lOには、心音を各周波数帯域に濾波する濾波回
路を設けた。以上により前記心音信号を各期間に時分割
し、且つ各周波数帯域ごとの心雑音強度を算出し心臓疾
患の診断の資料とした。
The time division signal and each channel's A/D converter 31~
3. . The digitized heart sound signal outputted by the heart sound signal is given to the arithmetic circuit 10 to calculate the heart murmur intensity. Note that the arithmetic circuit IO of this embodiment is provided with a filtering circuit that filters heart sounds into each frequency band. As described above, the heart sound signal was time-divided into each period, and the heart murmur intensity for each frequency band was calculated and used as data for diagnosing heart disease.

なお、前記各心音図からも理解されるように、通常、収
縮期の方が拡張期より間隔が短く、また第2図及び第3
図から明らかなように本実施例の■■■音出信号は、■
音、■音と心雑音との識別が極めて容易である。したが
って本実施例において、心電センサ7からの心電信号を
用いずに、■音、■音を識別することができる。
As can be understood from the above-mentioned phonocardiograms, the systolic interval is usually shorter than the diastolic interval;
As is clear from the figure, the ■■■ sound output signal of this embodiment is
It is extremely easy to distinguish between sounds and heart murmurs. Therefore, in this embodiment, the sound ■ and the sound ■ can be identified without using the electrocardiographic signal from the electrocardiographic sensor 7 .

即ち、III音抽出波形には、■音、■音が大きな山と
なって現れる。心電信号を用いずに、これらの山のうち
らどれがI音で、どれが■音かを決定するためには、r
音、■音が交互に出現すること、そして心臓の収縮期間
の方が、拡張期間より短いことを利用すればよい。即ち
l■音油抽出波形ら連続する3つの山を検出したとき、
1番目の山と2番目の山との間隔が、2番目の山と3番
目との山の間隔よりも短ければ、1番目の山と3番目の
山とがr音、2番目の山が■音と決定できる。逆に1番
目の山と2番目の山との間隔が、2番目の山と3番目の
山との間隔よりも長ければ、1番目の山と3番目の山4
゜ とが■音、真ん中の山が1音となる。
That is, in the III sound extraction waveform, the ■ sound and the ■ sound appear as a large mountain. In order to determine which of these mountains is the I sound and which is the ■ sound without using electrocardiographic signals, r
This can be done by taking advantage of the fact that the sounds and ■ sounds appear alternately and that the contraction period of the heart is shorter than the diastole period. That is, when three consecutive peaks are detected from the sound oil extraction waveform,
If the distance between the first and second peaks is shorter than the distance between the second and third peaks, the first and third peaks make an r sound, and the second peak makes an r sound. ■Can be determined as a sound. Conversely, if the distance between the first peak and the second peak is longer than the distance between the second peak and the third peak, the distance between the first peak and the third peak is 4.
゜ and ■ sound, and the mountain in the middle becomes one sound.

但し、症状によっては、収縮期間と拡張期間との長さが
ほぼ同じであったり、収縮期間が拡張期間より長いこと
もあり、この場合には、上述の方法は有効ではない。
However, depending on the symptoms, the length of the contraction period and the diastole period may be approximately the same, or the contraction period may be longer than the diastole period, and in this case, the above method is not effective.

(発明の効果〕 以上説明したように、本発明の心音計によれば、■音、
■音と心雑音とを明瞭に識別できるため、心音による診
断上、重要となる心雑音の強度分布を精度よく算出する
ことができる効果が得られる。
(Effects of the Invention) As explained above, according to the phonocardiograph of the present invention, ■ sounds;
■Since sounds and heart murmurs can be clearly distinguished, it is possible to accurately calculate the intensity distribution of heart murmurs, which is important in diagnosis based on heart sounds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例による本発明の心音計のブロック回路
図、第2図〜第3図は第1図に示す心音計による心臓病
患者による心音波形と■■音油抽出信号を比較したグラ
フ図、第4図は心雑音を有する心音波形の一例を示すグ
ラフ図である。 l・・・心音マイクロフォン、2・・・増幅器、3・・
・A/D変換器、4・・・低域濾波回路、訃・・絶対値
回路、6・・・加算器、7・・・心電センサ、8・・・
平滑回路、9・・・時分割回路、10・・・心雑音強度
演算回路。
Fig. 1 is a block circuit diagram of a phonocardiograph of the present invention according to an embodiment, and Figs. 2 and 3 compare the heart sound waveform obtained by a heart disease patient using the phonocardiograph shown in Fig. 1 and the sound oil extraction signal. Graph, FIG. 4 is a graph showing an example of a heart sound waveform having a heart murmur. l...Heart sound microphone, 2...Amplifier, 3...
・A/D converter, 4...Low-pass filter circuit, Absolute value circuit, 6...Adder, 7...Electrocardiogram sensor, 8...
Smoothing circuit, 9... Time division circuit, 10... Heart murmur intensity calculation circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)複数の心音マイクロフォンを胸壁上の複数位置に
配置し、前記の各心音マイクロフォンが検出した心音信
号を、低域濾波回路に与え、この低域濾波回路からの出
力信号を、この出力信号の絶対値をとり正側波形を作る
絶対値回路に与え、この絶対値回路の出力する各心音マ
イクロフォンごとの絶対値信号を検出時点を合わせて加
算する加算回路に与え、この加算回路が出力する信号を
平滑化回路に与えて波形を平滑化し、この平滑化された
信号と心電信号とを時分割回路に与えて I 音及びII音
のそれぞれの開始時点及び終了時点を識別する時分割信
号を出力させ、この時分割信号と前記心音信号とを演算
回路与えて心雑音強度分布を算出する心音計。
(1) A plurality of heart sound microphones are arranged at a plurality of positions on the chest wall, the heart sound signals detected by each of the heart sound microphones are applied to a low-pass filter circuit, and the output signal from the low-pass filter circuit is The absolute value is taken and given to an absolute value circuit that creates a positive waveform, and the absolute value signal for each heart sound microphone output from this absolute value circuit is given to an adder circuit that adds together the detection time points, and this adder circuit outputs The signal is supplied to a smoothing circuit to smooth the waveform, and the smoothed signal and the electrocardiographic signal are supplied to a time division circuit to produce a time division signal that identifies the start and end points of each of sound I and sound II. A phonocardiograph that outputs this time-division signal and the heart sound signal to an arithmetic circuit to calculate a heart murmur intensity distribution.
(2)複数の心音マイクロフォンを胸壁上の複数位置に
配置し、前記の各心音マイクロフォンが検出した心音信
号を、低域濾波回路に与え、この低域濾波回路からの出
力信号を、この出力信号の絶対値をとり正側波形を作る
絶対値回路に与え、この絶対値回路の出力する各心音マ
イクロフォンごとの絶対値信号を検出時点を合わせて加
算する加算回路に与え、この加算回路が出力する信号を
平滑化回路に与えて波形を平滑化し、この平滑化された
信号を時分割回路に与えて I 音及びII音のそれぞれの
開始時点及び終了時点を識別する時分割信号を出力させ
、この時分割信号と前記心音信号とを演算回路与えて心
雑音強度分布を算出する心音計。
(2) A plurality of heart sound microphones are arranged at a plurality of positions on the chest wall, the heart sound signals detected by each of the heart sound microphones are applied to a low-pass filter circuit, and the output signal from the low-pass filter circuit is converted into the output signal. The absolute value is taken and given to an absolute value circuit that creates a positive waveform, and the absolute value signal for each heart sound microphone output from this absolute value circuit is given to an adder circuit that adds together the detection time points, and this adder circuit outputs The signal is supplied to a smoothing circuit to smooth the waveform, and this smoothed signal is supplied to a time division circuit to output a time division signal that identifies the start and end points of each of sound I and sound II. A phonocardiograph that calculates a heart murmur intensity distribution by applying a time-division signal and the heart sound signal to an arithmetic circuit.
JP27035689A 1989-10-19 1989-10-19 Cardiac sound meter Pending JPH03133426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27035689A JPH03133426A (en) 1989-10-19 1989-10-19 Cardiac sound meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27035689A JPH03133426A (en) 1989-10-19 1989-10-19 Cardiac sound meter

Publications (1)

Publication Number Publication Date
JPH03133426A true JPH03133426A (en) 1991-06-06

Family

ID=17485129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27035689A Pending JPH03133426A (en) 1989-10-19 1989-10-19 Cardiac sound meter

Country Status (1)

Country Link
JP (1) JPH03133426A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539895A (en) * 2005-05-05 2008-11-20 カーディアック・ペースメーカーズ・インコーポレーテッド Trending of systolic noise intensity
JP2014087543A (en) * 2012-10-31 2014-05-15 Jvc Kenwood Corp Cardiac sound information processing device, cardiac sound information processing method, and cardiac sound information processing program
WO2017159753A1 (en) * 2016-03-18 2017-09-21 Ami株式会社 Systolic heart noise detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539895A (en) * 2005-05-05 2008-11-20 カーディアック・ペースメーカーズ・インコーポレーテッド Trending of systolic noise intensity
JP2014087543A (en) * 2012-10-31 2014-05-15 Jvc Kenwood Corp Cardiac sound information processing device, cardiac sound information processing method, and cardiac sound information processing program
WO2017159753A1 (en) * 2016-03-18 2017-09-21 Ami株式会社 Systolic heart noise detection device

Similar Documents

Publication Publication Date Title
US10362997B2 (en) System and method of extraction, identification, marking and display of heart valve signals
US7909772B2 (en) Non-invasive measurement of second heart sound components
Choudhary et al. Automatic detection of aortic valve opening using seismocardiography in healthy individuals
US3799147A (en) Method and apparatus for diagnosing myocardial infarction in human heart
Zong et al. An open-source algorithm to detect onset of arterial blood pressure pulses
CN103313662B (en) System, the stethoscope of the risk of instruction coronary artery disease
CA2624718C (en) Method and system for high-resolution extraction of quasi-periodic signals
Haghighi-Mood et al. A sub-band energy tracking algorithm for heart sound segmentation
Hoeksel et al. Detection of dicrotic notch in arterial pressure signals
Imtiaz et al. Correlation between seismocardiogram and systolic blood pressure
US6616608B2 (en) Periodic-physical-information measuring apparatus
EP3399905A1 (en) System and method of extraction, identification, making and display of the heart valve signals
US6923770B2 (en) Pulse-wave-characteristic-point determining apparatus, and pulse-wave-propagation-velocity-related-information obtaining apparatus employing the pulse-wave-characteristic-point determining apparatus
Astono et al. The improvement of phonocardiograph signal (PCG) representation through the electronic stethoscope
Homaeinezhad et al. Discrete wavelet-aided delineation of PCG signal events via analysis of an area curve length-based decision statistic
JPH03133426A (en) Cardiac sound meter
JPH0315441A (en) Cardiac sound meter
Giordano et al. Multi-source signal processing in phonocardiography: comparison among signal selection and signal enhancement techniques
Anumukonda et al. Detection of cardio auscultation using MEMS microphone
US20220280132A1 (en) Medical device and program
Landreani et al. Heartbeat detection using three-axial seismocardiogram acquired by mobile phone
Azad et al. Spatial distribution of seismocardiographic signals
Wisana Design electronic stethoscope for cardiac auscultation analyzed using wavelet decomposition
US20220361798A1 (en) Multi sensor and method
JPS63153044A (en) Cardiac sound source searching apparatus