JPH03154381A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03154381A
JPH03154381A JP29454589A JP29454589A JPH03154381A JP H03154381 A JPH03154381 A JP H03154381A JP 29454589 A JP29454589 A JP 29454589A JP 29454589 A JP29454589 A JP 29454589A JP H03154381 A JPH03154381 A JP H03154381A
Authority
JP
Japan
Prior art keywords
insulating film
channel region
region
substrate
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29454589A
Other languages
Japanese (ja)
Inventor
Takami Makino
牧野 孝実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29454589A priority Critical patent/JPH03154381A/en
Publication of JPH03154381A publication Critical patent/JPH03154381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To enable a MIS FET of SOI structure wherein the fluctuation of threshold voltage V and the breakdown strength drop between a source and a drain are suppressed by connecting a channel region to a substrate, so that it may not contact with an element isolating insulating film, in the region where a gate electrode and the element isolating insulating film overlap each other. CONSTITUTION:A p-type channel region 31 and n-type source and drain regions 32 and 33 are made in a single crystal Si film 3 positioned on a p-Si substrate 1 through a buried insulating film 2. A gate electrode 6 is made through a gate insulating film 5 on the channel region 31, and an element insulating insulating film 4 is made around the element region. Hereupon, in the region 2A, the buried insulating film 2 does not exist, and the channel region 31 and the substrate 1 are connected. Even if it is done this way, the buried insulating layer 2 exists in the channel region 31, so the strong point of SOI(Silicon On Insulator) structure is not lost, and the positive holes generated in the channel region flow the the substrate. Hereby, the fluctuation of threshold voltage V and the breakdown strength between the source and the drain can bo suppressed.

Description

【発明の詳細な説明】 〔概要〕 MIS型電界効果トランジスタ([S FET)を有す
る半導体装置に関し。
DETAILED DESCRIPTION OF THE INVENTION [Summary] This invention relates to a semiconductor device having an MIS field effect transistor ([SFET]).

しきい値電圧Vいの変動とソースとドレイン間の耐圧低
下を抑制したsor構造の[S FETを得ることを目
的とし。
The purpose of this study is to obtain an SFET with a sor structure that suppresses fluctuations in threshold voltage V and decreases in breakdown voltage between the source and drain.

一導電型半導体基板(1)にチャネル領域(31)を挟
んで該基板内にその表面より反対導電型の不純物を導入
して形成されたソース・ドレイン領域(32)。
A source/drain region (32) is formed by introducing impurities of the opposite conductivity type from the surface of a semiconductor substrate (1) of one conductivity type with a channel region (31) in between.

(33)と、該チャネル領域上にデー1−絶縁膜(5)
を介して形成されたゲート電極(6)と、該基板上で該
チャネル領域及び該ソース・ドレイン領域の周囲に形成
された素子分離絶縁膜(4)と、該基板の内部に少なく
ともその一部が該チャネル領域と重なる領域に形成され
た埋込絶縁層(2)とを有し、該埋込絶縁層(2)が、
該ゲート電極と該素子骨MM絶縁膜とが重なる領域(2
A)で該素子分離絶縁膜(4)と接していないように構
成されて、該チャネル領域が該基板に電気的に接続され
ているように構成する。
(33) and a data 1-insulating film (5) on the channel region.
a gate electrode (6) formed through the substrate, an element isolation insulating film (4) formed around the channel region and the source/drain region on the substrate, and at least a portion thereof inside the substrate. has a buried insulating layer (2) formed in a region overlapping with the channel region, and the buried insulating layer (2) comprises:
A region (2) where the gate electrode and the element bone MM insulating film overlap
A) is configured so that it is not in contact with the element isolation insulating film (4), and the channel region is configured to be electrically connected to the substrate.

〔産業上の利用分野〕[Industrial application field]

本発明はMIS型電界効果トランジスタを有する半導体
装置に関する。
The present invention relates to a semiconductor device having an MIS field effect transistor.

近年の半導体デバイスの高性能化は、デバイスの高集積
化1即ちデバイスを構成するトランジスタの微細化によ
るトランジスタ単体の性能向上にによるところが大きい
、これは、ゲート絶縁膜の薄膜化及びチャネル長の縮小
によりチャネルコンダクタンスが大きくなるためであり
、さらに高性能化が望まれている。
The high performance of semiconductor devices in recent years is largely due to the improvement in the performance of individual transistors due to higher device integration1, that is, the miniaturization of the transistors that make up the device.This is due to thinner gate insulating films and shorter channel lengths. This is because the channel conductance increases, and further improvement in performance is desired.

本発明は高性能化に対応した半導体装置に適用できる。The present invention can be applied to semiconductor devices that are compatible with high performance.

[従来の技術] 従来、 MIS FETの性能向上は、上記のようにゲ
ート絶縁膜の薄膜化及びチャネル長の縮小により実現し
てきた。
[Prior Art] Conventionally, the performance of MIS FETs has been improved by making the gate insulating film thinner and reducing the channel length as described above.

ところか電源電圧が一定であるため、ゲート絶縁膜の薄
膜化による垂直電界の増大や、短チヤネル化によるキャ
リアの速度飽和により、チャネル内の実質的なキャリア
移動度、即ち電界効果移動度μ。1.が低下してしまう
。これは、特に旧Sデバイスに特有の現象であり不可避
である。
However, since the power supply voltage is constant, the increase in the vertical electric field due to thinning of the gate insulating film and the saturation of carrier velocity due to shortening of the channel reduce the actual carrier mobility within the channel, that is, the field effect mobility μ. 1. will decrease. This is a phenomenon particular to old S devices and is unavoidable.

このため、ゲート長1μm以下のトランジスタでは微細
化したほどの性能向上は期待できない。
For this reason, a transistor with a gate length of 1 μm or less cannot be expected to improve performance as much as miniaturization.

上記垂直電界による移動度の低下を緩和する方法として
最近注目されているのが1次の第4図に示すSOI構造
の薄膜トランジスタである。
A thin film transistor having a first-order SOI structure shown in FIG. 4 has recently attracted attention as a method for alleviating the decrease in mobility caused by the vertical electric field.

第4図(1)〜(3)は従来例によるMIS FETの
平面図と断面図である。
FIGS. 4(1) to 4(3) are a plan view and a sectional view of a conventional MIS FET.

図は5OI(Silicon On In5ulato
r)構造のMis FETを示し、第4図(1)は平面
図、第4図(2)はA−A断面図、第4図(3)はB−
8断面図である。
The figure shows 5OI (Silicon On In5ulato)
r) structure, FIG. 4(1) is a plan view, FIG. 4(2) is a sectional view taken along line A-A, and FIG. 4(3) is shown along line B-
8 is a sectional view.

図において、p型珪素(p−St)基板1上に埋込絶縁
膜2を介して、p型のチャネル領域31とn型のソース
・ドレイン領域32.33が単結晶St膜3に形成され
ている。
In the figure, a p-type channel region 31 and n-type source/drain regions 32 and 33 are formed in a single crystal St film 3 on a p-type silicon (p-St) substrate 1 via a buried insulating film 2. ing.

チャネル領域31上にはゲート絶縁膜5を介してゲート
電極6が形成され、素子領域の回りには素子分離絶縁膜
4が形成された構造になっている。
A gate electrode 6 is formed on the channel region 31 via a gate insulating film 5, and an element isolation insulating film 4 is formed around the element region.

厚い埋込絶縁膜(Sol絶縁膜)2の上に薄い単結晶S
i膜3にトランジスタを形成することで移動度の低下が
かなり抑制できることが学会等で報告されている。
Thin single crystal S on thick buried insulating film (Sol insulating film) 2
It has been reported at academic conferences that by forming a transistor in the i-film 3, the decrease in mobility can be significantly suppressed.

これは、ゲート電圧がゲート絶縁膜及びチャネル領域/
埋込絶縁膜/基板で形成される静電容量によって分割さ
れ、ゲート絶縁膜に印加される垂直電界が緩和されるか
らである。
This means that the gate voltage is
This is because the vertical electric field divided by the capacitance formed by the buried insulating film/substrate and applied to the gate insulating film is relaxed.

又1本発明者も先にSol構造のMrS Ff!Tの一
例を特願平1−233180に出願している。
In addition, the present inventor also first developed MrS Ff! with a Sol structure. An example of T has been filed in Japanese Patent Application No. 1-233180.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記Sol構造のMIS FETにも問題
を生じてきた。第4図で素子分離絶縁膜4が埋込絶縁層
2に接し、完全に能動領域が分離されるため、チャネル
領域31が電気的にフローティングの状態となる。
However, problems have also arisen in the MIS FET having the above-mentioned Sol structure. In FIG. 4, the element isolation insulating film 4 is in contact with the buried insulating layer 2, and the active region is completely isolated, so that the channel region 31 is in an electrically floating state.

nチャネルのトランジスタではソースからドレインへチ
ャネル中を流れる電子はドレイン近傍で加速され、イン
パクトイオン化により電子正孔対を発生する。発生した
電子eは正電位に引かれてドレインに流れこみ、一方正
孔りは通常構造では基板電流となるが、 SOI構造で
はフローティング状態となっているチャネル領域31に
溜まってしまう。
In an n-channel transistor, electrons flowing through the channel from the source to the drain are accelerated near the drain and generate electron-hole pairs through impact ionization. The generated electrons e are attracted to a positive potential and flow into the drain, while holes become a substrate current in a normal structure, but accumulate in the floating channel region 31 in an SOI structure.

その結果チャネル領域31のp壁領域が正にバイアスさ
れ、基板電位が正側にシフトしたことになり、しきい値
電圧Vいが変動し、ドレイン電流−ドレイン電圧の静特
性にキンク現象が現れたり。
As a result, the p-wall region of the channel region 31 is positively biased, the substrate potential shifts to the positive side, the threshold voltage V changes, and a kink phenomenon appears in the static characteristics of drain current-drain voltage. Or.

チャネル領域31とソース・ドレイン領域32.33で
構成される寄生バイポーラトランジスタの効果により耐
圧低下を引き起こすようになる。
The effect of the parasitic bipolar transistor composed of the channel region 31 and source/drain regions 32 and 33 causes a reduction in breakdown voltage.

本発明はしきい値電圧Vthの変動とソースとドレイン
間の耐圧低下を抑制したSol構造のMis FETを
得ることを目的とする。
An object of the present invention is to obtain a Sol structure MisFET in which fluctuations in threshold voltage Vth and reduction in breakdown voltage between the source and drain are suppressed.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、−導電型半導体基板(1)にチャネ
ル領域(31)を挟んで該基板内にその表面より反対導
電型の不純物を導入して形成されたソース・ドレイン領
域(32)、 (33)と、該チャネル領域上にゲート
絶縁膜(5)を介して形成されたゲート電極(6)と、
該基板上で該チャネル領域及び該ソース・ドレイン領域
の周囲に形成された素子分離絶縁膜(4)と、該基板の
内部に少なくともその一部が該チャネル領域と重なる領
域に形成された埋込絶縁層(2)とを有し、該埋込絶縁
層(2)が、該ゲート電極と該素子分離絶縁膜とが重な
る領域(2A)で該素子分離絶縁膜(4)と接していな
いように構成されて該チャネル領域が該基板に電気的に
接続されている半導体装置により達成される。
The solution to the above problem is to - source/drain regions (32) formed by introducing impurities of the opposite conductivity type from the surface of a conductivity type semiconductor substrate (1) with a channel region (31) in between; (33), a gate electrode (6) formed on the channel region via a gate insulating film (5),
an element isolation insulating film (4) formed on the substrate around the channel region and the source/drain region; and a buried layer formed inside the substrate in a region at least partially overlapping with the channel region. an insulating layer (2), such that the buried insulating layer (2) is not in contact with the element isolation insulating film (4) in a region (2A) where the gate electrode and the element isolation insulating film overlap. This is achieved by a semiconductor device configured to have a channel region electrically connected to the substrate.

(作用〕 第1図(1)〜(3)は本発明の原理説明図である。(effect) FIGS. 1 (1) to (3) are diagrams explaining the principle of the present invention.

図はSol構造のMIS FETを示し、第1図(1)
は平面図、第1図(2)はA−A断面図、第1図(3)
はB−8断面図である。
The figure shows a MIS FET with a Sol structure.
Figure 1 (2) is a plan view, Figure 1 (2) is a sectional view taken along line A-A, Figure 1 (3) is a plan view.
is a sectional view taken along B-8.

図において、 p−Si基板1上に埋込絶縁膜2を介し
て、p型のチャネル領域31とn型のソース・ドレイン
領域32.33が単結晶Si膜3に形成されていチャネ
ル領域31上にはゲート絶縁膜5を介してゲート電極6
が形成され5素子領域の回りには素子分離絶縁膜4が形
成された構造になっている。
In the figure, a p-type channel region 31 and n-type source/drain regions 32 and 33 are formed in a single crystal Si film 3 on a p-Si substrate 1 via a buried insulating film 2. A gate electrode 6 is connected through a gate insulating film 5.
is formed, and an element isolation insulating film 4 is formed around the five element regions.

以上は第4図の従来例と同様であるが1本発明が従来例
と相違する点は、第1図(1)において2Aの領域には
埋込絶縁膜2が存在しないで、チャネル領域31と基板
1は接続している点である。
The above is the same as the conventional example shown in FIG. 4, but one difference between the present invention and the conventional example is that in FIG. and the board 1 are connected to each other.

このようにしても、チャネル領域31には埋込絶縁層2
が存在しているためSOT構造の長所は失われることな
く、チャネル領域に発生した正孔が基板に流れるためV
tbの変動とソースとドレイン間の耐圧低下を抑制する
ことができる。
Even in this case, the channel region 31 is filled with the buried insulating layer 2.
The advantages of the SOT structure are not lost because of the presence of
Fluctuations in tb and reduction in breakdown voltage between the source and drain can be suppressed.

〔実施例〕〔Example〕

第2図(1)〜00)は本発明の一実施例を説明する断
面図である。
FIGS. 2(1) to 00) are cross-sectional views illustrating an embodiment of the present invention.

図で、 (1)、 (3)、 (5)、 (7)、 (
9)は第1図のA−A断面を示し、 (2)、 (4)
、 (6)、 (8)、 GO)は第1図のB−B断面
を示す。
In the figure, (1), (3), (5), (7), (
9) shows the A-A cross section in Figure 1, (2), (4)
, (6), (8), GO) show the BB cross section in FIG.

ここでは、製造工程の概略とともにその構造を工程順に
説明する。
Here, the manufacturing process will be outlined and its structure will be explained in order of process.

■ 第2図(1)、 (2)において、 p−Si基板
1上に埋込絶縁膜2として厚さ0.5〜1μmの熱酸化
SiO□膜を形成する。
(2) In FIGS. 2(1) and (2), a thermally oxidized SiO□ film with a thickness of 0.5 to 1 μm is formed on the p-Si substrate 1 as the buried insulating film 2.

この後、第1図(1)の領域2Aの埋込絶縁膜2を除去
する。
Thereafter, the buried insulating film 2 in the region 2A of FIG. 1(1) is removed.

■ 第2図(3)、 (4)において、エビ成長により
単結晶Si膜3を形成する。この際、埋込絶縁膜2上の
膜厚を500〜2000人とする。
(2) In FIGS. 2(3) and (4), a single crystal Si film 3 is formed by shrimp growth. At this time, the film thickness on the buried insulating film 2 is set to 500 to 2000 layers.

又、エビ成長の代わりにアモルファスSt等を堆積した
後、熱処理して再結晶化させてもよい。
Alternatively, instead of shrimp growth, amorphous St or the like may be deposited and then heat treated to recrystallize it.

■ 第2図(5)、 (6)において、第1図(1)の
領域2Aを含む素子分離領域上の単結晶Si膜3をエツ
チング除去して溝を形成する。このとき埋込絶縁膜2が
露出しないようにする。
(2) In FIGS. 2(5) and 2(6), the single crystal Si film 3 on the element isolation region including the region 2A in FIG. 1(1) is removed by etching to form a groove. At this time, the buried insulating film 2 is prevented from being exposed.

その後、気相成長(CVD)法により、溝部分に厚さ0
.5〜1μmのSin、膜を埋め込んで素子分離絶縁膜
4を形成する。
After that, by vapor phase growth (CVD) method, the groove part has a thickness of 0.
.. An element isolation insulating film 4 is formed by embedding a 5 to 1 μm thick Sin film.

素子分離絶縁膜4は窒化Si膜を耐酸化マスクにした熱
酸化を行うLOCO5法を用いてもよい。
The element isolation insulating film 4 may be formed using the LOCO5 method, which performs thermal oxidation using a Si nitride film as an oxidation-resistant mask.

■ 第2図(7)、 (8)において1ゲート絶縁膜5
として、厚さ100〜200人の熱酸化SiO2膜を形
成する。
■ In Figure 2 (7) and (8), 1 gate insulating film 5
As a result, a thermally oxidized SiO2 film with a thickness of 100 to 200 mm is formed.

その上に、 CVD法により厚さ1000〜3000人
のポリSiを堆積し、ドライエツチングによりゲート電
極6を形成する。
Thereon, poly-Si is deposited to a thickness of 1,000 to 3,000 layers by CVD, and a gate electrode 6 is formed by dry etching.

■ 第2図(9)、 GO)において、ゲート電極6を
注入マスクにして、砒素イオン(As”)を単結晶Si
膜3に注入してソース・ドレイン令買域32.33を形
成する。
■ In Figure 2 (9), GO), using the gate electrode 6 as an implantation mask, arsenic ions (As'') are implanted into single-crystal Si.
It is implanted into the film 3 to form source/drain regions 32 and 33.

As“の注入条件は、エネルギー60 KeV、ドーズ
量10”cm−”である。
The conditions for implanting As" are an energy of 60 KeV and a dose of 10" cm.

第3図(1)、 (2)は本発明の他の実施例を説明す
る断面図である。
FIGS. 3(1) and 3(2) are sectional views illustrating another embodiment of the present invention.

第3図(1)は第1図のA−A断面図、第3図(2)は
第1図のC−C断面図である。
FIG. 3(1) is a sectional view taken along line AA in FIG. 1, and FIG. 3(2) is a sectional view taken along line CC in FIG.

この例は、埋込絶縁層2とソース・ドレイン領域32.
33とが接しないように形成されている。従って第1図
の領域2A以外の部分でもチャネル領域31は基板1と
コンタクトがとれている。
In this example, the buried insulating layer 2 and source/drain regions 32.
33 so that they do not come into contact with each other. Therefore, the channel region 31 is in contact with the substrate 1 even in areas other than the region 2A in FIG.

製造工程の概略を第2図と対応して説明する。An outline of the manufacturing process will be explained in conjunction with FIG. 2.

■ チャネル領域に相当する部分だけに埋込絶縁膜2を
残す。
(2) The buried insulating film 2 is left only in the portion corresponding to the channel region.

■ 埋込絶縁膜2の単結晶Si膜の厚さを1500〜3
000人とする。
■ The thickness of the single crystal Si film of the buried insulating film 2 is 1500~3.
000 people.

■、■ 第2図と同じ ■ ソース・ドレイン領域32.33の厚さは1000
〜2000人とする。
■,■ Same as Figure 2■ The thickness of the source/drain regions 32 and 33 is 1000mm
~2000 people.

第3図の埋込絶縁層がソース・ドレインと離れた構造は
、第2図の接した構造に比し次のような特徴がある。
The structure in which the buried insulating layer is separated from the source and drain shown in FIG. 3 has the following features compared to the structure in which the buried insulating layer is in contact with the source and drain in FIG. 2.

チャネル領域のフローティングを防ぐ点では同じである
が、パターンレイアウト上、プロセスの余裕が大きくな
る。
Although it is the same in that it prevents floating of the channel region, there is more margin in the process in terms of pattern layout.

即ち、ソース・ドレイン領域と埋込層が接している場合
はチャネル領域の両側部しかチャネル領域/下部基板間
の電流経路がないため、この部分の素子分離絶縁膜と埋
込層が接してしまわないように余裕が必要となるためで
ある。
In other words, when the source/drain region and the buried layer are in contact with each other, there is only a current path between the channel region and the lower substrate on both sides of the channel region, so the element isolation insulating film and the buried layer in this area are in contact with each other. This is because it is necessary to have some margin to avoid this.

従来のSO!  トランジスタではドレイン電流−ドレ
イン電圧の静特性図で、しきい値電圧Vtkの変動に由
来するキンクと呼ばれるコブが現れるが。
Traditional SO! In a transistor, in a static characteristic diagram of drain current vs. drain voltage, a bump called a kink appears due to fluctuations in the threshold voltage Vtk.

従来においてはキンクが認められなかった。Kink was not recognized in the past.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、しきい値電圧VL
hの変動とソースとドレイン間の耐圧低下を抑制したS
ol構造のMIS FETが得られ、高性能の短チヤネ
ルトランジスタを搭載した半導体装置が実現可能となっ
た。
As explained above, according to the present invention, the threshold voltage VL
S that suppresses the fluctuation of h and the drop in breakdown voltage between the source and drain.
A MIS FET with an OL structure was obtained, and a semiconductor device equipped with a high-performance short channel transistor became possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1)〜(3)は本発明の原理説明図。 第2図(1)〜00)は本発明の一実施例を説明する断
面図。 第3図(1)、 (2)は本発明の他の実施例を説明す
る断面図。 第4図(1)〜(3)は従来例によるMIS Fll!
Tの平面図と断面図である。 図において。 1は半導体基板でp−3t基板。 2は埋込絶縁膜でSiOx膜。 3は単結晶Si膜。 31はチャネル領域。 32、33はソース・ドレイン領域。 4は素子分離絶縁膜でSiO2膜。 5はゲート絶縁膜で5i02膜。 6はゲート電極でポリSi膜 (1)平面図 (2)A−AFr面 (3)B−Bvr面 本発明のF?、5里図 ?; 1 図 (1) A−A断面 (′)−) 日−B酬”面 実施例のP面 第2図(でのつ 図 実廃σ)]のUT面図 第2図(t′の2) (1) へ断面 (2)C−C折i 他の実お例の折i図 第3図
FIGS. 1 (1) to (3) are diagrams explaining the principle of the present invention. FIGS. 2(1) to 00) are cross-sectional views illustrating an embodiment of the present invention. FIGS. 3(1) and 3(2) are sectional views illustrating another embodiment of the present invention. FIG. 4 (1) to (3) are MIS Fll! according to the conventional example.
It is a top view and sectional view of T. In fig. 1 is a semiconductor substrate, which is a p-3t substrate. 2 is a buried insulating film, which is a SiOx film. 3 is a single crystal Si film. 31 is a channel region. 32 and 33 are source/drain regions. 4 is an element isolation insulating film, which is a SiO2 film. 5 is a gate insulating film, which is a 5i02 film. 6 is the gate electrode; poly-Si film (1) top view (2) A-AFr plane (3) B-Bvr plane of the present invention. , 5 ri map? ; 1 Figure (1) A-A cross section (') 2) (1) Cross section (2) C-C fold i Other example fold diagram Figure 3

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板(1)にチャネル領域(31)を挟
んで該基板内にその表面より反対導電型の不純物を導入
して形成されたソース・ドレイン領域(32)、(33
)と、該チャネル領域上にゲート絶縁膜(5)を介して
形成されたゲート電極(6)と、該基板上で該チャネル
領域及び該ソース・ドレイン領域の周囲に形成された素
子分離絶縁膜(4)と、該基板の内部に少なくともその
一部が該チャネル領域と重なる領域に形成された埋込絶
縁層(2)とを有し、該埋込絶縁層(2)が、該ゲート
電極と該素子分離離絶縁膜とが重なる領域(2A)で該
素子分離絶縁膜(4)と接していないように構成されて
、該チャネル領域が該基板に電気的に接続されているこ
とを特徴とする半導体装置。
Source/drain regions (32), (33) are formed by introducing impurities of the opposite conductivity type from the surface of a semiconductor substrate (1) of one conductivity type with a channel region (31) in between.
), a gate electrode (6) formed on the channel region via a gate insulating film (5), and an element isolation insulating film formed on the substrate around the channel region and the source/drain region. (4), and a buried insulating layer (2) formed inside the substrate in a region at least partially overlapping with the channel region, and the buried insulating layer (2) is connected to the gate electrode. and the device isolation insulating film (2A) are configured so that they are not in contact with the device isolation insulating film (4) in an overlapping region (2A), and the channel region is electrically connected to the substrate. semiconductor device.
JP29454589A 1989-11-13 1989-11-13 Semiconductor device Pending JPH03154381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29454589A JPH03154381A (en) 1989-11-13 1989-11-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29454589A JPH03154381A (en) 1989-11-13 1989-11-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03154381A true JPH03154381A (en) 1991-07-02

Family

ID=17809174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29454589A Pending JPH03154381A (en) 1989-11-13 1989-11-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03154381A (en)

Similar Documents

Publication Publication Date Title
US6198134B1 (en) Semiconductor device having a common substrate bias
US6521948B2 (en) SOI-structure MIS field-effect transistor with gate contacting body region
US6222234B1 (en) Semiconductor device having partially and fully depleted SOI elements on a common substrate
US5675172A (en) Metal-insulator-semiconductor device having reduced threshold voltage and high mobility for high speed/low-voltage operation
US6121077A (en) Silicon-on-insulator transistors having improved current characteristics and reduced electrostatic discharge susceptibility
JPH05160396A (en) Mos field effect transistor
JPH11243210A (en) Semiconductor device and method for manufacturing the same
US6352872B1 (en) SOI device with double gate and method for fabricating the same
JP3282375B2 (en) Complementary insulated gate field effect transistor
JPH10209456A (en) Soi-mos field effect transistor
JPH03268435A (en) Mos device and manufacture thereof
US5418391A (en) Semiconductor-on-insulator integrated circuit with selectively thinned channel region
JPH03288471A (en) Semiconductor device and manufacture thereof
US7187000B2 (en) High performance tunneling-biased MOSFET and a process for its manufacture
US6734500B2 (en) Semiconductor devices including a bi-polar transistor and a field effect transistor
JPH03154381A (en) Semiconductor device
Horiuchi et al. High-current small-parasitic-capacitance MOSFET on a poly-Si interlayered (PSI:/spl Psi/) SOI wafer
JP2672184B2 (en) Method for manufacturing semiconductor device
JP3413039B2 (en) Semiconductor device
JPS6378574A (en) Manufacture of semiconductor device
JPH04115538A (en) Semiconductor device
JP2001298195A (en) Mos transistor
JP2001044425A (en) Semiconductor device
US20020113266A1 (en) Semiconductor devices and methods for manufacturing the same
JPH07273340A (en) Soi type transistor