JPH0315401B2 - - Google Patents

Info

Publication number
JPH0315401B2
JPH0315401B2 JP57026076A JP2607682A JPH0315401B2 JP H0315401 B2 JPH0315401 B2 JP H0315401B2 JP 57026076 A JP57026076 A JP 57026076A JP 2607682 A JP2607682 A JP 2607682A JP H0315401 B2 JPH0315401 B2 JP H0315401B2
Authority
JP
Japan
Prior art keywords
ground coil
vehicle
magnetic flux
synchronous motor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57026076A
Other languages
Japanese (ja)
Other versions
JPS58144502A (en
Inventor
Kei Oochi
Tamotsu Tatsumi
Shigeo Fukase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57026076A priority Critical patent/JPS58144502A/en
Publication of JPS58144502A publication Critical patent/JPS58144502A/en
Publication of JPH0315401B2 publication Critical patent/JPH0315401B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines

Description

【発明の詳細な説明】 本発明は、磁気浮上型超高速車両の駆動などに
適した車両用リニア同期モータの地上コイルの検
査方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for inspecting a ground coil of a linear synchronous motor for a vehicle, which is suitable for driving a magnetically levitated ultra-high-speed vehicle.

リニアモータを車両の推進及び制動のための駆
動源とした、いわゆるリニアモータ車は、車輪と
レールとの間の粘着力とは無関係に大きな駆動力
が得られる上、駆動系にほとんど可動部分を必要
としないという利点があり、特にリニア同期モー
タを用いた車両では、上記の利点に加え、磁気浮
上方式の適用が容易になるため、超高速車両に対
する駆動源として注目されるようになつてきた。
So-called linear motor vehicles, which use linear motors as the drive source for vehicle propulsion and braking, can obtain large driving force regardless of the adhesive force between the wheels and the rails, and have almost no moving parts in the drive system. In addition to the above advantages, magnetic levitation is easy to apply, especially for vehicles using linear synchronous motors, so it is attracting attention as a drive source for ultra-high-speed vehicles. .

このようなリニア同期モータ(以下、単に
LSMという)を用いた磁気浮上形超高速車両の
一例を第1図に模式的に示す。
Such a linear synchronous motor (hereinafter simply
Figure 1 schematically shows an example of a magnetically levitated ultra-high-speed vehicle using an LSM.

図において、1は超高速車両、2はLSMの界
磁コイル、3は車両1の線路に沿つて地上に設置
されているLSMの電機子コイル(地上コイルと
いう)である。
In the figure, 1 is an ultra-high-speed vehicle, 2 is an LSM field coil, and 3 is an LSM armature coil (referred to as a ground coil) installed on the ground along the track of the vehicle 1.

界磁コイル2は強い磁界を発生するため超導電
コイルなどにより構成され、それに対応して設置
してある地上コイル3との間に働く電磁反撥力に
により車両1を磁気的に浮上させると共に、地上
コイル3によつて生じる移動磁界により粘着作用
とは無関係に直線駆動力を発生させ、車両1の推
進が行なわれる。なお、この方式の車両では、界
磁コイル2が車両1に設けられているため、車上
界磁方式と呼ぶ。
The field coil 2 is composed of a superconducting coil or the like in order to generate a strong magnetic field, and the vehicle 1 is magnetically levitated by the electromagnetic repulsion force acting between it and the ground coil 3 installed correspondingly. The moving magnetic field generated by the ground coil 3 generates a linear driving force independent of the adhesion effect, and the vehicle 1 is propelled. Note that in this type of vehicle, the field coil 2 is provided on the vehicle 1, so it is called an on-vehicle field type.

従つて、この車上界磁方式のLSM車によれば、
車両1が浮上している上、推進力が粘着作用によ
る制限を受けずに充分大きく得られるため、超高
速での車両の走行が可能になるのである。
Therefore, according to this on-board field type LSM car,
Since the vehicle 1 is floating and a sufficiently large propulsion force is obtained without being limited by the adhesion effect, the vehicle can run at extremely high speeds.

ところで、このような車上界磁方式のLSM車
においては、LSMの電機子コイルである地上コ
イル3が線路のほぼ全域にわたつて設けられてい
るため、この地上コイル3が小石など種々の物体
の衝突による損傷を受けやすく、コイルの絶縁劣
化による層間短絡、地絡、コイルの口出端子部で
の橋絡、断線等、不具合発生の可能性がある。
By the way, in such an on-board field type LSM vehicle, the ground coil 3, which is the armature coil of the LSM, is installed over almost the entire track, so the ground coil 3 is exposed to various objects such as pebbles. They are susceptible to damage from collisions, and there is a possibility of problems such as interlayer short circuits, ground faults, bridges at the coil outlet terminals, and disconnections due to deterioration of the coil insulation.

そこで、このようなシステムにおいては、地上
コイル3の点検や検査などの監視作業が不可欠
で、そのため、従来は、LSM車の運行停止時に
地上コイル3に直流電流を流し、方位磁石(磁気
コンパス)を用いて地上コイル3による磁束を順
次検出して検査を行なう方法が主として採用され
ていた。
Therefore, in such a system, monitoring work such as inspection and inspection of the ground coil 3 is essential.For this reason, conventionally, when the LSM vehicle stops operating, DC current is passed through the ground coil 3, and the direction magnet (magnetic compass) The method that has been mainly adopted is to sequentially detect the magnetic flux generated by the ground coil 3 using a ground coil 3 for inspection.

しかしながら、この方法では、検査が手作業に
なり、地上コイル3を各単位ごと(例えば各相ご
と)に1つづくチエツクしながら作業を進める必
要があるため、検査に多大の労力と時間を要する
という欠点があつた。
However, with this method, the inspection is done manually, and it is necessary to proceed with the work while checking each ground coil 3 for each unit (for example, for each phase), which requires a great deal of labor and time. There were flaws.

本発明の目的は、上記した従来技術の欠点を除
き、手作業をほとんど要せずに短時間で地上コイ
ルの検査が容易に行なえるようにした車両用
LSMの地上コイル検査方式を提供するにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a vehicle for ground coils that can be easily inspected in a short period of time with almost no manual labor required.
To provide an LSM ground coil inspection method.

この目的を達成するため、本発明は、LSM車
の線路に沿つて走行可能な移動手段に磁束の連続
的な検出が可能な磁束検出装置を設け、地上コイ
ルに直流電流を供給した状態で上記移動手段を走
行させることにより地上コイルの検査を行なうよ
うにした点を特徴とする。
In order to achieve this object, the present invention provides a magnetic flux detection device capable of continuously detecting magnetic flux on a moving means capable of traveling along the track of an LSM vehicle, and provides the above-mentioned It is characterized in that the ground coil is inspected by running the moving means.

以下、本発明による車両用LSMの地上コイル
検査方式の実施例を図面について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a ground coil inspection method for a vehicle LSM according to the present invention will be described below with reference to the drawings.

まず、第2図は本発明の一実施例において使用
される磁束検出装置の一例を示したもので、図に
おいて、4は光源、5は偏光子、6は偏光面保存
光フアイバ、7は検光子、8は光電変換部であ
る。なお、9は磁束検出装置全体を表わす。
First, FIG. 2 shows an example of a magnetic flux detection device used in an embodiment of the present invention. In the figure, 4 is a light source, 5 is a polarizer, 6 is a polarization preserving optical fiber, and 7 is a detector. Photon 8 is a photoelectric conversion unit. Note that 9 represents the entire magnetic flux detection device.

光源4は白熱ランプ、LEDなどからなり、所
定のほぼ一定の光量の光を偏光子5を介して光フ
アイバ6の中に送り込む働きをする。
The light source 4 is composed of an incandescent lamp, an LED, or the like, and functions to send a predetermined, substantially constant amount of light into the optical fiber 6 via the polarizer 5.

偏光子5はニコルプリズム、偏光フイルタなど
からなり、光フアイバ6に光源4から送り込まれ
る光の偏光面を所定の一方向に揃える働きをす
る。
The polarizer 5 is composed of a Nicol prism, a polarizing filter, etc., and functions to align the plane of polarization of the light sent from the light source 4 into the optical fiber 6 in one predetermined direction.

光フアイバ6はいわゆる偏波面保存光フアイバ
で、一般の光フアイバは偏波面がランダムな状態
でしか光を伝送できないが、この偏波面保存光フ
アイバは偏波面が保存された状態での光の伝播が
可能な性質をもつ。そこで、光フアイバ6は光源
4から検光子5を介して入射された偏光の偏波面
Pを保存したままで一方の端面から他方の端面に
まで伝送する働きをし、その間に図の矢印B方向
の磁界が加えられるとフアラデー効果により偏波
面が回転し、その磁界による偏波面の回転角をそ
のまま残した偏光を検光子7に入射する働きをす
る。
The optical fiber 6 is a so-called polarization-maintaining optical fiber.General optical fibers can only transmit light when the plane of polarization is random, but this polarization-maintaining optical fiber propagates light with the plane of polarization preserved. It has the property of being possible. Therefore, the optical fiber 6 functions to transmit the polarized light incident from the light source 4 through the analyzer 5 from one end face to the other end face while preserving the polarization plane P, and in the meantime, in the direction of arrow B in the figure. When a magnetic field is applied, the plane of polarization rotates due to the Faraday effect, and the polarized light enters the analyzer 7 with the angle of rotation of the plane of polarization caused by the magnetic field unchanged.

検光子7は偏光子5による偏波面とは直角にな
つた偏波面をもち、光フアイバ6の中でフアラデ
ー効果により磁界の強さに比例して与えられた偏
波面の回転角θに対応した量の光だけを通過させ
る働きをする。
The analyzer 7 has a plane of polarization that is perpendicular to the plane of polarization produced by the polarizer 5, and corresponds to the rotation angle θ of the plane of polarization given in proportion to the strength of the magnetic field by the Faraday effect in the optical fiber 6. It works by allowing only a certain amount of light to pass through.

光電変換部8はフオトセル、フオトダイオー
ド、フオトトランジスタなどからなり、検光子7
を通過した光の量に応じた検出信号を発生する働
きをする。
The photoelectric conversion unit 8 includes a photocell, a photodiode, a phototransistor, etc., and an analyzer 7.
The function is to generate a detection signal according to the amount of light that has passed through the sensor.

この結果、磁束検出装置9は、図の矢印方向に
加えられる磁界の強さを表わす電気信号を発生す
ることになり、磁束を検出することができる。
As a result, the magnetic flux detection device 9 generates an electric signal representing the strength of the magnetic field applied in the direction of the arrow in the figure, and can detect the magnetic flux.

次に、この磁束検出装置9を用いた本発明の一
実施例を第3図に示す。
Next, an embodiment of the present invention using this magnetic flux detection device 9 is shown in FIG.

第3図において、10はLSM車の線路に沿つ
て走行可能にした検査用の移動車で、その中に光
フアイバ6が垂直になるようにして磁束検出装置
9が取り付けられ、光電変換部8から得られる電
気信号を適当な計器などによつて連続的に監視し
得るようにしてある。また、この移動車10は地
上コイル3を構成の一部とするLSMとは独立し
た駆動源、例えば内燃機関などにより走行可能に
してある。
In FIG. 3, reference numeral 10 denotes a moving vehicle for inspection that can run along the track of the LSM vehicle, in which a magnetic flux detection device 9 is attached so that the optical fiber 6 is vertical, and a photoelectric conversion unit 8 is installed. The electrical signals obtained from the sensor can be continuously monitored using a suitable meter or the like. Further, this mobile vehicle 10 is made to be able to travel by a drive source independent of the LSM, of which the ground coil 3 is a part, such as an internal combustion engine.

そして、地上コイル3の検査を行なうときに
は、第4図に示すように、地上コイル3に適当な
直流電源11を接続し、所定区間内にある地上コ
イル3の全てに直流電流が流れるようにする。そ
うすると、地上コイル3のそれぞれからは、第3
図に示すような磁界が作られることになる。
When inspecting the ground coil 3, as shown in Fig. 4, an appropriate DC power source 11 is connected to the ground coil 3 so that DC current flows through all the ground coils 3 within a predetermined section. . Then, from each of the ground coils 3, the third
A magnetic field as shown in the figure will be created.

そこで、次に、この地上コイル3が設置されて
いる線路に沿つて移動車10を走行させながら磁
束検出装置9の光電変換部8からの検出信号を監
視していると、第5図に示すように、移動車10
が走行して次々とそれぞれの地上コイル3の上を
通過していく間、各地上コイル3による磁束の量
に応じた強さの検出信号が得られるが、これらの
信号の強さは地上コイル3に異常がない限りほぼ
同じレベルとなる筈である。
Next, while the moving vehicle 10 is running along the track where the ground coil 3 is installed, the detection signal from the photoelectric conversion section 8 of the magnetic flux detection device 9 is monitored, as shown in FIG. As in, moving vehicle 10
As it travels and passes over each ground coil 3 one after another, a detection signal whose strength corresponds to the amount of magnetic flux generated by each ground coil 3 is obtained. As long as there is no abnormality in 3, it should be at almost the same level.

しかるに、物体の衝突などにより地上コイル3
のいずれかに、層間絶縁劣化による層間短絡や、
口出端子部の橋絡が発生していると、地上コイル
3の中の短絡や橋絡などの異常を発生したコイル
では、その実効巻数が減少(橋絡した場合にはゼ
ロになる)し、この結果、磁束の発生量が、他の
正常な地上コイル3よりも減少しているため、そ
の異常を発生した地上コイル3の上に移動車10
がさしかかつたとき、第5図に示すように、検出
信号のレベルが急に低下する。
However, due to collision with an object, the ground coil 3
Interlayer short circuit due to deterioration of interlayer insulation,
If a bridge occurs at the output terminal, the effective number of turns of the coil in the ground coil 3 where an abnormality such as a short circuit or a bridge has occurred will decrease (in case of a bridge, it will become zero). As a result, the amount of magnetic flux generated is smaller than that of other normal ground coils 3, so the moving vehicle 10 is placed on top of the ground coil 3 where the abnormality has occurred.
As shown in FIG. 5, the level of the detection signal suddenly drops.

従つて、この実施例によれば、移動車10を走
行させながら磁束検出装置9の信号を監視してい
るだけで異常が発生した地上コイルの検出ができ
るから、地上コイルの検査を短時間に、しかも確
実に行なうことができる。
Therefore, according to this embodiment, a ground coil in which an abnormality has occurred can be detected by simply monitoring the signal from the magnetic flux detection device 9 while the mobile vehicle 10 is traveling, so that the ground coil inspection can be carried out in a short time. , and can be done reliably.

なお、この実施例では、磁束検出装置9による
検出信号をリアルタイムで監視するものとして示
したが、紙テープなどを用いた記録計器を使用
し、検出信号のレベルを移動車10の走行位置と
一緒に記録するようにしてもよい。
In this embodiment, the detection signal from the magnetic flux detection device 9 is monitored in real time, but a recording instrument using paper tape or the like is used to record the level of the detection signal together with the traveling position of the mobile vehicle 10. It may also be recorded.

このときには、移動車10を走行させた後、紙
テープなどの記録を調べることにより容易に地上
コイルの検査が行なえ、異常を生じた地上コイル
の検出ができる。
At this time, the ground coil can be easily inspected by checking the records on paper tape or the like after the mobile vehicle 10 has traveled, and the ground coil in which an abnormality has occurred can be detected.

また、以上の実施例では、偏波面保存光フアイ
バ6を用いたフアラデー効果型磁束検出装置9を
用い、それにより高い検出感度と安定確実な検出
動作が得られるようにしているが、本発明の実施
例はこれに限らず、どのような磁束検出装置によ
つても実施可能で、例えば、ホール素子や磁気ダ
イオードなどの各種半導体磁気センサを用い、こ
れに適当な磁気回路を付加するようにしてもよい
のはいうまでもないところである。
Further, in the above embodiment, a Faraday effect type magnetic flux detection device 9 using a polarization preserving optical fiber 6 is used, thereby achieving high detection sensitivity and stable and reliable detection operation. The embodiments are not limited to this, and can be implemented using any magnetic flux detection device. For example, various semiconductor magnetic sensors such as Hall elements and magnetic diodes may be used, and an appropriate magnetic circuit may be added thereto. Needless to say, it is good.

以上説明したように、本発明によれば、手作業
による検査を大幅に少くすることができるから、
従来技術の欠点を除き、短かい時間でしかも確実
な地上コイルの検査が容易に行なうことのできる
車両用リニア同期モータの地上コイル検査方式を
提供することができる。
As explained above, according to the present invention, manual inspection can be significantly reduced.
It is possible to provide a ground coil inspection method for a linear synchronous motor for a vehicle, which eliminates the drawbacks of the prior art and allows easy and reliable inspection of the ground coil in a short period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はリニア同期モータを用いた磁気浮上形
超高速車両の一例を概念的に示した模式図、第2
図は本発明の一実施例に適用された磁束検出装置
の一例を示す説明図、第3図は本発明の一実施例
を示す模式図、第4図は同じくその動作説明用の
模式図、第5図は同じく波形図である。 3……地上コイル、4……光源、5……偏光
子、6……偏波面保存光フアイバ、7……検光
子、8……光電変換部、9……磁束検出装置、1
0……移動車、11……直流電源。
Figure 1 is a schematic diagram conceptually showing an example of a magnetically levitated ultra-high-speed vehicle using a linear synchronous motor.
The figure is an explanatory diagram showing an example of a magnetic flux detection device applied to an embodiment of the present invention, FIG. 3 is a schematic diagram showing an embodiment of the present invention, and FIG. 4 is a schematic diagram for explaining the operation thereof. FIG. 5 is a waveform diagram as well. 3... Ground coil, 4... Light source, 5... Polarizer, 6... Polarization preserving optical fiber, 7... Analyzer, 8... Photoelectric conversion section, 9... Magnetic flux detection device, 1
0...Moving car, 11...DC power supply.

Claims (1)

【特許請求の範囲】 1 車上界磁方式のリニア同期モータ駆動による
車両走行システムにおいて、リニア同期モータの
地上コイルに直流電流を供給する手段と、上記リ
ニア同期モータ以外の駆動手段により上記地上コ
イルに沿つて走行可能な移動手段と、該移動手段
に設置され上記地上コイルによる磁束の検出が可
能な磁束検出手段とを備えたことを特徴とする車
両用リニア同期モータの地上コイル検査方式。 2 特許請求の範囲第1項において、上記磁束検
出手段を、偏波面保存光フアイバによるフアラデ
ー効果型磁束検出装置で構成したことを特徴とす
る車両用リニア同期モータの地上コイル検査方
式。
[Scope of Claims] 1. In a vehicle running system driven by an on-board field type linear synchronous motor, there is provided a means for supplying direct current to a ground coil of the linear synchronous motor, and a drive means other than the linear synchronous motor to drive the ground coil. 1. A ground coil inspection method for a linear synchronous motor for a vehicle, comprising: a moving means capable of traveling along the ground coil; and a magnetic flux detection means installed on the moving means capable of detecting magnetic flux generated by the ground coil. 2. A ground coil inspection method for a linear synchronous motor for a vehicle according to claim 1, characterized in that the magnetic flux detection means is constituted by a Faraday effect type magnetic flux detection device using a polarization preserving optical fiber.
JP57026076A 1982-02-22 1982-02-22 Ground coil inspecting system of linear synchronous motor for vehicle Granted JPS58144502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57026076A JPS58144502A (en) 1982-02-22 1982-02-22 Ground coil inspecting system of linear synchronous motor for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57026076A JPS58144502A (en) 1982-02-22 1982-02-22 Ground coil inspecting system of linear synchronous motor for vehicle

Publications (2)

Publication Number Publication Date
JPS58144502A JPS58144502A (en) 1983-08-27
JPH0315401B2 true JPH0315401B2 (en) 1991-03-01

Family

ID=12183553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57026076A Granted JPS58144502A (en) 1982-02-22 1982-02-22 Ground coil inspecting system of linear synchronous motor for vehicle

Country Status (1)

Country Link
JP (1) JPS58144502A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778936A (en) * 1980-11-04 1982-05-17 Kao Corp Surfactant for polymer emulsion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778936A (en) * 1980-11-04 1982-05-17 Kao Corp Surfactant for polymer emulsion

Also Published As

Publication number Publication date
JPS58144502A (en) 1983-08-27

Similar Documents

Publication Publication Date Title
US5557216A (en) System and method for testing electrical generators
Filograno et al. Real-time monitoring of railway traffic using fiber Bragg grating sensors
JPH03502003A (en) optical speed detection device
US4179744A (en) Method and apparatus for analyzing performance of electric-traction-motor powered vehicles and electrical operating components thereof
JPH08226939A (en) Optical current transformer
CN104254472A (en) Method and apparatus for detecting railway system defects
JPH0315401B2 (en)
GB1144541A (en) Material tester
JPH05105082A (en) Train line pole position detecting method
JPS60236073A (en) Fault locator for transmission line
US2622131A (en) Portable rail flaw detector
JPS6231887Y2 (en)
JPH06217421A (en) Track for magnetic levitation train
SU1615009A1 (en) Apparatus for checking the passage of railway vehicle wheel
JP3704630B2 (en) Magnetically levitated train with torsional vibration detection coil of superconducting magnet
JPS601826B2 (en) Linear motor stop position detection device
RU1786220C (en) Device for detecting rail creeping
JPS5893461A (en) Position detector for linear motor
US8532918B2 (en) System and method for vehicle position sensing with helical windings
JPS6333646B2 (en)
US8499697B2 (en) System and method for vehicle position sensing with use of propulsion windings
KR950009869B1 (en) Measuring device for voltage and current
JPH0619093Y2 (en) Flaw detector
JPH04198713A (en) Position detecting method for magneticaly levitated running body
JPS62110162A (en) Apparatus for detecting zero phase current