JPH03153891A - Electrolytic producing apparatus for quaternary ammonium hydroxide - Google Patents

Electrolytic producing apparatus for quaternary ammonium hydroxide

Info

Publication number
JPH03153891A
JPH03153891A JP1291237A JP29123789A JPH03153891A JP H03153891 A JPH03153891 A JP H03153891A JP 1291237 A JP1291237 A JP 1291237A JP 29123789 A JP29123789 A JP 29123789A JP H03153891 A JPH03153891 A JP H03153891A
Authority
JP
Japan
Prior art keywords
chamber
quaternary ammonium
anode
anolyte
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1291237A
Other languages
Japanese (ja)
Inventor
Teruyuki Misumi
三角 照之
Yuji Ohora
大洞 有司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Chemical Industry Co Ltd
Original Assignee
Toho Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Chemical Industry Co Ltd filed Critical Toho Chemical Industry Co Ltd
Priority to JP1291237A priority Critical patent/JPH03153891A/en
Publication of JPH03153891A publication Critical patent/JPH03153891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To provide the producing apparatus which efficiently obtain the above high purity oxide while removing the acids of the respective chambers in an anion exchange resin column by consisting the apparatus of an electrolytic cell having a diaphragm between an anode and cathode and the above-mentioned column connected with a circulating passage which can circulate the anolyte or intermediate chamber liquid on the outside of the electrolytic cell. CONSTITUTION:The electrolytic cell 1 is constituted of a cathode plate 2, an anode plate 3, a cation exchange membrane 4, an anode chamber 5, a cathode chamber 6, an anolyte liquid pool 11, an anolyte discharge port 12, etc. The chamber 5 connects in series to the liquid pool 11 and a circulating pump P1 via the circulating passages C1, C2 and circulates the anolyte during the electrol ysis time. The supply 13 of quaternary ammonium salt is continuously carried out to the liquid pool 11 and the quaternary ammonium cation supplied to the chamber 5 is passed through the membrane 4 by the flow of current, by which the cation is moved to the chamber 6 to form the quaternary ammonium hydroxide. The anolyte is continuously discharged from the discharge port 12, by which the material balance is matched.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は第四アンモニウム水酸化物水溶液を製造する装
置に関するものであり、特に電子工業、半導体産業にお
けるIC,LSIの製造工程でウェハーの洗浄液、エツ
チング液、現像液などに使用される第四アンモニウム水
酸化物を製造する装置に係わる。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an apparatus for producing an aqueous solution of quaternary ammonium hydroxide, and is particularly used as a wafer cleaning solution in the manufacturing process of ICs and LSIs in the electronics and semiconductor industries. , an apparatus for producing quaternary ammonium hydroxide used in etching solutions, developing solutions, etc.

〔従来の技術、発明が解決しようとする課題〕第四アン
モニウム水酸化物は、強塩基性の有機化合物として相間
移動触媒、非水溶液滴定の標準液等化学反応における有
用な薬品であり、ICやLSIの製造における半導体基
盤の洗浄、食刻、ポジ型レジストの現像などの処理剤と
して使用されている。
[Prior Art and Problems to be Solved by the Invention] Quaternary ammonium hydroxide is a strong basic organic compound that is a useful chemical in chemical reactions such as phase transfer catalysts and standard solutions for non-aqueous titration. It is used as a processing agent for cleaning semiconductor substrates, etching, and developing positive resists in the manufacture of LSIs.

第四アンモニウム水酸化物の中の有害不純物としては、
L i % N a s K SF e % N i 
% A ’ sCr、Zn等の陽イオンやC1、Br、
1等の陰イオン等がある。半導体の集積度が増大するに
つれて第四アンモニウム水酸化物中の有害不純物イオン
の一層の低減が要請されている。
Harmful impurities in quaternary ammonium hydroxide include:
L i % N a s K S F e % N i
%A'sCation such as Cr, Zn, C1, Br,
There are 1st class anions, etc. As the degree of integration of semiconductors increases, further reduction of harmful impurity ions in quaternary ammonium hydroxide is required.

この第四アンモニウム水酸化物の一般的製法としては、
トリアルキルアミンとアルキルハライドとを反応させて
第四アンモニウム塩とし、次に水酸化銀と接触させハロ
ゲン化銀を析出せしめ、あるいは01(型陰イオン交換
樹脂と接触せしめたりして第四アンモニウム水酸化物に
する方法がある。
The general method for producing this quaternary ammonium hydroxide is as follows:
A trialkylamine and an alkyl halide are reacted to form a quaternary ammonium salt, which is then brought into contact with silver hydroxide to precipitate silver halide, or a quaternary ammonium salt is formed by contacting with a 01 (type anion exchange resin). There is a way to make it into an oxide.

前者は水酸化銀のコストが高く、後者は再生に用いられ
るNaOHが混入してナトリウムイオンの量が増大し、
またハロゲンイオンを完全に除去することが困難である
等の欠点がある。この対策として第四アンモニウム塩を
電解し第四アンモニウム水酸化物を製造する方法が数多
く提案されているが、まだ完全な技術レベルには到達し
ていない。
In the former case, the cost of silver hydroxide is high, and in the latter case, the amount of sodium ions increases due to the contamination of NaOH used for regeneration.
Further, there are drawbacks such as difficulty in completely removing halogen ions. As a countermeasure to this problem, many methods have been proposed for producing quaternary ammonium hydroxide by electrolyzing quaternary ammonium salts, but these methods have not yet reached a complete technological level.

電解によって第四アンモニウム塩より、第四アンモニウ
ム水酸化物を製造する場合、陽極液と陰極液との混合を
防止するために、少なくとも1枚以上の隔膜が用いられ
るが、代表的な電解槽の構成は、陽イオン交換膜を隔膜
とした陽極室−陽イオン交換膜−陰極室よりなる2室電
解槽及び一対の対向する電極板の陽極側に陰イオン交換
膜、陰極側に陽イオン交換膜を対向させて配置した3室
電解槽等である。
When producing quaternary ammonium hydroxide from quaternary ammonium salt by electrolysis, at least one diaphragm is used to prevent mixing of the anolyte and catholyte. The structure consists of a two-chamber electrolytic cell consisting of an anode chamber, a cation exchange membrane, and a cathode chamber with a cation exchange membrane as a diaphragm, and a pair of opposing electrode plates, with an anion exchange membrane on the anode side and a cation exchange membrane on the cathode side. This is a three-chamber electrolytic cell, etc., in which two chambers are placed facing each other.

2室電解槽の場合、原料の第四アンモニウム塩は陽極室
へ供給され直流電圧を印加して電解を行うことにより第
四アンモニウムカチオンが陽イオン交換膜を通過して陰
極室へ移動し陰極室では水分解が行われ水素ガスとOH
−が生成し第四アンモニウム水酸化物溶液が得られる。
In the case of a two-chamber electrolyzer, the raw material quaternary ammonium salt is supplied to the anode chamber, and when electrolysis is performed by applying DC voltage, the quaternary ammonium cation passes through the cation exchange membrane and moves to the cathode chamber. Then, water splitting takes place and hydrogen gas and OH
- is produced and a quaternary ammonium hydroxide solution is obtained.

陽極室では一般に陽極反応でOH−が水と酸素ガスとな
り、陽極室には酸が蓄積される。その酸が硫酸、硝酸、
燐酸、炭酸等の無機酸及びギ酸、酢酸等の有機酸の場合
、核酸の水素イオンは、第四アンモニウムカチオンに比
して陰極室への移動速度が速く、陽イオン交換膜を通過
して陰極室へ移動し第四アンモニウム水酸化物の生成効
率を著しく低下させる。
In the anode chamber, OH- generally becomes water and oxygen gas through an anode reaction, and acid is accumulated in the anode chamber. The acids are sulfuric acid, nitric acid,
In the case of inorganic acids such as phosphoric acid and carbonic acid, and organic acids such as formic acid and acetic acid, the hydrogen ions of nucleic acids move to the cathode chamber faster than quaternary ammonium cations, passing through the cation exchange membrane to the cathode. room and significantly reduces the production efficiency of quaternary ammonium hydroxide.

又陽極室で生成した酸は、隔膜を通過して陰極室へ拡散
して第四アンモニウム水酸化物と混合し、第四アンモニ
ウム水酸化物の純度を低下させる。
The acid produced in the anode chamber also diffuses into the cathode chamber through the diaphragm and mixes with the quaternary ammonium hydroxide, reducing the purity of the quaternary ammonium hydroxide.

又陽極室の酸濃度が高いと陽極材料の腐蝕が増大する。Also, if the acid concentration in the anode chamber is high, corrosion of the anode material increases.

特開昭57−155390号(三菱油化@)、特開昭6
0−100690号(多摩化学工業■)、特開昭61−
170588号(多摩化学工業■)、特開昭63−24
080号(多摩化学工業■)、特開昭63−57790
号(三菱瓦斯化学■)、特開平1−87794号(徳山
曹達@)等の先行技術は、前記2室法の欠点を有する。
JP-A No. 57-155390 (Mitsubishi Yuka@), JP-A No. 6
No. 0-100690 (Tama Chemical Industry ■), JP-A-61-
No. 170588 (Tama Chemical Industry ■), JP-A-63-24
No. 080 (Tama Chemical Industry ■), JP-A-63-57790
No. (Mitsubishi Gas Chemical ■), JP-A No. 1-87794 (Tokuyama Soda@), and other prior art techniques have the drawbacks of the two-chamber method.

この欠点を解消するために、陽極液を水酸化ナトリウム
等のアルカリで中和すると、ナトリウムイオンが、陽イ
オン交換膜を通過して陰極室へ移動し陰極液中に蓄積す
るので、目的物の第四アンモニウム水酸化物の純度を低
下させる。
To overcome this drawback, when the anolyte is neutralized with an alkali such as sodium hydroxide, sodium ions pass through the cation exchange membrane, move to the cathode chamber, and accumulate in the catholyte. Reduces the purity of quaternary ammonium hydroxide.

3室電解槽の場合、原料の第四アンモニウム塩は、両側
を陰イオン交換膜と陽イオン交換膜とする中間室に供給
され、直流電圧を印加して電解を行うことにより、第四
アンモニウムカチオンが陽イオン交換膜を通過し陰極室
へ移動し、陰極室では水分解が行われ水素ガスとOH−
が生成し第四アンモニウム水酸化物水溶液が得られる。
In the case of a three-chamber electrolyzer, the quaternary ammonium salt as a raw material is supplied to an intermediate chamber with an anion exchange membrane and a cation exchange membrane on both sides, and is converted into quaternary ammonium cations by applying DC voltage and performing electrolysis. passes through the cation exchange membrane and moves to the cathode chamber, where water is split and hydrogen gas and OH-
is generated and an aqueous quaternary ammonium hydroxide solution is obtained.

中間室の第四アンモニウムカチオンの対アニオンは、陰
イオン交換膜を通過して陽極室へ移動し、陽極室では酸
が蓄積される。この場合、陰イオン交換膜の水素イオン
輸率が高いために、陽極室で生成した水素イオンが一部
膜を通過して中間室へ移動し、更に陽イオン交換Sを通
過して陰極室へ移動し第四アンモニウム水酸化物の生成
効率を著しく低下させる。この欠点を防止するために、
陽極液を水酸化ナトリウム等のアルカリで中和すると、
ナトリウムイオンが蓄積し、ナトリウムイオンは陰イオ
ン交換膜、陽イオン交換膜を順次通過して陰極室へ移動
し、第四アンモニウム水酸化物の純度を低下させる。
The counter anion of the quaternary ammonium cation in the intermediate chamber passes through the anion exchange membrane to the anode chamber, where the acid accumulates. In this case, since the hydrogen ion transport number of the anion exchange membrane is high, some of the hydrogen ions generated in the anode chamber pass through the membrane and move to the intermediate chamber, and further pass through the cation exchange S to the cathode chamber. It migrates and significantly reduces the production efficiency of quaternary ammonium hydroxide. To prevent this drawback,
When the anolyte is neutralized with an alkali such as sodium hydroxide,
Sodium ions accumulate, pass through an anion exchange membrane and a cation exchange membrane in order, and move to the cathode chamber, reducing the purity of the quaternary ammonium hydroxide.

特開平1−87793号〈徳山曹達a琲)、特開平1−
87796号(徳山曹達@)等の先行技術挿入して電解
を行う先行技術として特開昭62−213686号(徳
山曹達01)、特開平l−87795号(徳山曹達@)
がある。前者は、陽極と陰極との間に二枚以上の陽イオ
ン交換膜を積層した陽イオン交換膜群を配し、該陽イオ
ン交換膜群の陽極側に第四アンモニウム塩を供給して電
解し、陰極室から第四アンモニウム水酸化物を取得する
方法であるが、陽極室で酸のトラブルが発生し、前記2
室法と同じ欠点を有する。又、後者は、陽極と陰極との
間に少なくとも二枚の陽イオン交換膜を配して陰極室、
中間室及び陽極室を有する電解槽とし、陽極室に第四ア
ンモニウム塩水溶液を供給し中間室に水酸化第四級アン
モニウムを存在させ、陰極室から水酸化第四アンモニウ
ム水溶液を取り出す電解において中間室に混入する第四
アンモニウム塩の濃度を該中間室に隣接する陽極側の室
の第四アンモニウム塩の濃度の1710以下に維持する
ことを特徴とする水酸化第四アンモニウムの製造方法で
ある。この方法は、陽極室で発生した酸が中間室に移動
するので、この酸を第四アンモニウム水酸化物で中和す
るため第四アンモニウム水酸化物の消費量が大となり経
済的でない。
JP-A-1-87793 (Tokuyama Soda A), JP-A-1-
Prior art such as No. 87796 (Tokuyama Soda@) As prior art for inserting electrolysis, JP-A No. 62-213686 (Tokuyama Soda 01) and JP-A No. 1-87795 (Tokuyama Soda @)
There is. In the former method, a cation exchange membrane group consisting of two or more cation exchange membranes is arranged between an anode and a cathode, and a quaternary ammonium salt is supplied to the anode side of the cation exchange membrane group to perform electrolysis. , a method of obtaining quaternary ammonium hydroxide from the cathode chamber, but a problem with acid occurred in the anode chamber, and the method described in 2.
It has the same drawbacks as the chamber method. In addition, in the latter case, at least two cation exchange membranes are arranged between the anode and the cathode to form a cathode chamber,
In electrolysis, the electrolytic cell has an intermediate chamber and an anode chamber, a quaternary ammonium salt aqueous solution is supplied to the anode chamber, quaternary ammonium hydroxide is present in the intermediate chamber, and the quaternary ammonium hydroxide aqueous solution is taken out from the cathode chamber. This is a method for producing quaternary ammonium hydroxide, characterized in that the concentration of the quaternary ammonium salt mixed in the intermediate chamber is maintained at 1710 or lower than the concentration of the quaternary ammonium salt in the anode side chamber adjacent to the intermediate chamber. This method is not economical because the acid generated in the anode chamber moves to the intermediate chamber, and the acid is neutralized with quaternary ammonium hydroxide, which consumes a large amount of quaternary ammonium hydroxide.

特開平1−87792号(徳山曹達■)、特開平1−1
08388号(徳山曹達■)等の先行技術は、陽極室に
陰イオン交換膜が対向し、陽極室には酸が存在するので
前記3室法の欠点を有する。
JP-A-1-87792 (Tokuyama Soda ■), JP-A-1-1
Prior art techniques such as No. 08388 (Tokuyama Soda ■) have the drawbacks of the three-chamber method because an anion exchange membrane faces the anode chamber and acid is present in the anode chamber.

以上のごと〈従来の2室、3室もしくは4室以上の電解
槽を用いても、陽極室で酸が蓄積し、効率よく高純度の
第四アンモニウム水酸化物水溶液を製造することは極め
て困難である。
As mentioned above, even if a conventional electrolytic cell with two, three, or four or more chambers is used, acid accumulates in the anode chamber, making it extremely difficult to efficiently produce a high-purity quaternary ammonium hydroxide aqueous solution. It is.

酸を陰イオン交換樹脂塔で除去しながら、効率よく高純
度の第四アンモニウム水酸化物水溶液を製造する電解製
造装置を提供するものである。
The present invention provides an electrolytic production device that efficiently produces a highly pure quaternary ammonium hydroxide aqueous solution while removing acid with an anion exchange resin column.

すなわち、本発明の電解製造装置は、陽極と陰のである
That is, the electrolytic manufacturing apparatus of the present invention has an anode and a cathode.

上記電解槽において2室電解槽の場合、第四アンモニウ
ム塩は陽極室に供給され直流電圧を印加して電解を行う
ことにより、陰極室で第四アンモニウム水酸化物水溶液
が生成し、陽極室で酸が土中間室に供給され、直流電圧
を印加して電解を行うことにより、陰極室で第四アンモ
ニウム水酸化物水溶液が得られ、陽極室で酸が生成する
In the case of a two-chamber electrolytic cell, the quaternary ammonium salt is supplied to the anode chamber, and electrolysis is performed by applying a DC voltage to produce a quaternary ammonium hydroxide aqueous solution in the cathode chamber, and in the anode chamber. Acid is supplied to the soil intermediate chamber, and by applying a DC voltage to perform electrolysis, a quaternary ammonium hydroxide aqueous solution is obtained in the cathode chamber, and acid is generated in the anode chamber.

電解槽の隔膜として、1対の電極に対して陽イオン交換
膜の2枚以上、陰イオン交換膜1枚および陽イオン交換
膜の2枚以上、それ以外、陽イオン交換膜と陰イオン交
換膜を多数枚用いた場合でも、陽極室の構成は、陽極に
対し陽イオン交換膜が対向するか、陰イオン交換膜が対
向するかのいづれかであり、上記2室電解槽又は3室電
解槽の様式に準じて実施できる。
As a diaphragm for the electrolytic cell, two or more cation exchange membranes, one anion exchange membrane, and two or more cation exchange membranes for one pair of electrodes, and a cation exchange membrane and an anion exchange membrane for the others. Even when a large number of membranes are used, the configuration of the anode chamber is either the cation exchange membrane facing the anode or the anion exchange membrane facing the anode, and the configuration of the anode chamber is such that the two-chamber electrolytic cell or the three-chamber electrolytic cell are It can be carried out according to the format.

間室液を夫々の循環通路を通して再び陽極室及び上に維
持し、第四アンモニウムカチオンを隔膜を通して陰極室
へ移動させて、高純度の第四アンモニウム水酸化物を効
率よく製造することができる。
The interchamber liquid is maintained in and above the anode chamber through the respective circulation passages, and the quaternary ammonium cations are transferred to the cathode chamber through the diaphragm to efficiently produce high-purity quaternary ammonium hydroxide.

本発明の装置に用いる原料の第四アンモニウムで示され
る。(式中のR+ 、RZ 、R3およびR4は、同一
であっても異なってもよく、各々炭素数1〜8のアルキ
ル基、炭素数2−9のアルコキシアルキル基又は了り−
ル基もしくはヒドロキシアリール基を示す、Xeは、酸
基を示す)上記R3〜R4は、例えばメチル基、エチル
基、プロピル基、ブチル基、ペンチル基、ヘキシル基、
等のアルキル基、メトキシエチル基、メトキシプロピル
基等のアルコキシアルキル基、フェニル基、トリル基、
キシリル基、等の芳香族基およびその誘導体があげられ
る。
This is indicated by quaternary ammonium, which is a raw material used in the apparatus of the present invention. (R+, RZ, R3 and R4 in the formula may be the same or different, and each represents an alkyl group having 1 to 8 carbon atoms, an alkoxyalkyl group having 2 to 9 carbon atoms, or an alkyl group having 2 to 9 carbon atoms, or
Xe represents an acid group) The above R3 to R4 are, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group,
Alkyl groups such as methoxyethyl groups, alkoxyalkyl groups such as methoxypropyl groups, phenyl groups, tolyl groups,
Examples include aromatic groups such as xylyl groups and derivatives thereof.

Xeは、例えば硝酸根(N Ox ) 、硫酸fll(
so、)、炭酸根(CO3−) 、燐酸根(PO,−−
−)等の無機酸根やギ酸根(HCOO−−−’) 、酢
酸根(CH3COO−) 、メチル炭酸根(COi C
H3)メチル硫酸根(S Oa G Hz −) 、ト
リフルオロメタンスルホン酸根(CF 3 S O3〜
)、ペンゼ有機酸根である。但し、無機酸根の中で、塩
素イオン、臭素イオン、沃素イオンのごときハロゲンイ
オンは、陽極で発生するハロゲン分子により、第四アン
モニウムカチオンが化学劣化を受けるので無根酸根から
除外する。アニオンの中で特に好ましいのは、硫酸根、
メチル硫酸根等である。
Xe is, for example, nitrate radical (NOx), sulfuric acid full (
so, ), carbonate radical (CO3-), phosphate radical (PO, --
-), formic acid radicals (HCOO----'), acetic acid radicals (CH3COO-), methyl carbonate radicals (COi C
H3) Methyl sulfate group (S Oa G Hz −), trifluoromethanesulfonic acid group (CF 3 SO3 ~
), which is a penze organic acid root. However, among the inorganic acid roots, halogen ions such as chloride ions, bromide ions, and iodine ions are excluded from the root-free acid roots because quaternary ammonium cations are chemically degraded by halogen molecules generated at the anode. Among the anions, particularly preferred are sulfate groups,
Methyl sulfate roots, etc.

(実施例) 明はこの実施例のみに限定されるものではない。(Example) The invention is not limited to this example.

第1図は、2室電解槽を用いる場合で1は電解槽、2は
陰極板、3は陽極板、4は陽イオン交換膜、5は陽極室
、6は陰極室、7は陽極端子、8は陰極端子、9は陽極
室入口、lOは陽極室出口、11は陽極液溜、12は陽
極液抜きである。
Figure 1 shows a case where a two-chamber electrolytic cell is used; 1 is an electrolytic cell, 2 is a cathode plate, 3 is an anode plate, 4 is a cation exchange membrane, 5 is an anode chamber, 6 is a cathode chamber, 7 is an anode terminal, 8 is a cathode terminal, 9 is an anode chamber inlet, IO is an anode chamber outlet, 11 is an anolyte reservoir, and 12 is an anolyte drain.

陽極室5は、循環通路C1、C2を介して、陽極液溜1
1、循環ポンプPiと直列に連結されており、電解時間
中、陽極液は循環される。陽極液溜11は、原料供給口
13より、第四アンモニウム塩を連続的に供給し、陽極
室に供給された第四アンモニウムカチオンは、電流が流
れることにより陽イン交換膜4を通過して陰極室6に移
動し第四アンモニウム水酸化物が生成する。陽極液抜き
口12から陽極液を連続的に抜き出して物質収支を合わ
せることができる。
The anode chamber 5 is connected to the anode reservoir 1 via circulation passages C1 and C2.
1. It is connected in series with a circulation pump Pi, and the anolyte is circulated during the electrolysis time. The anolyte reservoir 11 continuously supplies quaternary ammonium salt from the raw material supply port 13, and the quaternary ammonium cations supplied to the anode chamber pass through the anode exchange membrane 4 and become the cathode. The mixture moves to chamber 6, where quaternary ammonium hydroxide is produced. The anolyte can be continuously extracted from the anolyte outlet 12 to balance the mass balance.

14は陰イオン交換樹脂塔、14Rは陰イオン交換樹脂
、15は陰イオン交換樹脂塔の入り口、16は陰イオン
交換樹脂塔の出口、17は脱酸液溜である。
14 is an anion exchange resin column, 14R is an anion exchange resin, 15 is an inlet of the anion exchange resin column, 16 is an outlet of the anion exchange resin column, and 17 is a deoxidizing liquid reservoir.

陽極液溜11は、循環通路C3、C4、陰イオン交換樹
脂塔14、脱酸液溜17、循環ポンプP2と直列に連結
されており、アルカリで再生後水洗された陰イオン交換
樹脂14Rで陽極液中の酸を除去して、酸の除去された
陽極液は陽極液溜11へ送入する。これらの操作を連続
的に反復し、陽極室5の陽極液のpHを1以上に維持す
るとよい。
The anode liquid reservoir 11 is connected in series with the circulation passages C3 and C4, the anion exchange resin tower 14, the deoxidizing liquid reservoir 17, and the circulation pump P2, and the anion exchange resin 14R, which has been regenerated with alkali and washed with water, is used as an anode. The acid in the liquid is removed, and the anolyte from which the acid has been removed is sent to the anolyte reservoir 11. It is preferable to repeat these operations continuously to maintain the pH of the anolyte in the anode chamber 5 at 1 or higher.

アルカリで再生後水洗された陰イオン交換樹脂14Rが
陽極液中の酸と接触し続けると、陰イオン交換樹脂14
Rが破過点に達し、陰イオン交換樹脂塔出口16の液中
に、酸が漏出し始める。その時点で、陰イオン交換樹脂
塔14への通液を停止し陰イオン交換樹脂14Rの再生
を行う、陰イオン交換樹脂塔再生液入口18より、再生
用アルカリ水溶液を供給し、陰イオン交換樹脂14Rを
再生し、再生廃液は陰イオン交換樹脂塔再生廃液出口1
9から排出される。再生終了後、陰イオン交換樹脂塔洗
浄水入口20より洗浄水を供給し、陰イオン交換樹脂塔
I4内の再生廃液を押し出し、陰イオン交換樹脂塔洗浄
廃液出口21から廃山される。洗浄終了後、°再び陽極
液溜11、循環通路C3、C4、陰イオン交換樹脂塔1
4、脱酸液溜17、循環ポンプP2の循環回路で陽極液
の酸が再び除去される。陰イオン交換樹脂塔14の吸着
再生操作は、通常のイオン交換操作に準じて行われる。
When the anion exchange resin 14R, which has been regenerated with alkali and washed with water, continues to come into contact with the acid in the anolyte, the anion exchange resin 14
R reaches a breakthrough point and acid begins to leak into the liquid at the anion exchange resin column outlet 16. At that point, the aqueous alkaline solution for regeneration is supplied from the anion exchange resin tower regeneration liquid inlet 18, which stops the flow of liquid to the anion exchange resin tower 14 and regenerates the anion exchange resin 14R. 14R is regenerated, and the regenerated waste liquid is sent to the anion exchange resin tower regenerated waste liquid outlet 1.
It is discharged from 9. After the regeneration is completed, washing water is supplied from the anion exchange resin tower washing water inlet 20 to push out the regenerated waste liquid in the anion exchange resin tower I4, and is disposed of from the anion exchange resin tower washing waste liquid outlet 21. After cleaning, the anolyte reservoir 11, circulation passages C3 and C4, and anion exchange resin column 1 are returned.
4. The acid in the anolyte is removed again in the circulation circuit of the deoxidizing liquid reservoir 17 and circulation pump P2. The adsorption regeneration operation of the anion exchange resin tower 14 is performed in accordance with a normal ion exchange operation.

イオン交換は、バッチ式でもよく、連続式でもよい。Ion exchange may be performed in a batch manner or in a continuous manner.

陰極室6は、循環通路C5、C6、陰極液溜22および
循環ポンプP3と直列に連結されており、電解時間中陰
極液は循環され、一部は生成物抜出口24より連続的に
抜き出される。陰極液の第四水酸化物の濃度を調節する
ために水補給口23から水を補給する場合がある。
The cathode chamber 6 is connected in series with the circulation passages C5 and C6, the catholyte reservoir 22, and the circulation pump P3, and the catholyte is circulated during electrolysis, and a portion is continuously extracted from the product extraction port 24. It will be done. Water may be supplied from the water supply port 23 in order to adjust the concentration of quaternary hydroxide in the catholyte.

第2図は、3室電解槽を用いる場合の例である。FIG. 2 is an example in which a three-chamber electrolytic cell is used.

即ち、1は電解槽、2は陰極板、3は陽極板、4は陽イ
オン交換膜、5は陽極室、6は陰極室、7は陽極端子、
9は陽極室入口、10は陽極液出口で第1図と同じであ
る。
That is, 1 is an electrolytic cell, 2 is a cathode plate, 3 is an anode plate, 4 is a cation exchange membrane, 5 is an anode chamber, 6 is a cathode chamber, 7 is an anode terminal,
9 is the anode chamber inlet, and 10 is the anolyte outlet, which are the same as in FIG.

第1図と異なるところは、25Aは中間室液溜、28A
は中間室入口、29Aは中間室出口である。
The difference from Fig. 1 is that 25A is an intermediate chamber liquid reservoir, and 28A is
29A is the intermediate chamber entrance, and 29A is the intermediate chamber outlet.

中間室25Aは、循環通路C7、C8、中間室液溜27
A、I環ポンプP5と直列に連3%されており、電解時
間中、中間室液は循環される。中間室液溜27Aには、
原料供給口30Aより第四アンモニウム塩を連続的に供
給し、中間室25Aに供給された第四アンモニウムカチ
オンは、電流が法文、中間室25Aに供給された第四ア
ンモニウムカチオンの対アニオンは、電流が流れること
により陰イオン交換膜26Aを通過して陽極室5に移動
じて酸となる。中間室液抜口31Aから中間室液を連続
的に抜き出して物質収支を合わせることができる。11
から21に関して第2図が第1図と異なるところは13
Aだけである。第1図の13は原料供給であるのに対し
、第2図の13Aは陽極液の組成調節のための供給口と
なる。
The intermediate chamber 25A includes circulation passages C7 and C8, and an intermediate chamber liquid reservoir 27.
A, I ring pump P5 is connected 3% in series, and the intermediate chamber liquid is circulated during the electrolysis time. In the intermediate chamber liquid reservoir 27A,
The quaternary ammonium salt is continuously supplied from the raw material supply port 30A. As a result of the flow, it passes through the anion exchange membrane 26A and moves to the anode chamber 5, where it becomes an acid. The intermediate chamber liquid can be continuously extracted from the intermediate chamber liquid outlet 31A to balance the material balance. 11
The difference between Figure 2 and Figure 1 with respect to 21 is 13.
There is only A. 13 in FIG. 1 is a raw material supply port, whereas 13A in FIG. 2 is a supply port for adjusting the composition of the anolyte.

陽極室で生成した酸は、第1図と同じ方法で隔液のpH
を1以上に維持することもある。
The acid generated in the anode chamber is adjusted to the pH of the septum using the same method as shown in Figure 1.
may be maintained at 1 or higher.

第2図の陽極室5の陽極液の電気伝導度を増大せしめ、
電圧を小にするために、陽極室で酸化されない中性塩を
添加するのが好ましい。中性塩のカチオンとしては、第
四アンモニウムカチオン特に目的物である第四アンモニ
ウム水酸化物のカチオンと同一の第四アンモニウムカチ
オンが好ましい。陰イオン交換樹脂による酸の除去は、
アニオンだけの陰イオン交換処理であるので、中性塩の
カチオンは吸着されることなく陽極室に循環される。中
性塩の例としては、前記式(11で示される。
Increasing the electrical conductivity of the anolyte in the anode chamber 5 in FIG.
In order to reduce the voltage, it is preferable to add a neutral salt that is not oxidized in the anode chamber. The cation of the neutral salt is preferably a quaternary ammonium cation, particularly a quaternary ammonium cation that is the same as the cation of the target quaternary ammonium hydroxide. Acid removal using anion exchange resin
Since this is an anion exchange treatment for only anions, the cations of the neutral salt are circulated to the anode chamber without being adsorbed. An example of the neutral salt is represented by the above formula (11).

第2図の陰極液系は、2.6.4.22.23.24、
C5、C6、P3、P4は、第1図の陰極液系と同じで
ある。
The catholyte system in Figure 2 is 2.6.4.22.23.24,
C5, C6, P3, and P4 are the same as the catholyte system in FIG.

第1図、第2図の陽極室の陽極液のpHは1以上に維持
することが好ましいが、これは陽極室で生成する酸の量
と陰イオン交換樹脂塔で除去される酸の量のバランスを
とることによって達成される。陽極室のpHが、1以下
になると陽極室における水素イオン/第四アンモニウム
カチオンの比率が大となって、陰極室に移動する水素イ
オンの量が大となって好ましく・ない0通常、陽極室の
p Hは4以上がより好ましい、また必要により強塩基
性陰イオン交換樹脂を用いて陽極室のpHを7以上にあ
げることもできる。
The pH of the anolyte in the anode chamber in Figures 1 and 2 is preferably maintained at 1 or higher, but this is due to the difference between the amount of acid produced in the anode chamber and the amount of acid removed in the anion exchange resin column. Achieved through balance. When the pH of the anode chamber becomes 1 or less, the ratio of hydrogen ions/quaternary ammonium cations in the anode chamber increases, and the amount of hydrogen ions moving to the cathode chamber increases, which is not desirable or undesirable. The pH of the anode chamber is more preferably 4 or more, and if necessary, the pH of the anode chamber can be raised to 7 or more using a strongly basic anion exchange resin.

陽極室、陰極室および中間室を流れる各室液の流れは、
均一であることが好ましく、各室の液入口、液出口の個
数、大きさ、形状、配置等を変えて各室における流れを
制御するのがよい。
The flow of liquid in each chamber through the anode chamber, cathode chamber, and intermediate chamber is as follows:
It is preferable that the flow be uniform, and it is preferable to control the flow in each chamber by changing the number, size, shape, arrangement, etc. of the liquid inlet and liquid outlet of each chamber.

電解槽の電流密度は、一般に1〜50A/d+w”の範
囲で、槽内温度は室温乃至90℃の範囲に設定される。
The current density of the electrolytic cell is generally in the range of 1 to 50 A/d+w'', and the temperature inside the cell is set in the range of room temperature to 90°C.

2室電解槽及び3室電解槽の中間室の第四アンモニウム
塩の濃度は、60重量%以下好ましくは5〜401i1
%である。陰極室の第四アンモニウム水酸化物の濃度は
通常5〜20%になるように調節される。
The concentration of the quaternary ammonium salt in the intermediate chamber of the two-chamber electrolytic cell and the three-chamber electrolytic cell is preferably 60% by weight or less, preferably 5 to 401i1
%. The concentration of quaternary ammonium hydroxide in the cathode chamber is usually adjusted to 5-20%.

本発明に用いられる電極材料は、陽極としては、例えば
白金、白金コーティングチタン、炭素、高純度黒鉛電極
等が使用される。又、陰極としては、耐アルカリ性の5
US316、白金、ラネーニッケル等が使用される。電
極は板状であるのが好都合であるが、電極面積を増すた
めに網状にしてもよい。
As the electrode material used in the present invention, for example, platinum, platinum-coated titanium, carbon, high-purity graphite electrode, etc. are used as the anode. In addition, as a cathode, alkali-resistant 5
US316, platinum, Raney nickel, etc. are used. The electrodes are conveniently plate-shaped, but may also be mesh-shaped to increase the electrode area.

本発明に用いれらる陰イオン交換樹脂としては、弱塩基
性および強塩基性陰イオン交換樹脂である。
The anion exchange resins used in the present invention include weakly basic and strongly basic anion exchange resins.

この中で弱塩基性陰イオン交換樹脂が特に好ましい。Among these, weakly basic anion exchange resins are particularly preferred.

その理由は、陽極液の酸を吸着した陰イオン交換樹脂の
再生を行う場合、弱塩基性陰イオン交換樹脂の方が、強
塩基性陰イオン交換樹脂に比較して再生が容易であり再
生倍率が小で経済的であるからである。更に有利なこと
は、陰イオン交換樹脂の再生率が100%に達しなくて
も、陽極液のpHを1〜5に維持することができるから
である。
The reason for this is that when regenerating an anion exchange resin that has adsorbed the acid in the anolyte, weakly basic anion exchange resins are easier to regenerate than strongly basic anion exchange resins, and the regeneration ratio is higher. This is because it is small and economical. A further advantage is that the pH of the anolyte can be maintained between 1 and 5 even if the regeneration rate of the anion exchange resin does not reach 100%.

陰イオン交換樹脂の再生に使用されるアルカリとしては
、苛性ソーダ、苛性カリ等が通常使用されるが、揮発性
のアンモニア水が好ましい。
As the alkali used for regenerating the anion exchange resin, caustic soda, caustic potash, etc. are usually used, but volatile aqueous ammonia is preferable.

本発明に用いられる強塩基性陰イオン交換樹脂としては
、原料としてスチレンおよびり、  V、 B、を用い
て重合し粒状樹脂母体を製造しクロルメチル化を行った
後、トリメチルアミンで四級したl型樹脂、ジメチルア
ミノエタノールで四級化した■型樹脂等である。例えば
ダウエックス−1、ダウエックス−2、アンバーライト
IRA−400、アンバーライトIRA−410、ダイ
ヤイオンSA−10A、ダイヤイオン5A−2OA等で
ある。
The strongly basic anion exchange resin used in the present invention is an l-type resin that is polymerized using styrene, phosphor, V, and B as raw materials to produce a granular resin matrix, which is then chloromethylated, and then quaternized with trimethylamine. resin, a type resin quaternized with dimethylaminoethanol, etc. Examples include DOWEX-1, DOWEX-2, Amberlite IRA-400, Amberlite IRA-410, Diaion SA-10A, and Diamondion 5A-2OA.

本発明に用いられる弱塩基性陰イオン交換樹脂としては
、第1級アミン、第2級アミン、3級アミンを有するも
ので、例えばダウエックス44、アンバーライトIRA
−93、アンバーライト■RA−94、ダイヤイオンW
A−30等である。
The weakly basic anion exchange resin used in the present invention includes those having a primary amine, a secondary amine, and a tertiary amine, such as DOWEX 44, Amberlite IRA, etc.
-93, Amberlight ■RA-94, Diamond Ion W
A-30 etc.

本発明に用いられる陽イオン交換膜としては、炭化水素
系の重合型陽イオン交換膜や、パーフロロカーボン系の
陽イオン交換膜が用いら・れる。中でもパーフロロカー
ボン系の陽イオン交換膜は、耐熱性、耐酸化性が優れて
いるので好ましい。本発明に用いられる陽イオン交換膜
としては例えば、旭化成工業■製アシプレックスに−1
01、デュポン社製ナフイヨン#415、徳山曹達■製
ネオセプタCL−257,旭硝子工業■製セレミオンC
MV等がある。本発明に用いられる陰イオン交換膜とし
ては、例えば旭化成工業■製アシプレックスA−1OL
徳山曹達■製AV−47、旭硝子工業■製セレミョンA
MV等がある。
As the cation exchange membrane used in the present invention, a hydrocarbon-based polymerized cation exchange membrane or a perfluorocarbon-based cation exchange membrane is used. Among these, perfluorocarbon-based cation exchange membranes are preferred because they have excellent heat resistance and oxidation resistance. Examples of the cation exchange membrane used in the present invention include Aciplex-1 manufactured by Asahi Kasei Corporation.
01, Naphyllon #415 manufactured by DuPont, Neocepta CL-257 manufactured by Tokuyama Soda ■, Selemion C manufactured by Asahi Glass Industries ■
There are MVs etc. Examples of the anion exchange membrane used in the present invention include Aciplex A-1OL manufactured by Asahi Kasei Corporation.
AV-47 manufactured by Tokuyama Soda ■, Ceremion A manufactured by Asahi Glass Industries ■
There are MVs etc.

本発明に使用される水は、高純で>4=Y−sr★トシ
(・−0 又、電解槽、陰イオン交換樹脂塔、配管、ポンプ等の水
に接触する面は、腐蝕、電蝕等により金属イオンが溶出
しないように充分の対策を施す;t f、1撞梵て冶1
゜ 〔発明の効果〕 以上詳細に述べたごとく、本発明の第四アンモニウム水
酸化物水溶液の電解製造装置は、少なくとも1枚以上の
隔膜を有する電解槽と、該電解槽持して第四アンモニウ
ム水酸化物を製造するものである。その長所としては +1)  陽極室及び−M中間室の液のpHを高く維持
できるので、2室電解槽の場合、陽極液と接する陽イオ
ン交換膜の水素イオンの輸率が低く、従って第四アンモ
ニウムカチオンの輸率が高く、高電流効率で第四アンモ
ニウム水酸化物を製造することが可能である。また、3
室電解槽の場合も、陽極液と接する陰イオンの輸率が低
く、従って中間室の中間室液の水素イオンの濃度が小で
あるために、陰極室と接する陽イオン交換膜の第四アン
モニウムカチオンの輸率が高くなり、結局、高電流効率
で第四アンモニウム水酸化物を製造することが可能であ
る。
The water used in the present invention is highly pure and has a purity of >4=Y-sr★(・-0).Also, surfaces that come into contact with water, such as electrolytic cells, anion exchange resin towers, piping, and pumps, should be free from corrosion and electricity. Take sufficient measures to prevent metal ions from eluting due to erosion, etc.;
[Effects of the Invention] As described in detail above, the apparatus for electrolytically producing an aqueous solution of quaternary ammonium hydroxide of the present invention includes an electrolytic cell having at least one diaphragm, and an electrolytic cell having a quaternary ammonium hydroxide aqueous solution. It produces hydroxide. Its advantages are +1) Since the pH of the liquid in the anode chamber and the -M intermediate chamber can be maintained high, in the case of a two-chamber electrolyzer, the hydrogen ion transfer number of the cation exchange membrane in contact with the anolyte is low, and therefore the fourth The ammonium cation has a high transference number, and it is possible to produce quaternary ammonium hydroxide with high current efficiency. Also, 3
In the case of a chamber electrolyzer, the transport number of anions in contact with the anolyte is low, and therefore the concentration of hydrogen ions in the intermediate chamber is small, so the quaternary ammonium in the cation exchange membrane in contact with the cathode chamber is low. The transference number of the cation becomes high, and as a result, it is possible to produce quaternary ammonium hydroxide with high current efficiency.

(2)  陽極室の酸濃度が低いので、2室電解槽の場
合、陽極室から陽イオン交換膜を通って拡散によって陰
極室へ移動する酸の拡散量、又、3室電解槽の場合、陽
極室から陰イオン交換膜を通って中間室へ、更に中間室
から陽イオン交換膜を通って陰極室へ移動する酸の拡散
量も低減される。従って、陰極室で製造される第四アン
モニウム水酸化物水溶液中の酸根濃度が小となり、第四
アンモニウム水酸化物の高純度品を製造することが可能
である。
(2) Since the acid concentration in the anode chamber is low, in the case of a two-chamber electrolyzer, the amount of acid that moves from the anode chamber through the cation exchange membrane to the cathode chamber by diffusion, and in the case of a three-chamber electrolyzer, The amount of diffusion of acid that moves from the anode chamber through the anion exchange membrane to the intermediate chamber and further from the intermediate chamber through the cation exchange membrane to the cathode chamber is also reduced. Therefore, the concentration of acid radicals in the aqueous solution of quaternary ammonium hydroxide produced in the cathode chamber is reduced, making it possible to produce a highly purified product of quaternary ammonium hydroxide.

(3)  陽極室のpHを高く維持することができるの
で、陽極室の酸濃度が低く、陽極材料のTIA6!kが
更に軽減される。
(3) Since the pH of the anode chamber can be maintained high, the acid concentration in the anode chamber is low, and the anode material TIA6! k is further reduced.

以上述べたごとく、本発明の電解装置を用いることによ
り、有害な陽イオン及び陰イオンの不純が極めて小であ
り、半導体製造工程におけるウェハーの洗浄やレジスト
膜の現像等に使用できる高純度の第四アンモニウム水酸
化物水溶液を高電流効率で生産性よく、かつ安価に製造
することが可能である。
As described above, by using the electrolytic device of the present invention, the impurities of harmful cations and anions are extremely small, and it is possible to produce a high-purity electrolytic device that can be used for cleaning wafers, developing resist films, etc. in the semiconductor manufacturing process. It is possible to produce a tetraammonium hydroxide aqueous solution with high current efficiency, high productivity, and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の装置の実施例を示すフロー
シートである。 尚、図面中、 1・・・電解槽、4・・・陽イオン交換膜、5・・・陽
極室、6・・・陰極室、14・・・陰イオン交換樹脂塔
、14R・・・陰イオン交換樹脂、25A・・・中間室
、26A・・・陰イオン交換膜、である。
1 and 2 are flow sheets showing an embodiment of the apparatus of the present invention. In the drawings, 1... Electrolytic cell, 4... Cation exchange membrane, 5... Anode chamber, 6... Cathode chamber, 14... Anion exchange resin column, 14R... Anion Ion exchange resin, 25A...intermediate chamber, 26A...anion exchange membrane.

Claims (1)

【特許請求の範囲】[Claims] (1)陽極と陰極との間に少なくとも1枚の隔膜を有す
る電解槽と、該電解槽の外部に設置された少なくとも1
つの陰イオン交換樹脂塔とよりなり、該陰イオン交換樹
脂塔は上記電解槽の陽極液又は陽極液及び中間室液をそ
れぞれ循環させる循環通路に連結されていることを特徴
とする第四アンモニウム水酸化物の電解製造装置。
(1) An electrolytic cell having at least one diaphragm between an anode and a cathode, and at least one diaphragm installed outside the electrolytic cell.
quaternary ammonium water, characterized in that the anion exchange resin tower is connected to a circulation passage for circulating the anolyte of the electrolytic cell or the anolyte and the intermediate chamber liquid, respectively. Oxide electrolytic production equipment.
JP1291237A 1989-11-10 1989-11-10 Electrolytic producing apparatus for quaternary ammonium hydroxide Pending JPH03153891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1291237A JPH03153891A (en) 1989-11-10 1989-11-10 Electrolytic producing apparatus for quaternary ammonium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291237A JPH03153891A (en) 1989-11-10 1989-11-10 Electrolytic producing apparatus for quaternary ammonium hydroxide

Publications (1)

Publication Number Publication Date
JPH03153891A true JPH03153891A (en) 1991-07-01

Family

ID=17766254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291237A Pending JPH03153891A (en) 1989-11-10 1989-11-10 Electrolytic producing apparatus for quaternary ammonium hydroxide

Country Status (1)

Country Link
JP (1) JPH03153891A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0674026A2 (en) * 1994-03-25 1995-09-27 Nec Corporation Electrolytic processing apparatus
US5935529A (en) * 1995-09-08 1999-08-10 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
CN110158114A (en) * 2019-05-31 2019-08-23 中触媒新材料股份有限公司 A kind of three films, the four Room electrolysis system preparing tetra-alkyl ammonium hydroxide and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0674026A2 (en) * 1994-03-25 1995-09-27 Nec Corporation Electrolytic processing apparatus
EP0674026A3 (en) * 1994-03-25 1997-07-30 Nec Corp Electrolytic processing apparatus.
US5935529A (en) * 1995-09-08 1999-08-10 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
CN110158114A (en) * 2019-05-31 2019-08-23 中触媒新材料股份有限公司 A kind of three films, the four Room electrolysis system preparing tetra-alkyl ammonium hydroxide and method

Similar Documents

Publication Publication Date Title
JPS61170588A (en) Production of quaternary ammonium hydroxide
JP3383334B2 (en) How to recycle sulfuric acid
CN110644014B (en) Preparation method of tetraethyl ammonium hydroxide
KR20010082325A (en) Methods for producing or purifying onium hydroxides by means of electrodialysis
TWI230631B (en) Purification of onium hydroxides by electrodialysis
CN106958021A (en) A kind of regeneration treating method of highly acidity Ni from waste etching FeCl 3 solution containing
JPH033747B2 (en)
JPH081168A (en) Treatment method for drainage containing monovalent neutral salt
US3969207A (en) Method for the cyclic electrochemical processing of sulfuric acid-containing pickle waste liquors
JPH03153891A (en) Electrolytic producing apparatus for quaternary ammonium hydroxide
EP0201925A1 (en) Process for producing a free amino acid from an alkali metal salt thereof
JP2624316B2 (en) Method for producing quaternary ammonium hydroxide
CN209612655U (en) A kind of bipolar membrane device producing hypophosphorous acid
JP3324943B2 (en) Equipment for producing water for cleaning glass substrates or silicon substrates
JP4880865B2 (en) Process for simultaneous electrochemical production of sodium dithionite and sodium peroxodisulfate
JP4494612B2 (en) Method for producing hydroxyl group-containing salt
CN1297691C (en) Method for preparing nickel hypophosphite by electrolytic method
JPH0320489A (en) Production of tetraalkylammonium hydroxide
JP2637112B2 (en) Method for producing quaternary ammonium hydroxide
JP4449068B2 (en) Electrodialyzer for recycling developer waste
CN115159636A (en) Developing solution waste liquid recycling and regenerating device and method
JPH0788593B2 (en) Method for producing aqueous solution of quaternary ammonium hydroxide
JP2001262206A (en) Method for producing silver oxide and method for producing silver powder
JPS63134684A (en) Production of quaternary ammonium hydroxide
CA1063548A (en) Electrolytic decomposition of ferrous sulphate in pickle waste liquor