JPH03153841A - Low alloy high speed tool steel having high hardness - Google Patents

Low alloy high speed tool steel having high hardness

Info

Publication number
JPH03153841A
JPH03153841A JP29289089A JP29289089A JPH03153841A JP H03153841 A JPH03153841 A JP H03153841A JP 29289089 A JP29289089 A JP 29289089A JP 29289089 A JP29289089 A JP 29289089A JP H03153841 A JPH03153841 A JP H03153841A
Authority
JP
Japan
Prior art keywords
hardness
tool steel
speed tool
low alloy
high speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29289089A
Other languages
Japanese (ja)
Inventor
Norimasa Uchida
内田 憲正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP29289089A priority Critical patent/JPH03153841A/en
Publication of JPH03153841A publication Critical patent/JPH03153841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture the low alloy high speed tool steel having high hardness and excellent in hardenability and grindability by incorporating specified ratios of C, Si, Mn, Cr, W, Mo and V into Fe. CONSTITUTION:A low alloy high speed tool steel contg., by weight, 0.95 to 1.20% C, <=1.5% Si, <=1.0% Mn, 4.6 to 7.5% Cr, <=7.0% W, <=6% Mo (where the total content of W+2Mo is regulated to 9 to 13%) and 0.5 to 1.0% V, furthermore contg., at need, <=0.25% Nb and the balance Fe with inevitable impurities is prepd. In this way, by validly operating the synergetic effect of C and Cr, the low alloy high speed tool steel having about >=65 HRC high hardness and excellent in hardenability and grindability can be obtd. and is useful for cold rolling rolls, tools for cold working or the like.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、主として冷間圧延ロール、ならびに冷間加工
用工具などに使用される高硬度低合金高速度工具鋼に関
するものである。 〔従来の技術〕 低合金高速度工具鋼の一般的なものとしては、特公昭5
0−10808号公報に開示されている0、65%C1
0,3%Si、0.4%Cr、4.2%W、4%Mo、
1.5%■からなる高速度工具鋼、特公昭55〜491
48号公報に開示された0、65%C,1,4%Si、
4%Cr、 2.8%Mo、 1.8%■からなる高速
度工具鋼などが知られているが、これらの公知例では、
靭性は優れているものの熱処理後の硬さがHRC60〜
62程度しか得られない。 さらに高硬度が得られる低合金高速度工具鋼として、0
.95%G、4%Cr%1.7%W、5%Mo、 1.
2%■の高速度工具鋼や、特公昭62−8503号公報
に開示されているような上記成分を基本としてC/V比
を0.70−0.94まで高め、さらにCOを1.0〜
6.0%添加することにより、極めて硬いマルテンサイ
ト地鉄と高温での硬さの維持能力を高めた高速度工具鋼
も知られている。 また、FIRC66前後の高硬度が得られる低合金高速
度工具鋼として、下記の主要合金元素を含有するものが
知られている。この鋼は0.75%C10,3%Si、
4%Cr、1%W、5%MO10,9%V、8%Goと
じており、この鋼の特徴は、ΔCを約±0とし、かつG
o含有量を8%まで高めることにより、マトリックスを
高硬度化したことにある。 さらに特公平1−5100号や特開平1−201442
号等に残留炭化物量を減じ、靭性向上を図った材料が示
されている。 〔発明が解決しようとする課題〕 冷間圧延用ロールおよび冷間加工工具の分野において、
高度の耐摩耗性を必要とする場合にI(RC65以上の
熱処理硬さが得られる工具材を必要とする。しかも対象
とする工具は一般に大径であるため、焼入性が良く、ま
た変形を防止する意味からできる限り低温度加熱で硬度
が得られる材質でなければならない。さらに、被研削性
は5KDIIなみの優れた特性を必要とする。 そして、なによりも安価で経済性の高い材料であること
が、従来の5KDIIクラスの冷間工具鋼に代わって使
用する場合に重要である。 しかし、特公昭50−10808号公報や特公昭55〜
49148号公報等に開示された一般的な低合金高速度
工具鋼では、硬さは最高1(RC63前後しか得られず
、HRC65以上の高硬度を得るという目的を満足でき
ない。 特公昭62−8503号公報等に知られるような4%C
r−1,7%W−5%Moを基本成分にC/V比を0.
7−0.94まで高めた鋼は、高硬度が得られるものの
、靭性が著しく低下し、欠けや割れ等が発生しやすい。 また、被研削性も十分でなく、GOを含有するため経済
性上も不十分である。 主要合金元素が、0.75%C14%Cr、 1%W、
5%Mo、 0.9%V、8%COからなる鋼は、HR
C66前後の硬度が得られるが、多量のCoを含有する
ため、経済性が低い。また、特公平1−51(10号や
特開平1−201442号は材料の硬さレベルがHRC
131〜63前後であり、より高硬度および耐摩耗性が
要求される分野に対しては十分でない。 本発明の目的は上記の問題点に鑑み、成分バランスおよ
び炭化物量を適正にすることにより、熱処理後f(RC
65以上の高硬度が得られ、かつ焼入性、被研削性に優
れ、また高い経済性を有する高硬度低合金高速度工具鋼
を提供することである。 〔課題を解決するための手段〕 本発明は重量%で、C; 0.95〜1.20%、Si
;1.5%以下、Mn;1.0%以下、Cr ; 4.
6〜7.5%、W;7.0%以下、MO;6%以下(た
だしW+2MO;9〜13%)、V、0.5〜1.0%
、さらには必要に応じてNb;0,26%以下、残部F
eおよび不可避的不純物よりなる高硬度低合金高速度工
具鋼である。 本発明において、経済性の高い、すなわち高価な合金元
素であるW、Mo、Vの含有量を必要最低限に抑え、ま
た、GoやNLは基本的に添加せずにHRC65以上の
高硬度を得るために、CとCrの相乗効果を有効に作用
させた。CとOrの相乗効果は焼入加熱温度を下げる作
用および焼入性を高める作用もある。5KDIIに匹敵
する被研削性を保有させしめるためには、■含有量を極
力抑えることによって達成した。しかし、単純に■含有
量を低減させると結晶粒が異常に粗大化して靭性が劣化
する。この現象は本発明において、CとCrの相乗作用
で焼入加熱温度を下げることにより回避できた。 〔作用〕 以下、本発明の数値限定理由について詳細に述べる。 Cは0.95〜1.20%である。 Cは本発明で最も重要な元素の1つである。Cは、Cr
、W、Mo、V量の炭化物形成元素と優先的に結合し、
炭化物を形成し残りが基地中に固溶して硬いマルテンサ
イトを生ずる。本発明ではCの含有量を従来の低合金高
速度工具鋼と較べて高目にするとともに、後述するCr
含有量をも高目とすることにより、多量のM、、C,型
炭化物を形成させることに特徴がある。これにより、比
較的低温のオーステナイト化によってもマトリックス中
に十分な量のCおよび合金元素を固溶させることができ
、目的とするHRC65以上の高硬度が達成できる。0
.95%未構ではこの効果が少なく、逆に1.2%以上
になると残留オーステナイトが多量に残留する結果にな
り、逆に高硬度が得難くなる。よってC含有量は、0.
95〜1.20%に限定した。 Siは脱酸剤として鋼中に含まれるが、さらにマトリッ
クス中に固溶し、マトリックスの硬度を高める効果があ
る。ただし、1.5%を越えて過度に添加すると鋼の中
心偏析等を増長し、靭性が低下するので上限を1.5%
とした。 Mn+J5i同様に脱酸剤として添加されるが、1.0
%を越えて添加すると、靭性が劣化するので1.0%以
下とした。 Crは、Cと結合してM、、C1型の炭化物を形成する
。本発明の低合金高速度鋼の長所は、高C−高Crとす
ることにより、経済性が高く、かつ高硬度を得ることが
できる点にある。また、焼入性を高める効果もあり、4
.6%未満ではその効果が不十分で、7.5%を越える
と、偏析が著しくなり靭性が低下するので、Crは4.
6〜7.5%とした。 Wは7.0%以下、MOは6.0%以下とし、W+2M
。 を9〜13%とする。 WとMOはCと結合し、硬質の炭化物を形成して耐摩耗
性を付与する。W+2Mo量は9%未満では十分な熱処
理硬さ耐摩耗性が得られず、13%を越えると原料のコ
スト面、靭性面で問題点が生ずるので9〜13%とした
。 VはCと結合し極めて硬い炭化物を形成し、耐摩耗性を
向上させるとともに結晶粒微細化に効果があり、これら
の効果を発揮させるために少なくとも0.5%以上が必
要である。しかし、多すぎると逆に被研削性を劣化させ
る。 本発明では5KDIIに相当する良好な被研削性を付与
させるために、■含有量は0.5〜1.0%に限定した
。 Nbは少量でVと同様に結晶粒微細化に効果があり、靭
性が改善されるので0.26%以下含有することが望ま
しい。 〔実施例〕 次に一実施例に基づいて本発明をさらに詳細に説明する
。 第1表 第1表に示す組成の高速度工具鋼を、高周波溶解炉にて
10kg溶製し18mmの角材に熱間加工を行なった後
、焼なましをし、さらに鍛伸方向に平行に5Mφx75
mmQの抗折試験片を製作した。 なお、表中のNo、6は従来鋼である5KDIIである
。 第1図は、焼入加熱温度とオーステナイト結晶粒径の関
係を示す図である。なお、結晶粒径はインターセプト法
で求めた6本発明鋼No、l、No、2゜No、3は1
140℃以下の焼入温度で十分に微細な結晶粒を得る。 1160℃焼入では、結晶粒度番号が9〜10であり、
この条件でも実用上問題のない結晶粒が得られた。本発
明@No、4およびNo、5は、Nbを添加したもので
、Nbを添加しないNo、1ないしNo、3に較べて結
晶粒が著しく微細であり、Nb添加の効果が認められた
。 第2図は焼入−焼もどし硬さを示す図である。 本発明#lNo、1. No、2. No、3. No
、4. No、5とも1120℃以上の焼入温度で最高
HRC65以上の焼もどし硬度を得、発明の目的を満足
する。ただしNo。 4は、焼入硬さおよび500〜560℃の焼もどし硬さ
が、他に比較して著しく低い特徴がある。これは多量の
残留オーステナイトが存在したためで、炭素含有量は、
No、4組成が上限に近いことを示している。なお、従
来鋼の5KDIIであるNo、6はHRC65以上の硬
さを満足することはできない。 第3図は焼入性を示す図である。図の横軸は焼入温度の
半分の温度(この場合570℃)に冷却されるまでの時
間(H,T、T、)を、縦軸には焼入焼もどし硬さ(1
140℃−560℃)をとった。本発明が適用される大
型工具の場合、半冷時間は10m1n以内であることが
経験上判明している。例えば70φX 1200 Qの
ロールの場合半冷時間は4〜5m1nである。この図よ
り、本発明材は5〜lominの比較的冷却の遅い条件
でもHRC65以上の目標を達成する。 なお、従来鋼である5KDIIの硬度変化を図示したが
、本発明鋼の硬度はいずれの冷却条件でも5KDIIよ
りもはるかに高い。 〔発明の効果〕 本発明鋼は、従来の冷間工具鋼より高硬度で、かつ優れ
た焼入性と被研削性を有し工業的に効果の高いものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-hardness, low-alloy, high-speed tool steel used primarily for cold rolling rolls, cold working tools, and the like. [Prior art] As a general type of low-alloy high-speed tool steel,
0.65% C1 disclosed in Publication No. 0-10808
0.3%Si, 0.4%Cr, 4.2%W, 4%Mo,
High-speed tool steel consisting of 1.5%
0.65% C, 1.4% Si disclosed in Publication No. 48,
High-speed tool steels made of 4% Cr, 2.8% Mo, and 1.8% ■ are known, but in these known examples,
Although the toughness is excellent, the hardness after heat treatment is HRC60~
I can only get about 62. Furthermore, as a low alloy high speed tool steel that can obtain high hardness,
.. 95%G, 4%Cr%1.7%W, 5%Mo, 1.
Based on high-speed tool steel of 2%■ and the above components as disclosed in Japanese Patent Publication No. 8503/1983, the C/V ratio is increased to 0.70-0.94, and the CO is further increased to 1.0. ~
High-speed tool steel is also known, which has an extremely hard martensitic base steel and improved ability to maintain hardness at high temperatures by adding 6.0% of C. Moreover, as a low alloy high speed tool steel that can obtain a high hardness of around FIRC66, one containing the following main alloying elements is known. This steel has 0.75%C10,3%Si,
4%Cr, 1%W, 5%MO10.9%V, 8%Go.The characteristics of this steel are that ΔC is about ±0 and G
The reason is that the hardness of the matrix is increased by increasing the O content to 8%. In addition, Japanese Patent Publication No. 1-5100 and Japanese Patent Application Publication No. 1-201442
Materials with reduced residual carbide content and improved toughness are shown in No. [Problem to be solved by the invention] In the field of cold rolling rolls and cold working tools,
When a high degree of wear resistance is required, a tool material that can obtain a heat treatment hardness of I (RC65 or higher) is required.In addition, the target tool is generally large in diameter, so it has good hardenability and is resistant to deformation. In order to prevent this, the material must be able to obtain hardness by heating at as low a temperature as possible.Furthermore, the material must have excellent grindability characteristics comparable to 5KDII.And above all, it must be a material that is inexpensive and highly economical. This is important when using it in place of the conventional 5KDII class cold work tool steel.
The general low-alloy high-speed tool steel disclosed in Publication No. 49148 and the like can only achieve a maximum hardness of 1 (around RC63), and cannot satisfy the purpose of obtaining a high hardness of HRC65 or higher. 4%C as known from the publication No.
r-1.7%W-5%Mo as the basic component and C/V ratio of 0.
Although steel with a hardness increased to 7-0.94 has high hardness, its toughness is significantly reduced and chipping and cracking are likely to occur. Furthermore, the grindability is not sufficient, and since it contains GO, it is also unsatisfactory from an economic standpoint. The main alloying elements are 0.75%C14%Cr, 1%W,
Steel consisting of 5% Mo, 0.9% V, 8% CO has HR
Although a hardness of around C66 can be obtained, since it contains a large amount of Co, it is not economical. In addition, in Japanese Patent Publication No. 1-51 (No. 10) and Japanese Patent Application Publication No. 1-201442, the hardness level of the material is HRC.
It is around 131 to 63, which is not sufficient for fields where higher hardness and wear resistance are required. In view of the above-mentioned problems, the object of the present invention is to optimize the component balance and the amount of carbide, thereby improving f(RC) after heat treatment.
The object of the present invention is to provide a high-hardness, low-alloy, high-speed tool steel that has a high hardness of 65 or higher, has excellent hardenability and grindability, and is highly economical. [Means for Solving the Problems] The present invention contains, in weight%, C; 0.95 to 1.20%, Si
; 1.5% or less, Mn; 1.0% or less, Cr; 4.
6-7.5%, W: 7.0% or less, MO: 6% or less (however, W+2MO; 9-13%), V, 0.5-1.0%
, and further Nb as required; 0.26% or less, balance F
It is a high-hardness, low-alloy, high-speed tool steel consisting of E and unavoidable impurities. In the present invention, the contents of W, Mo, and V, which are highly economical or expensive alloying elements, are kept to the necessary minimum, and Go and NL are basically not added to achieve high hardness of HRC65 or higher. In order to obtain this, the synergistic effect of C and Cr was effectively used. The synergistic effect of C and Or also has the effect of lowering the quenching heating temperature and increasing the hardenability. In order to maintain grindability comparable to 5KDII, this was achieved by suppressing the content of ■ as much as possible. However, if the content of ■ is simply reduced, the crystal grains become abnormally coarse and the toughness deteriorates. In the present invention, this phenomenon could be avoided by lowering the quenching heating temperature due to the synergistic effect of C and Cr. [Operation] The reason for the numerical limitation of the present invention will be described in detail below. C is 0.95-1.20%. C is one of the most important elements in the present invention. C is Cr
, W, Mo, and V in amounts of carbide-forming elements,
A carbide is formed, and the remainder is dissolved in the matrix to produce hard martensite. In the present invention, the C content is made higher than that of conventional low alloy high speed tool steel, and the Cr content described later is
By increasing the content, a large amount of M, C, type carbide is formed. As a result, a sufficient amount of C and alloying elements can be solid-dissolved in the matrix even by austenitization at a relatively low temperature, and the desired high hardness of HRC 65 or higher can be achieved. 0
.. If it is 95% unstructured, this effect is small, and if it exceeds 1.2%, a large amount of retained austenite will remain, making it difficult to obtain high hardness. Therefore, the C content is 0.
It was limited to 95-1.20%. Si is contained in steel as a deoxidizing agent, but it also forms a solid solution in the matrix and has the effect of increasing the hardness of the matrix. However, if added in excess of 1.5%, it will increase central segregation of the steel and reduce toughness, so the upper limit should be set at 1.5%.
And so. Like Mn+J5i, it is added as a deoxidizing agent, but 1.0
If added in excess of 1.0%, the toughness deteriorates, so the content was set at 1.0% or less. Cr combines with C to form M, , C1 type carbide. The advantage of the low-alloy high-speed steel of the present invention is that it is highly economical and can have high hardness due to its high C-high Cr content. It also has the effect of increasing hardenability, and
.. If the Cr content is less than 6%, the effect is insufficient, and if it exceeds 7.5%, segregation becomes significant and toughness decreases.
It was set at 6 to 7.5%. W is 7.0% or less, MO is 6.0% or less, and W+2M
. 9 to 13%. W and MO combine with C to form a hard carbide and provide wear resistance. If the amount of W+2Mo is less than 9%, sufficient heat treatment hardness and wear resistance cannot be obtained, and if it exceeds 13%, problems will arise in terms of raw material cost and toughness, so it is set to 9 to 13%. V combines with C to form extremely hard carbides, which improves wear resistance and is effective in refining crystal grains, and in order to exhibit these effects, at least 0.5% or more is required. However, if the amount is too high, the grindability will deteriorate. In the present invention, in order to provide good grindability equivalent to 5KDII, the content (2) is limited to 0.5 to 1.0%. A small amount of Nb has the same effect on grain refinement as V and improves toughness, so it is desirable to contain it in an amount of 0.26% or less. [Example] Next, the present invention will be described in more detail based on an example. Table 1 10 kg of high-speed tool steel with the composition shown in Table 1 was melted in a high-frequency melting furnace, hot-worked into a 18 mm square material, annealed, and further parallel to the forging direction. 5Mφx75
A bending test piece of mmQ was manufactured. Note that No. 6 in the table is 5KDII, which is a conventional steel. FIG. 1 is a diagram showing the relationship between quenching heating temperature and austenite crystal grain size. In addition, the crystal grain size was determined by the intercept method for 6 invention steels No., 1, No. 2°, No. 3 and 1.
Sufficiently fine crystal grains can be obtained at a quenching temperature of 140°C or lower. When quenched at 1160°C, the grain size number is 9 to 10,
Even under these conditions, crystal grains with no practical problems were obtained. In the present invention @ No. 4 and No. 5, Nb was added, and compared to No. 1 to No. 3 to which Nb was not added, the crystal grains were significantly finer, and the effect of Nb addition was recognized. FIG. 2 is a diagram showing quenching-tempering hardness. Present invention #1 No. 1. No, 2. No, 3. No
,4. Both No. 5 and No. 5 obtained a maximum tempering hardness of HRC 65 or higher at a quenching temperature of 1120° C. or higher, thus satisfying the purpose of the invention. However, no. No. 4 has a characteristic that the quenching hardness and the tempering hardness at 500 to 560° C. are significantly lower than the others. This is due to the presence of a large amount of retained austenite, and the carbon content is
No. 4 composition is close to the upper limit. Note that the conventional steel No. 6, which is 5KDII, cannot satisfy the hardness of HRC65 or higher. FIG. 3 is a diagram showing hardenability. The horizontal axis of the figure represents the time (H, T, T,) required for cooling to half the quenching temperature (570°C in this case), and the vertical axis represents the quenching and tempering hardness (1
140°C-560°C). In the case of large tools to which the present invention is applied, it has been found from experience that the half-cooling time is within 10 m1n. For example, in the case of a roll of 70φ×1200Q, the half-cooling time is 4 to 5 m1n. From this figure, the material of the present invention achieves the target of HRC 65 or higher even under relatively slow cooling conditions of 5 to lomin. Although the hardness change of 5KDII, which is a conventional steel, is illustrated, the hardness of the steel of the present invention is much higher than that of 5KDII under any cooling conditions. [Effects of the Invention] The steel of the present invention has higher hardness than conventional cold work tool steels, has excellent hardenability and grindability, and is highly effective industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼入加熱温度とオーステナイト結晶粒径の関係
を示す図、第2図は焼入−焼もどし硬さを示す図、第3
図は焼入性を示す図である。 図面の製置 第2図 −a−−1120 + 1140 h1160 −<トー−1180 Thmperature(−c ) Temperature (” c )Tempera
ture (”C) 図面の1)書 第2図 +D、l’ 第 3 図 5     10     15 H,T、T、  (min) 0 手 続 補 正 士 臼 (方式) 1、事件の表示 平成 1年特許願第292890号 2、発明の名称 高硬度低合金高速度工具鋼 3、補正をする者 事件との関係 特 許
Figure 1 is a diagram showing the relationship between quenching heating temperature and austenite grain size, Figure 2 is a diagram showing quenching-tempering hardness, and Figure 3 is a diagram showing the relationship between quenching heating temperature and austenite grain size.
The figure shows hardenability. Preparation of drawings Figure 2-a--1120 + 1140 h1160 -<To-1180 Thmperature (-c) Temperature (''c) Tempera
ture ("C) Drawing 1) Figure 2 + D, l' Figure 3 5 10 15 H, T, T, (min) 0 Procedure amendment procedure (method) 1. Indication of incident 1999 patent application No. 292890 2, Title of invention: High hardness, low alloy, high speed tool steel 3, Patent related to the amended person case

Claims (1)

【特許請求の範囲】 1 重量%で、C;0.95〜1.20%、Si;1.
5%以下、Mn;1.0%以下、Cr;4.6〜7.5
%、W;7.0%以下、Mo;6%以下(ただしW+2
Mo;9〜13%)、V;0.5〜1.0%、残部Fe
および不可避的不純物よりなる高硬度低合金高速度工具
鋼。 2 重量%で、C;0.95〜1.20%、Si;1.
5%以下、Mn;1.0%以下、Cr;4.6〜7.5
%、W;7.0%以下、Mo;6%以下(ただしW+2
Mo;9〜13%)、V;0.5〜1.0%、Nb;0
.26%以下、残部Feおよび不可避的不純物よりなる
高硬度低合金高速度工具鋼。
[Claims] 1% by weight, C; 0.95-1.20%, Si; 1.
5% or less, Mn; 1.0% or less, Cr; 4.6 to 7.5
%, W; 7.0% or less, Mo; 6% or less (however, W+2
Mo; 9-13%), V; 0.5-1.0%, balance Fe
and high-hardness, low-alloy, high-speed tool steel consisting of unavoidable impurities. 2% by weight, C; 0.95-1.20%, Si; 1.
5% or less, Mn; 1.0% or less, Cr; 4.6 to 7.5
%, W; 7.0% or less, Mo; 6% or less (however, W+2
Mo; 9-13%), V; 0.5-1.0%, Nb; 0
.. A high hardness, low alloy, high speed tool steel consisting of 26% or less, the balance being Fe and unavoidable impurities.
JP29289089A 1989-11-10 1989-11-10 Low alloy high speed tool steel having high hardness Pending JPH03153841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29289089A JPH03153841A (en) 1989-11-10 1989-11-10 Low alloy high speed tool steel having high hardness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29289089A JPH03153841A (en) 1989-11-10 1989-11-10 Low alloy high speed tool steel having high hardness

Publications (1)

Publication Number Publication Date
JPH03153841A true JPH03153841A (en) 1991-07-01

Family

ID=17787708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29289089A Pending JPH03153841A (en) 1989-11-10 1989-11-10 Low alloy high speed tool steel having high hardness

Country Status (1)

Country Link
JP (1) JPH03153841A (en)

Similar Documents

Publication Publication Date Title
AU2008241823B2 (en) Hot-worked steel material having excellent machinability and impact value
WO2010116670A1 (en) Carburized steel part
US6162389A (en) High-strength and high-toughness non heat-treated steel having excellent machinability
WO2010074017A1 (en) Steel tempering method
JPH0152462B2 (en)
US6053991A (en) Production of cold working tool steel
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
US5223049A (en) Steel for induction hardening
JPS60230960A (en) Steel for cold forging
US6123785A (en) Product and process for producing constant velocity joint having improved cold workability and strength
JPS59129724A (en) Production of thick walled ultra high tension steel
JP2768062B2 (en) Manufacturing method of high strength tough steel
JPH03100142A (en) Case hardening steel for bearing having excellent crushing property and its manufacture
JPH04124217A (en) Production of high strength gear steel excellent in softening property
JPH03153841A (en) Low alloy high speed tool steel having high hardness
JPH01159349A (en) Low-alloy high-speed tool steel and its production
JPH05339676A (en) Steel for machine structure excellent in cold workability and its manufacture
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPS59159971A (en) Steel for cold forging with superior hardenability
JPS61166919A (en) Manufacture of unrefined warm-forged article having high toughness
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
JPH01198450A (en) Hot forged non-heat treated steel having high strength and high toughness
JPS61174321A (en) Spheroidizing annealing method of machine structural steel
KR102359299B1 (en) Ultra-high strength, high co-ni secondary hardening martensitic steel and its manufacturing method
JPH0533283B2 (en)