JPH0315379B2 - - Google Patents

Info

Publication number
JPH0315379B2
JPH0315379B2 JP57070633A JP7063382A JPH0315379B2 JP H0315379 B2 JPH0315379 B2 JP H0315379B2 JP 57070633 A JP57070633 A JP 57070633A JP 7063382 A JP7063382 A JP 7063382A JP H0315379 B2 JPH0315379 B2 JP H0315379B2
Authority
JP
Japan
Prior art keywords
light
elements
switch
current source
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57070633A
Other languages
Japanese (ja)
Other versions
JPS58187024A (en
Inventor
Shintaro Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP7063382A priority Critical patent/JPS58187024A/en
Publication of JPS58187024A publication Critical patent/JPS58187024A/en
Publication of JPH0315379B2 publication Critical patent/JPH0315379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/795Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar transistors
    • H03K17/7955Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar transistors using phototransistors

Description

【発明の詳細な説明】[Detailed description of the invention]

(1) 発明の分野 この発明は、複数の入力信号を切換選択する入
力切換回路に関するものである。 (2) 従来技術 多数の入力信号を切換選択する入力切換回路に
おいて、入力切換器に用いられるスイツチ素子と
して種々のものが考えられる。 近年、高速化が要望されているが、動作頻度が
多くなり、長寿命化を図る関係上、高耐圧の半導
体スイツチを使用して無接点化が図られている。
しかしながら、この種のスイツチ駆動するには、
チヤンネル毎に複数個のトランスを用意して絶縁
駆動しなければならず、回路が複雑、高価で、ス
ペースも非常に多くとるものであつた。 (3) 発明の目的 この発明の目的は、以上の点に鑑み、無接点で
省スペースを図つた入力切換回路を提供すること
である。 (4) 発明の実施例 第1図は、この発明に係る抵抗−電圧変換回路
の一実施例を示す構成説明図である。 図において、Rtは測温抵抗体で、その一端に
第1の導線l1、他端に第2、第3の導線l2,l3
接続し、端子t1,t2,t3に接続されている。第1
の定電流源I1は、第1のフオトカプラPC1、第1
の導線l1、測温抵抗体Rt、第2の導線l2と定電流
iを流し、第2の定電流源I2は、第2のフオトカ
プラPC2、補償抵抗Ro、第3の導線l3、第2の導
線l2と定電流iを流し、第1の導線l1と補償抵抗
Roとの間から増幅器Aを介して出力e0が取り出
せるようになつており、フオトカプラPC1,PC2
の発光素子は電流径路にあり、受光素子は直列接
続されて断線検出(バーンアウト)出力ebが取り
出せるようになつている。 導線l1,l2,l3の抵抗をrとすれば、抵抗−電
圧変換出力e0は次式となり、導線の影響は除去さ
れる。 e0=i(Rt+2r)−i(Ro+2r) =i(Rt−Ro) ……(1) なお、補償抵抗Roは、0℃からの出力等を得
るためのもので省略することもできる。 また、断線検出状態は次表の通りである。
(1) Field of the Invention The present invention relates to an input switching circuit that switches and selects a plurality of input signals. (2) Prior Art In an input switching circuit that switches and selects a large number of input signals, various types of switch elements can be considered as the switch elements used in the input switch. In recent years, there has been a demand for higher speeds, but with the increased frequency of operation and longer life, high-voltage semiconductor switches are being used to make them contactless.
However, to drive this kind of switch,
A plurality of transformers had to be prepared and driven in isolation for each channel, making the circuit complicated, expensive, and taking up a large amount of space. (3) Purpose of the Invention In view of the above points, the purpose of the present invention is to provide an input switching circuit that is contactless and saves space. (4) Embodiment of the Invention FIG. 1 is a configuration explanatory diagram showing an embodiment of a resistance-voltage conversion circuit according to the present invention. In the figure, Rt is a resistance temperature detector, to which one end is connected the first conducting wire l 1 and the other end is connected the second and third conducting wires l 2 and l 3 , and the terminals t 1 , t 2 , t 3 are connected. It is connected. 1st
The constant current source I 1 is connected to the first photocoupler PC 1 , the first
A constant current i is passed through the conductor l 1 , the resistance temperature detector Rt, and the second conductor l 2 , and the second constant current source I 2 is connected to the second photocoupler PC 2 , the compensation resistor Ro, and the third conductor l 3 , through the second conductor l 2 and constant current i, and the first conductor l 1 and the compensation resistor
Output e 0 can be taken out from between Ro and via amplifier A, and photo couplers PC 1 and PC 2
The light emitting element is located in the current path, and the light receiving element is connected in series so that a disconnection detection (burnout) output e b can be taken out. If the resistance of the conducting wires l 1 , l 2 , and l 3 is r, the resistance-voltage conversion output e 0 is expressed by the following equation, and the influence of the conducting wires is removed. e 0 =i(Rt+2r)-i(Ro+2r) =i(Rt-Ro) (1) Note that the compensation resistor Ro is for obtaining an output from 0° C. and may be omitted. The disconnection detection status is shown in the table below.

【表】 つまり、導線l1が断線したときは、第1のフオ
トカプラPC1に第1の定電流源I1から電流iが流
れずオフとなり、導線l3が断線したときは、第2
のフオトカプラPC2に第2の定電流源I2から電流
iが流れずオフとなり、導線l2が断線したとき
は、第1、第2のフオトカプラPC1,PC2のいず
れにも第1、第2の定電流源I1,I2から電流iが
流れず、両方ともオフとなり、いずれの場合も断
線検出出力ebはオフとなり、断線を検出すること
ができる。 このように、電流経路にフオトカプラを設ける
ことにより回路が簡単となり、確実に抵抗体の断
線を検出することができる。 第2図は、この発明に係る多点入力変換回路の
一実施例を示す構成説明図である。 図において、1は、基準抵抗Rz、スパン抵抗
Rs、端子t11,t12,t13,…,t41,t42,t43に接続
された測温抵抗R1,R2,R3,R4を順次切換選択
する入力切換器、2は入力切換器1を駆動する駆
動回路、IはフオトカプラPC1,PC2、補償抵抗
Ro、入力切換器1を介して基準抵抗Rz、スパン
抵抗Rs、測温抵抗R1,…,R4に定電流iを供給
する定電流回路、Aは入力切換器1の出力を増幅
する増幅器、3は増幅器Aの出力を絶縁するアイ
ソレータ、4はアイソレータ3の出力をデジタル
信号に変換するA−D変換器、5はA−D変換器
4の出力の演算処理、駆動回路2の制御等を行う
マイクロコンピユータのような演算回路、6は断
線検出、故障検出等を行う検出回路である。 定電流回路Iは、電圧V1を定電圧ダイオード
ZDで定電圧化した電圧を基準とし、2個の演算
増幅器A1,A2、2個のトランジスタTr,Tr′等
よりなる2つの定電流源を含んでいる。 検出回路6は、フオトカプラPC1,PC2の出力
に応じて発光する発光ダイオードのような第1の
表示器L1、断線検出出力を取り出す出力端子6
1、A−D変換器4の動作(BUSY)信号に応
じて発光する発光ダイオードのような第2の表示
器L2、A−D変換器4の動作状態を出力する出
力端子62等よりなり、第1、第2の表示器L1
L2は近接して配置されている。 入力切換器1は、各チヤンネル毎に、切換スイ
ツチ素子として3個のオプトMOS・FETのよう
な高耐圧の光駆動素子So1,So2,So3,S11,S12
S13,…,S51,S52,S53を有し、これら各チヤン
ネルに対応して駆動回路2は、直列接続された発
光素子Lo1,Lo2,Lo3,L11,L12,L13,…,
L51,L52,L53を有し、トランジスタTr0,Tr1
…,Tr5のいずれかを演算回路5により制御され
るセレクタ20の出力によりオンとし、電圧V2
を供給して発光素子3個を同時に発光させること
により、各チヤンネル毎のスイツチ素子をオンと
することができる。 なお、光駆動素子は、第3図で示すように、
FETのようなスイツチング部Sと、発光ダイオ
ードのような発光素子Lとが一体とされたような
ものである。 このようにして、駆動回路2は、直列接続され
た複数の発光素子を各チヤンネルに対応して設け
ることにより、きわめて簡単な回路構成によりス
イツチ素子を絶縁駆動できる。 このようにして入力切換器1で切換選択された
基準抵抗Rz、スパン抵抗Rs、測温抵抗R1,…,
R4の電圧出力ez,es,etは、増幅器A、アイソレ
ータ3を介してA−D変換器4によりデジタル信
号Dz,Ds,Dtに変換され、演算回路5のメモリ
に順次格納される。そして演算回路5は、次のよ
うな、ゼロ補償、スパン補償のための演算を行
い、正しい出力信号Dを常時出力する。 増幅器Aの正しいゲインAo、ゲイン誤差を
ΔA、オフセツト誤差Δe、比例定数をkとすれ
ば、前記ゼロ基準抵抗Rz、スパン抵抗Rs、測温
抵抗R1,…,R4のデータは次式となる。 Dz=kez=k{i(Rz−Ro)+Δe
}(Ao+ΔA)……(2) Ds=kes=k{i(Rs−Ro)+Δe
}(Ao+ΔA)……(3) Dt=ket=k{i(Rt−Ro)+Δe
}(Ao+ΔA)……(4) これよりゼロ点補正は、次式の演算により行
う。 Ds−Dz=ki(Rs−Rz)(Ao+ΔA) ……(5) Dt−Dz=ki(Rt−Rz)(Ao+ΔA) ……(6) スパン点補正は、ゼロ、スパン誤差がない場合
の出力をK(標準スパンカウント数)とし、 D/K=Dt−Dz/Ds−Dz ……(7) より、正しい出力 D=Dt−Dz/Ds−Dz・K=Rt−Rz/Rs−Rz・K……
(8) を得る。つまり、電圧源でない基準抵抗Rz、ス
パン抵抗Rsを用いて、(8)式のような演算を行う
ことにより、増幅器A、アイソレータ3、補償抵
抗Ro等に起因するオフセツト、ゲイン誤差は除
去され、ゼロ点、スパン点の補償済の正しい出力
Dが得られることになる。 つまり、(8)式より精度は抵抗Rs,Rzの精度の
みで決定され、他の要素は入らないので、それだ
け精度が向上する。 検出回路6は、フオトカプラPC1,PC2のアン
ド出力から断線の有無を検出して表示する第1の
表示器L1、A−D変換器4の動作状態を表示す
る第2の表示器L2を含み、正常動作時は、第1、
第2の表示器L1,L2は、第4図aで示すように、
チヤンネル選択毎に同期して発光、点滅をくり返
す。第1チヤンネルが異常で断線検出状態となる
と、この第1チヤンネルが選択されたとき、第4
図bで示すように第1の表示器L1は発光せず、
容易に、入力切換器1を含む入力側の方が故障で
あることが分る。 A−D変換器4が故障であると、第4図cで、
示すように第2の表示器L2は全く発光せず、A
−D変換器4を含む測定回路側が故障であること
が容易に分る。 このように、2個の表示器L1,L2をプリント
板等に近接して取り付けて目視で観察、比較する
ことにより、容易に故障箇所の認識、発見、動作
状態の確認をすることができる。 なお、検出回路6の出力端子61,62の出力
を演算回路5に入力させ、断線の有無、動作状態
を表示する等して自己診断に利用するようにして
もよい。 (5) 発明の要約 以上述べたように、この発明は、チヤンネル毎
に複数の光駆動素子を設け複数の入力信号を切換
える入力切換器と、直列接続された複数の発光素
子を各チヤンネルに対応して設け前記入力切換器
を駆動する駆動回路を備えるとともにフオトカプ
ラを利用して断線検知を行うようにした入力切換
回路である。 (6) 発明の効果 各チヤンネル毎に直列接続された発光素子を
同時に発光させてスイツチ素子としての光駆動
素子を動作させているので、トランス等も不要
で、アイソレーシヨン、無接点化が可能とな
り、回路構成がきわめて簡単で、安価なものと
なり、長寿命化、大幅な省スペース、小型化が
図れる。 光駆動素子にオフセツト電圧が発生したとし
ても、高レベルの高圧入力、抵抗入力は問題は
なく、十分使用に耐えるもので、実用的効果は
きわめて大きい。 フオトカプラを利用して断線検出を行つてい
るので、容易かつ高精度に検出が可能となる。
[Table] In other words, when conductor l 1 is disconnected, current i does not flow from the first constant current source I 1 to the first photocoupler PC 1 and it is turned off, and when conductor l 3 is disconnected, the second
When the current i does not flow from the second constant current source I 2 to the photocoupler PC 2 and the conductor l 2 is disconnected, the first, Current i does not flow from the second constant current sources I 1 and I 2 and both are turned off. In either case, the wire breakage detection output e b is turned off, making it possible to detect wire breakage. In this way, by providing a photocoupler in the current path, the circuit becomes simple and disconnection of the resistor can be reliably detected. FIG. 2 is a configuration explanatory diagram showing an embodiment of a multi-point input conversion circuit according to the present invention. In the figure, 1 is the reference resistance Rz, the span resistance
Rs, input switch for sequentially switching and selecting temperature measuring resistors R 1 , R 2 , R 3 , R 4 connected to terminals t 11 , t 12 , t 13 , ..., t 41 , t 42 , t 43 ; 2 is a drive circuit that drives the input switch 1, I is a photocoupler PC 1 , PC 2 , and a compensation resistor
Ro, a constant current circuit that supplies a constant current i to the reference resistor Rz, span resistor Rs, temperature measuring resistor R 1 ,..., R 4 via the input switch 1; A is an amplifier that amplifies the output of the input switch 1; , 3 is an isolator that insulates the output of the amplifier A, 4 is an A-D converter that converts the output of the isolator 3 into a digital signal, and 5 is an arithmetic processing of the output of the A-D converter 4, control of the drive circuit 2, etc. 6 is a detection circuit that performs disconnection detection, failure detection, etc. Constant current circuit I connects voltage V 1 to constant voltage diode
It includes two constant current sources including two operational amplifiers A 1 , A 2 , two transistors Tr, Tr', etc., using the voltage made constant by ZD as a reference. The detection circuit 6 includes a first indicator L 1 such as a light emitting diode that emits light according to the outputs of photocouplers PC 1 and PC 2 , and an output terminal 6 from which a disconnection detection output is taken out.
1. It consists of a second indicator L 2 such as a light emitting diode that emits light in response to the operation (BUSY) signal of the A-D converter 4, an output terminal 62 that outputs the operation status of the A-D converter 4, etc. , first and second indicators L 1 ,
L 2 are placed in close proximity. The input switch 1 has three high-voltage optically driven elements such as opto-MOS/FET as switching elements for each channel, So 1 , So 2 , So 3 , S 11 , S 12 ,
S 13 ,..., S 51 , S 52 , S 53 , and corresponding to each of these channels, the drive circuit 2 includes series-connected light emitting elements Lo 1 , Lo 2 , Lo 3 , L 11 , L 12 , L 13 ,…,
It has transistors L 51 , L 52 , L 53 and transistors Tr 0 , Tr 1 ,
..., Tr 5 is turned on by the output of the selector 20 controlled by the arithmetic circuit 5, and the voltage V 2
By supplying the three light emitting elements to emit light at the same time, the switch elements for each channel can be turned on. In addition, as shown in FIG. 3, the optically driven element is
It is as if a switching section S such as an FET and a light emitting element L such as a light emitting diode are integrated. In this way, the drive circuit 2 can drive the switch elements in isolation with an extremely simple circuit configuration by providing a plurality of series-connected light emitting elements corresponding to each channel. In this way, the reference resistance Rz, span resistance Rs, temperature measuring resistance R 1 ,..., selected by the input switch 1
The voltage outputs e z , e s , e t of R 4 are converted into digital signals Dz, Ds, Dt by the A-D converter 4 via the amplifier A and the isolator 3, and are sequentially stored in the memory of the arithmetic circuit 5. Ru. The calculation circuit 5 performs the following calculations for zero compensation and span compensation, and always outputs a correct output signal D. Assuming that the correct gain Ao of amplifier A, the gain error is ΔA, the offset error Δe, and the proportionality constant is k, the data of the zero reference resistance Rz, span resistance Rs, and temperature sensing resistance R 1 ,..., R 4 can be expressed as follows. Become. Dz=ke z =k{i(Rz−Ro)+Δe
}(Ao+ΔA)……(2) Ds=ke s =k{i(Rs−Ro)+Δe
}(Ao+ΔA)……(3) Dt=ke t =k{i(Rt−Ro)+Δe
}(Ao+ΔA)...(4) From this, zero point correction is performed using the following formula. Ds−Dz=ki(Rs−Rz)(Ao+ΔA) ……(5) Dt−Dz=ki(Rt−Rz)(Ao+ΔA) ……(6) Span point correction is zero and output when there is no span error Assuming K (standard span count number), D/K=Dt-Dz/Ds-Dz... From (7), the correct output is D=Dt-Dz/Ds-Dz・K=Rt-Rz/Rs-Rz・K...
(8) is obtained. In other words, by using the reference resistance Rz and the span resistance Rs, which are not voltage sources, and performing calculations such as equation (8), offset and gain errors caused by the amplifier A, isolator 3, compensation resistor Ro, etc. are removed. A correct output D whose zero point and span point have been compensated can be obtained. In other words, according to equation (8), the accuracy is determined only by the accuracy of the resistors Rs and Rz, and other elements are not included, so the accuracy improves accordingly. The detection circuit 6 includes a first display L 1 that detects and displays the presence or absence of a disconnection from the AND outputs of the photocouplers PC 1 and PC 2 , and a second display L 1 that displays the operating status of the A-D converter 4. 2 , during normal operation, the first,
The second indicators L 1 and L 2 are as shown in FIG.
Repeats flashing and flashing in sync with each channel selection. If the first channel is abnormal and a disconnection detection state occurs, when this first channel is selected, the fourth
As shown in figure b, the first indicator L 1 does not emit light;
It is easily determined that the input side including the input switch 1 is at fault. If the A-D converter 4 is out of order, in FIG. 4c,
As shown, the second indicator L 2 does not emit any light, and A
It is easy to see that the measurement circuit including the -D converter 4 is at fault. In this way, by attaching the two indicators L 1 and L 2 close to a printed board, etc., and visually observing and comparing them, it is possible to easily recognize and discover faults and check the operating status. can. Note that the outputs from the output terminals 61 and 62 of the detection circuit 6 may be input to the arithmetic circuit 5 to be used for self-diagnosis by displaying the presence or absence of wire breakage and the operating state. (5) Summary of the Invention As described above, the present invention provides an input switch that includes a plurality of light-driven elements for each channel and switches between a plurality of input signals, and a plurality of light-emitting elements connected in series for each channel. The input switching circuit is provided with a drive circuit for driving the input switching device and detects disconnection using a photocoupler. (6) Effects of the invention Since the light-emitting elements connected in series for each channel simultaneously emit light to operate the light-driven element as a switch element, there is no need for a transformer, etc., and isolation and non-contact are possible. As a result, the circuit configuration is extremely simple and inexpensive, and it is possible to achieve long life, significant space savings, and miniaturization. Even if an offset voltage occurs in the optically driven element, there is no problem with the high-level high-voltage input and resistance input, and the device is usable and has extremely large practical effects. Since the disconnection is detected using a photocoupler, it can be detected easily and with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は、この発明の一実施
例を示す構成説明図、第4図は動作説明用波形図
である。 1……入力切換器、2……駆動回路、4……A
−D変換器、5……演算回路、6……検出回路、
Ro,Rt,Rz,Rs,R1〜R4……抵抗、I1,I2……
定電流源、PC1,PC2……フオトカプラ、L1,L2
……表示器、A……増幅器。
1, 2, and 3 are configuration explanatory diagrams showing one embodiment of the present invention, and FIG. 4 is a waveform diagram for explaining the operation. 1...Input switch, 2...Drive circuit, 4...A
-D converter, 5... Arithmetic circuit, 6... Detection circuit,
Ro, Rt, Rz, Rs, R 1 ~ R 4 ... Resistance, I 1 , I 2 ...
Constant current source, PC 1 , PC 2 ...Photocoupler, L 1 , L 2
...Indicator, A...Amplifier.

Claims (1)

【特許請求の範囲】 1 チヤンネル毎の各測温抵抗体の各一端に第
1、第2の導線を介して接続された第1、第2の
光駆動素子のスイツチ素子と、これら各抵抗体の
他端に第3の導線を介して接続された第3の光駆
動素子のスイツチ素子および共通の補償抵抗と、
これら第1、第2、第3の光駆動素子のスイツチ
素子をチヤンネル毎に同時に駆動する3個の直列
接続された発光素子を複数組含み入力切換を行う
駆動回路と、第2の光駆動素子のスイツチ素子と
第3の光駆動素子のスイツチ素子との間に接続さ
れた第1の定電流源と、第3の光駆動素子のスイ
ツチ素子と補償抵抗との間に接続された第2と定
電流源と、第1の光駆動素子のスイツチ素子およ
び補償抵抗との間より出力を増幅して取り出す増
幅器と、第2の光駆動素子のスイツチ素子と第1
の定電流源との間の電流径路に設けられた第1の
フオトカプラの発光素子と、補償抵抗と第2の定
電流源との間の電流径路に設けられた第2のフオ
トカプラの発光素子と、第1、第2のフオトカプ
ラの発光素子の出力を受光する直列接続された第
1、第2の受光素子を含み断線検出を行う検出回
路とを備えたことを特徴とする入力切換回路。 2 光駆動素子として、オプトMOS・FETを用
いたことを特徴とする特許請求の範囲第1項記載
の入力切換回路。
[Scope of Claims] 1. Switch elements of first and second light-driven elements connected to one end of each temperature-measuring resistor for each channel via first and second conductive wires, and each of these resistors. a switch element of a third optically driven element and a common compensation resistor connected to the other end via a third conductive wire;
A drive circuit that performs input switching and includes a plurality of sets of three series-connected light emitting elements that simultaneously drive the switch elements of the first, second, and third optically driven elements for each channel, and a second optically driven element. a first constant current source connected between the switch element of the third light-driven element and the switch element of the third light-driven element; a second constant-current source connected between the switch element of the third light-driven element and the compensation resistor; an amplifier for amplifying and extracting an output from between the constant current source, the switch element of the first optically driven element and the compensation resistor;
a light emitting element of the first photocoupler provided in the current path between the constant current source and a light emitting element of the second photocoupler provided in the current path between the compensation resistor and the second constant current source; , and a detection circuit that detects disconnection and includes first and second light-receiving elements connected in series to receive the outputs of the light-emitting elements of the first and second photocoupler. 2. The input switching circuit according to claim 1, wherein an opto-MOS/FET is used as the optical drive element.
JP7063382A 1982-04-26 1982-04-26 Input switching circuit Granted JPS58187024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7063382A JPS58187024A (en) 1982-04-26 1982-04-26 Input switching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7063382A JPS58187024A (en) 1982-04-26 1982-04-26 Input switching circuit

Publications (2)

Publication Number Publication Date
JPS58187024A JPS58187024A (en) 1983-11-01
JPH0315379B2 true JPH0315379B2 (en) 1991-02-28

Family

ID=13437234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7063382A Granted JPS58187024A (en) 1982-04-26 1982-04-26 Input switching circuit

Country Status (1)

Country Link
JP (1) JPS58187024A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171415A (en) * 1984-02-16 1985-09-04 Yokogawa Hokushin Electric Corp Resistance type converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132286A (en) * 1976-04-28 1977-11-05 Mitsubishi Electric Corp Input device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152432U (en) * 1980-04-15 1981-11-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132286A (en) * 1976-04-28 1977-11-05 Mitsubishi Electric Corp Input device

Also Published As

Publication number Publication date
JPS58187024A (en) 1983-11-01

Similar Documents

Publication Publication Date Title
JP4405242B2 (en) Sensor abnormality detection device and sensor abnormality detection method
CN109143032B (en) Circuit board self-detection system
US8310226B2 (en) Diagnosing device of signal status in measurement and control by measuring means and control means
CN103022962B (en) Disconnect and detect the method for the Roger's Paderewski instrument transformer in disconnect
KR200427534Y1 (en) Automatic CEDM Timing Module Sensor Diagnosis System
JPH0315379B2 (en)
KR100240576B1 (en) Failure diagnostic apparatus
JPH0245831B2 (en)
CN216349199U (en) Intelligent temperature transmitter and sensor signal measuring device
CN114792498A (en) Drive chip, display device and bonding resistance test system
JPH05119110A (en) Direct current measuring device
JP4735250B2 (en) Measuring device
JP2506433B2 (en) 4-wire resistance measuring device
JPS58190774A (en) Input switching circuit
JPS58187874A (en) Input switching circuit
JPH0421062Y2 (en)
JP2017198564A (en) Connection terminal for physical quantity detection sensors and physical quantity measurement device
JPH08233665A (en) Thermoelectric thermometer
CN112055817B (en) Redundant current measuring device with circuit interruption detection
KR100331747B1 (en) Conductor Tester
JPH05259941A (en) Intelligent transmitter
JP3430212B2 (en) Electrical isolation and coupling device for current loop
SU444073A1 (en) Non-electrical sensor, such as temperature with current output
SU1658206A1 (en) Device for indication of recording level
EP0838961B1 (en) Television simulator for DST transformers