JPH03153132A - Solar battery panel having optical signal reception function - Google Patents

Solar battery panel having optical signal reception function

Info

Publication number
JPH03153132A
JPH03153132A JP1291184A JP29118489A JPH03153132A JP H03153132 A JPH03153132 A JP H03153132A JP 1291184 A JP1291184 A JP 1291184A JP 29118489 A JP29118489 A JP 29118489A JP H03153132 A JPH03153132 A JP H03153132A
Authority
JP
Japan
Prior art keywords
solar cell
optical signal
prevention diode
signal
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1291184A
Other languages
Japanese (ja)
Other versions
JP2612620B2 (en
Inventor
Meiji Takabayashi
明治 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1291184A priority Critical patent/JP2612620B2/en
Publication of JPH03153132A publication Critical patent/JPH03153132A/en
Application granted granted Critical
Publication of JP2612620B2 publication Critical patent/JP2612620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To reduce power loss by adopting the constitution such that the reverse flow prevention diode of a solar battery is used in common as an optical signal sensing resistor. CONSTITUTION:When a solar battery 101 does not generate power, in order to prevent reversing of a current from a battery B1 to the solar battery 101, a reverse flow prevention diode D1 is connected. Moreover, when the solar battery 101 receives AC signal light 102, the reverse flow prevention diode D1 acts also like a resistor to detect the AC signal. The signal detected by the said reverse flow prevention diode D1 is given to an RC circuit (comprising R1, C1), from which only the AC component is separated. Furthermore, the AC signal is supplied to an amplifier A1, where the signal is amplified and outputted to a signal output terminal Sig. Thus, a conventional optical signal sensing resistor R2 having used in a conventional panel is omitted and the power loss is reduced.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、光信号受信機能を備えた太陽電池パネルに関
する。 【従来の技術J 従来、太陽電池による太陽光発電システムは、無公害、
無騒音なりリーンエネルギーであることから、例えば時
計、電卓などの電気製品から、無人電波中継器、家屋の
屋根の発電システム、電力用大規模発電システム等の様
々な分野への応用が考案されている。 一方、太陽電池を電源として使用するとともに、光情報
入力素子として使用する太陽電池付電子機器が、特開昭
59−154562に示されている。こ名]、は、電子
式卓上計算機等の小型電子機器の太陽電池に発電機能と
ともに光信号受信機能を持たせ、光による情報受信能力
を付加したものであった。 第2図には、光信号受信機能を有する太陽電池パネルの
従来例の概略等価回路図を示す。 同図に示される太陽電池パネル203においては、太陽
電池101が太陽光線102を受光し、発電したエネル
ギーは蓄電池B1に蓄えられる。 更に太陽電池101が発電していない場合に、蓄電池B
lから太陽電池101への電流の逆流を防ぐために、逆
流防止ダイオードD1が接続されている。また更に、太
陽電池101が交流の信号光102を受信した場合に、
この交流信号を検出するための抵抗器R2が直列に接続
されている、前記太陽電池パネル203で発電したエネ
ルギーは、出力端子OUTを通して出力される。 また、受信した光信号は、信号出力端子Sigより出力
される。 【発明が解決しようとしている課題] しかし、上述の従来例の様な小型重子機器以外の、出力
電力がある稈度以上大きな、一般的な電力用太陽電池パ
ネルで、光信づを受信しようどした場合には、以下のよ
うな問題点があった。 即ち、電力の出力と同時に光信号の検出も行なわなけれ
ばならないため、第2図に示される如く、蓄電池Bl、
逆流防止ダイオードD1、太陽電池101、及び光信号
検出用抵抗器R2をすべて直列に接続する必要がある。 このため、逆流防止ダイオードD1、さらには光信号検
出用抵抗器R2に於て、電力損失が生じるという問題点
があった。 [発明の目的] 本発明の目的は、上述のごとき従来の光発電機能ととも
に、光信号の受信機能を備えた太陽電池パネルに於ける
問題点を解決し、光発電と光15号受信を同時に行ない
、更に電力損失の少ない光43号受信器兼用太陽電池パ
ネルを実現することδ、−ある。 〔課題を解決するための手段及び作用]本発明者は、従
来の光信号受信器兼用太陽電池パネルにお番ブる前述の
諸問題を克服して、上述の本発明の目的を達成すべく鋭
意研究を重ねたところ、太陽電池の逆流防止ダイオード
が光信号検出用抵抗器を兼ねるように構成することによ
り、電力損失を低減できるという知見を得た。 更に本発明者は、前記逆流防止ダイオードにより検出さ
れた信号電圧を、前記太陽電池パネルに内蔵さjするR
C回路に導き、交流成分のみを分Hし、更に前記分離さ
れた交流成分を、前記太陽電池に内蔵さね、口っ該太陽
電池パネルの出力により、電源を供給されて作動する増
幅器により増幅することにより、ノイズの少ない信号を
得ることが出来るという知見を得た。 即ち、本発明は、前述した課題を解決するための手段と
して、 太陽電池と、該太陽電池の発電エネルギーを蓄える蓄電
池と、前記太陽電池と蓄電池に直列接続された逆流防止
グイA−ドとを有する光信号受信機能を持つ太陽電di
!パネルにおいて、前記逆流防止ダイオードに、該逆流
防止ダイオードに於ける電圧降下を利用して、光信号検
出用抵抗器を兼ねさせ、前記光信号を分離することを特
徴とする光信号受信機能を持つ太陽電池パネルを提供す
るものである。 また太陽電池と、該太陽電池の発電エネルギーを蓄える
r電池と、前記太陽電池と蓄電池に直列接続された逆流
防止ダイオードと、前記太陽電池及び蓄電池を負荷に接
続するための出力端子と。 前記太陽電池の発電した電力の直流成分と交流成分とを
分離するためのRC回路と、前記出力端子から電源を供
給されて作動し、前記分離された交流成分を増幅する増
幅器とを有し、前記逆流防止ダイオードに於ける電圧降
下を、前2Re回路に導(ことにより、前記直流成分と
交流成分とを分離することを特徴とする光信号受信機能
を持つ太陽電池パネルにより、前記課題を解決しようと
するものである。 以下本発明の手段を、図面の実施例により更に詳しく説
明するが1本発明はこれにより何等限定されるものでは
ない。 第1図は、本発明の光信号受信機能を持つ太陽電池パネ
ルの一例を示す概略等価回路図である。 同図に示される太陽電池パネル103においては、太陽
電池101が太陽光線102を受け、発電したエネルギ
ーは蓄電池Blに蓄えられる。更に太陽電池101が発
電していない場合に、蓄電池B1から太陽電池101へ
の電流の逆流を防ぐために、逆流防止ダイオードDiが
接続されている。 また更に、太陽電池lotが交流の信号光102を受信
した場合に、この交流信号を検出するための抵抗器を前
記逆流防止ダイオードが兼ねている。該逆流防止ダイオ
ードによって検出された信号は、更にRC回路(R1,
C1)によって交流成分のみ分離される。更にこの交流
信号は、増幅器Alに接続されて、増幅され、信号出力
端子Sigに出力される。 また、前記増幅器A1は太陽電池パネルの出力を電源と
して供給される。 この様に、本発明によれば、従来の光信号検出用抵抗器
R2を省(ことができ、これによって、電力損失を小さ
(することができる。 また、交流成分分離用のRC回路と、増幅器を組み込む
ことにより、より、正確な光信号を検出することができ
る。 更に、増幅器の電源として太陽電池の発生電力を利用す
ることで、ノイズの少ない増幅器とすることができる。 なお、本発明により提供される上記装置の太陽電池は、
単位セルでも、複数のセルを直列または並列にしたもの
でも良く、また太陽光により発電する能力及び信号光を
受信する能力があれば何でも良い、この様な太陽電池と
しては、例えば単結晶シリコン太陽電池、多結晶シリコ
ン太陽電池、非晶質シリコン系太陽電池、化合物半導体
太陽電池等が挙げられる。 また、−本発明により提供される前記蓄電池は、太陽電
池の出力を蓄えられるものであれば何でも良く、例えば
鉛蓄電池、ニッケル・カドミウム蓄電池等が挙げられる
。 〔実施例J 以下に、本発明の太陽電池パネルの実施例を述べて本発
明を更に説明するが、本発明はこれにより何等限定され
るものではない。 (実施例1) 第1図は、本発明の光信号受信機能を持つ太陽電池パネ
ルの概略等価回路を示すものである。 同図において、太陽電池101としては、非晶質シリコ
ン太陽電池(30X60cm”  10W)を用い、ま
た蓄電池B1としては鉛蓄電池(12V、200Wh)
を用いた。負荷としては夜間照明器(10Wの蛍光灯)
を有する電子時計(消費電力10mW)を出力端子OU
Tに取り付けた。信号出力端子Sigに・はA/D変換
器付I10インターフェイスを有す4るパーソナルコン
ピュータを接続した。 この様に構成した本実施例の太陽電池パネル103を、
真夏日に家屋の屋上に取り付けた。昼間は太陽電池10
1に於いて発電した電力を前述の時計に供給し、余剰電
力は蓄電池Blに蓄えた。 この時、太陽電池パネル103の最大出力は15V、0
.6Aであった。また−日の発電電力量は約25ワツト
時であり、このうち時計によって消費される電力は蓄電
池Blに蓄えられる電力に比べ、無視できるほど小さく
、はとんどの電力は蓄電池B1に蓄えられた。 また、夜間は太陽電池101は発電しないため、負荷へ
の電力供給は蓄電池Blにより行い、夜間約3時間、時
計の照明が出来た。 一方、太陽電池パネルに太陽光102が照射していると
きに、同時に信号光も照射し、光信号をパーソナルコン
ピュータで受信できるかどうかテストした。 光信号の光源としては、3mWのヘリウムネオンレーザ
を用い、太陽電池パネルから300 m 離れた場所に
設置し、液晶シャッターにより、これをパルスコードに
変調した8この信号光を太陽電池パネル103に照射し
、太陽電池101にて受信した信号を信号出力端子Si
nより取り出し、I10インターフェイスを介してパー
ソナルコンピュータに送信した。その結果、ヘリウムネ
オンレーザにより送信した信号は、忠実にパーソナルコ
ンピュータにより受信することが出来た。 (実施例2) 本実施例では、第1図に示した概略等価回路の装置にお
いて、太陽電池パネル103の受光面積を3倍に増やし
、太陽電池101の出力を15V及び1.8Aとした。 またそれに従って、蓄電池B1の容量も12V、600
Whのものを取り付りた。負荷としては、夜間照明器(
10WのT−ED)を有する電子時計(消費電力10m
W)を出力端子0tJTに取り付けた。信号出力端子S
igには、実施例1と同じものを取り付けた。 こうして構成した本実施例の装置な、襄夏日に家屋の屋
上に取り付&プた8 本実施例では、昼間は太陽電池101に於いて発電した
電力を前述の時計に供給し、余剰重力は蓄電池B1に蓄
えた。この時太陽電池パネル103の最大出力は15V
、1.8Aであった。また−日の発mW力量は約75ワ
ツト時であり、このうち時計によって消費される電力は
、蓄電池B1に蓄えられる電力に比べ無視できるほど小
さく、はとんどの電力は蓄電池B1に蓄えられた。 また、夜間は太陽電池101は発電しないため、負荷へ
の電力供給4:![8池B1により行い、夜間約9時間
、時計の照明が出来た。 一方、太陽電池パネル103に太陽光102が照射して
いるときに、同時に信号光も照射し、光信号をパーソナ
ルコンピュータで受信できるかどうかをテストした。 光信号の光源としては、10mWのアルゴンイオン1/
−ザな用い、太陽電池パネル103から1kmMれた場
所に設置し、液晶シャッターによりこれをパルスコード
に変調した。この信号光を太陽℃池パネル103に照射
し、太陽電池101にて受信した信号を、I10インタ
ーフェイスを介してパーソナルコンピュータに送信した
。その結果、アルゴンイオン1/−ザにより送信した信
号は、忠実にパーソナルコンピュータにより受信するこ
とが出来た。 (実施例3) 本実施例では、実施例2に示した非晶質シリコン太陽電
池101を、多結晶シリコン太陽電池に置き換え、他は
実施例2と同様の構成とした。 本実施例の装置に、実施例2と同様の負荷及び情報機器
を接続し、昼間の発電と夜間の照明及び光信号の受信を
行なった。 その結果、本実施例でも、太陽電池による十分な起電力
を得ることができ、またアルゴンイオンレーザにより送
信した信号を、忠実にパーソナルコンピュータにより再
現することができた。 [発明の効果1 以上の実施例から明らかなよりに、本発明の光信号受信
機能を持つ太陽電池パネルは、従来設置されている逆流
防止ダイシ′−ドを、交流信号を分離するための抵抗と
して用いるため、構造が簡単で故障が少なく、また安価
に提供することができる。 また、逆流防止ダイオードとともに、光信号検出用抵抗
器を直列接続した従来の太陽電池パネルに比べ、直列接
続される素子数が少なくなるため、電力損失を低減でき
る。 更に、交流信号を増幅するための増幅器をパネルに内蔵
し、また増幅器に供給する電源を太陽電池パネルの出力
から接続するようにしたため、電源等に供うノイズによ
る問題を低減することが出来る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solar cell panel having an optical signal receiving function. [Conventional technology J] Conventionally, solar power generation systems using solar cells are non-polluting,
Because it is noiseless and uses lean energy, applications have been devised in a variety of fields, from electrical products such as watches and calculators to unmanned radio repeaters, power generation systems on the roofs of houses, and large-scale power generation systems. There is. On the other hand, an electronic device with a solar cell that uses a solar cell as a power source and as an optical information input element is disclosed in Japanese Patent Laid-Open No. 154562/1983. [This name] was a solar cell used in small electronic devices such as electronic desktop calculators, which had a power generation function as well as an optical signal reception function, adding the ability to receive information by light. FIG. 2 shows a schematic equivalent circuit diagram of a conventional example of a solar cell panel having an optical signal receiving function. In the solar cell panel 203 shown in the figure, the solar cell 101 receives sunlight 102, and the generated energy is stored in the storage battery B1. Furthermore, when the solar cell 101 is not generating power, the storage battery B
A backflow prevention diode D1 is connected to prevent backflow of current from the solar cell 101 to the solar cell 101. Furthermore, when the solar cell 101 receives the AC signal light 102,
Energy generated by the solar panel 203, which is connected in series with a resistor R2 for detecting this alternating current signal, is outputted through the output terminal OUT. Further, the received optical signal is output from the signal output terminal Sig. [Problem to be solved by the invention] However, when trying to receive optical signals with a general power solar cell panel that is larger than the culm with the output power, other than the small deuteron device such as the conventional example mentioned above, In this case, there were the following problems. That is, since it is necessary to detect the optical signal at the same time as outputting the electric power, as shown in FIG.
It is necessary to connect the backflow prevention diode D1, the solar cell 101, and the optical signal detection resistor R2 all in series. Therefore, there is a problem in that power loss occurs in the backflow prevention diode D1 and further in the optical signal detection resistor R2. [Object of the Invention] The object of the present invention is to solve the problems in solar cell panels that are equipped with the optical signal reception function as well as the conventional photovoltaic power generation function as described above, and to simultaneously perform photovoltaic power generation and optical signal 15 reception. In addition, it is possible to realize a solar cell panel that also serves as an optical No. 43 receiver and has even less power loss. [Means and effects for solving the problems] The present inventors aimed to overcome the above-mentioned problems encountered in conventional solar cell panels that also serve as optical signal receivers, and to achieve the above-mentioned objects of the present invention. After extensive research, they discovered that power loss can be reduced by configuring the solar cell's backflow prevention diode to also function as a resistor for detecting optical signals. Furthermore, the present inventor has provided a method for transmitting the signal voltage detected by the reverse current prevention diode to an R
C circuit, only the alternating current component is separated, and the separated alternating current component is further amplified by an amplifier built in the solar cell and powered by the output of the solar cell panel. We found that by doing this, it is possible to obtain a signal with less noise. That is, the present invention, as a means for solving the above-mentioned problems, includes a solar cell, a storage battery that stores the energy generated by the solar cell, and a backflow prevention guide connected in series with the solar cell and the storage battery. Solar power di with optical signal receiving function
! The panel has an optical signal receiving function characterized in that the backflow prevention diode doubles as an optical signal detection resistor by utilizing a voltage drop in the backflow prevention diode to separate the optical signals. It provides solar cell panels. Also, a solar cell, an R battery that stores energy generated by the solar cell, a backflow prevention diode connected in series to the solar cell and the storage battery, and an output terminal for connecting the solar cell and the storage battery to a load. an RC circuit for separating a direct current component and an alternating current component of the power generated by the solar cell; and an amplifier that is operated by being supplied with power from the output terminal and amplifies the separated alternating current component; The above problem is solved by a solar cell panel having an optical signal receiving function characterized in that the voltage drop in the reverse current prevention diode is guided to the front 2Re circuit (thereby separating the DC component and the AC component). Hereinafter, the means of the present invention will be explained in more detail with reference to the embodiments shown in the drawings, but the present invention is not limited thereto in any way. Fig. 1 shows the optical signal receiving function of the present invention. 1 is a schematic equivalent circuit diagram showing an example of a solar cell panel with a solar cell panel 103. In a solar cell panel 103 shown in the figure, a solar cell 101 receives sunlight 102, and the generated energy is stored in a storage battery Bl. A backflow prevention diode Di is connected to prevent current from flowing backward from the storage battery B1 to the solar cell 101 when the battery 101 is not generating power. In this case, the reverse current prevention diode also serves as a resistor for detecting this alternating current signal.The signal detected by the reverse current prevention diode is further connected to an RC circuit (R1,
Only the AC component is separated by C1). Furthermore, this AC signal is connected to an amplifier Al, amplified, and outputted to a signal output terminal Sig. Further, the amplifier A1 is supplied with the output of the solar panel as a power source. As described above, according to the present invention, the conventional optical signal detection resistor R2 can be omitted, thereby reducing power loss. By incorporating an amplifier, a more accurate optical signal can be detected.Furthermore, by using the power generated by a solar cell as a power source for the amplifier, an amplifier with less noise can be obtained. The solar cell of the above device provided by
It may be a unit cell or multiple cells connected in series or parallel, and any type of solar cell may be used as long as it has the ability to generate electricity from sunlight and receive signal light. Examples of such solar cells include monocrystalline silicon solar cells, Examples include batteries, polycrystalline silicon solar cells, amorphous silicon solar cells, compound semiconductor solar cells, and the like. Further, - the storage battery provided by the present invention may be any type as long as it can store the output of a solar cell, such as a lead acid battery, a nickel-cadmium storage battery, etc. [Example J Below, the present invention will be further explained by describing examples of the solar cell panel of the present invention, but the present invention is not limited thereto. (Example 1) FIG. 1 shows a schematic equivalent circuit of a solar cell panel having an optical signal receiving function according to the present invention. In the figure, an amorphous silicon solar cell (30x60cm" 10W) is used as the solar cell 101, and a lead acid battery (12V, 200Wh) is used as the storage battery B1.
was used. The load is a night light (10W fluorescent light)
Output terminal OU for an electronic clock (power consumption 10mW)
Attached to T. A personal computer having an I10 interface with an A/D converter was connected to the signal output terminal Sig. The solar cell panel 103 of this embodiment configured in this way is
It was installed on the roof of a house on a midsummer day. 10 solar cells during the day
The electric power generated in step 1 was supplied to the above-mentioned clock, and the surplus electric power was stored in the storage battery B1. At this time, the maximum output of the solar panel 103 is 15V, 0
.. It was 6A. Also, the amount of electricity generated on day 1 was approximately 25 watt hours, of which the electricity consumed by the clock was negligibly small compared to the electricity stored in battery B1, and most of the electricity was stored in battery B1. . Furthermore, since the solar cell 101 does not generate electricity at night, power is supplied to the load by the storage battery B1, and the clock can be illuminated for about 3 hours at night. On the other hand, when the solar cell panel was irradiated with sunlight 102, signal light was also irradiated at the same time to test whether the optical signal could be received by a personal computer. A 3 mW helium neon laser is used as the light source of the optical signal, and it is installed at a distance of 300 m from the solar panel, and this signal light is modulated into a pulse code using a liquid crystal shutter. This signal light is irradiated onto the solar panel 103. The signal received by the solar cell 101 is sent to the signal output terminal Si.
n and transmitted to a personal computer via an I10 interface. As a result, the signals transmitted by the helium-neon laser could be faithfully received by the personal computer. (Example 2) In this example, in the device having the schematic equivalent circuit shown in FIG. 1, the light receiving area of the solar cell panel 103 was increased three times, and the output of the solar cell 101 was set to 15 V and 1.8 A. According to this, the capacity of storage battery B1 is also 12V, 600V.
I installed the one from Wh. As a load, a night illuminator (
Electronic clock with 10W T-ED (power consumption 10m)
W) was attached to the output terminal 0tJT. Signal output terminal S
The same one as in Example 1 was attached to the ig. The device of this embodiment configured in this way was installed and put on the roof of a house on a summer day in summer. was stored in storage battery B1. At this time, the maximum output of the solar panel 103 is 15V
, 1.8A. Furthermore, the mW power generated per day is approximately 75 watt hours, of which the power consumed by the clock is negligibly small compared to the power stored in storage battery B1, and most of the power is stored in storage battery B1. . Also, since the solar cell 101 does not generate electricity at night, power is supplied to the load 4:! [8 Pond B1 was used, and the clock was illuminated for about 9 hours at night. On the other hand, when the solar cell panel 103 was irradiated with sunlight 102, signal light was also irradiated at the same time to test whether the optical signal could be received by a personal computer. As a light source for the optical signal, a 10 mW argon ion 1/
- It was installed at a location 1 km away from the solar cell panel 103 and modulated into a pulse code using a liquid crystal shutter. This signal light was irradiated onto the solar cell panel 103, and the signal received by the solar cell 101 was transmitted to the personal computer via the I10 interface. As a result, the signals transmitted by the argon ion generator could be faithfully received by the personal computer. (Example 3) In this example, the amorphous silicon solar cell 101 shown in Example 2 was replaced with a polycrystalline silicon solar cell, and the other configurations were the same as in Example 2. Loads and information equipment similar to those in Example 2 were connected to the device of this example, and power generation during the day and lighting and reception of optical signals at night were performed. As a result, in this example as well, sufficient electromotive force could be obtained from the solar cell, and the signal transmitted by the argon ion laser could be faithfully reproduced by the personal computer. [Effect of the invention 1] As is clear from the above embodiments, the solar cell panel having an optical signal receiving function of the present invention replaces the conventionally installed backflow prevention dice with a resistor for separating AC signals. Because it is used as a device, it has a simple structure, fewer failures, and can be provided at low cost. Furthermore, compared to a conventional solar cell panel in which a resistor for optical signal detection is connected in series with a backflow prevention diode, the number of elements connected in series is reduced, so power loss can be reduced. Furthermore, since an amplifier for amplifying alternating current signals is built into the panel, and the power supply to the amplifier is connected from the output of the solar panel, problems caused by noise from the power supply etc. can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の光信号受信機能を持つ太陽電池パネ
ルの概略等価回路図を示す。 第2図は、従来の光信号受信機能を持つ太陽電池パネル
の概略等価回路図を示す。 図に於て、 0 0 0 I i 2 1・・・太陽電池 2・・・太陽光線及び信号光 3.203・・・太陽電池パネル ・・・蓄電池 ・・・逆流防止ダイオード ・・・光信号検出用抵抗器
FIG. 1 shows a schematic equivalent circuit diagram of a solar cell panel having an optical signal receiving function according to the present invention. FIG. 2 shows a schematic equivalent circuit diagram of a conventional solar cell panel having an optical signal receiving function. In the figure, 0 0 0 I i 2 1...Solar cell 2...Sunlight and signal light 3.203...Solar cell panel...Storage battery...Backflow prevention diode...Light signal Detection resistor

Claims (2)

【特許請求の範囲】[Claims] (1)太陽電池と、該太陽電池の発電エネルギーを蓄え
る蓄電池と、前記太陽電池と蓄電池に直列接続された逆
流防止ダイオードとを有する光信号受信機能を持つ太陽
電池パネルにおいて、前記逆流防止ダイオードに、該逆
流防止ダイオードに於ける電圧降下を利用して、光信号
検出用抵抗器を兼ねさせ、前記光信号を分離することを
特徴とする光信号受信機能を持つ太陽電池パネル。
(1) In a solar cell panel having an optical signal receiving function that includes a solar cell, a storage battery that stores energy generated by the solar cell, and a backflow prevention diode connected in series to the solar cell and storage battery, the backflow prevention diode A solar cell panel having an optical signal receiving function, characterized in that the voltage drop in the reverse current prevention diode is used to double as an optical signal detection resistor and the optical signal is separated.
(2)太陽電池と、該太陽電池の発電エネルギーを蓄え
る蓄電池と、前記太陽電池と蓄電池に直列接続された逆
流防止ダイオードと、前記太陽電池及び蓄電池を負荷に
接続するための出力端子と、前記太陽電池の発電した電
力の直流成分と交流成分とを分離するためのRC回路と
、前記出力端子から電源を供給されて作動し、前記分離
された交流成分を増幅する増幅器とを有し、前記逆流防
止ダイオードに於ける電圧降下を、前記RC回路に導く
ことにより、前記直流成分と交流成分とを分離すること
を特徴とする光信号受信機能を持つ太陽電池パネル。
(2) a solar cell, a storage battery that stores energy generated by the solar cell, a backflow prevention diode connected in series to the solar cell and the storage battery, an output terminal for connecting the solar cell and the storage battery to a load; an RC circuit for separating a direct current component and an alternating current component of power generated by the solar cell; and an amplifier that is operated by being supplied with power from the output terminal and amplifies the separated alternating current component; A solar cell panel having an optical signal receiving function, characterized in that the DC component and the AC component are separated by guiding a voltage drop across the reverse current prevention diode to the RC circuit.
JP1291184A 1989-11-10 1989-11-10 Solar panel Expired - Fee Related JP2612620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1291184A JP2612620B2 (en) 1989-11-10 1989-11-10 Solar panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291184A JP2612620B2 (en) 1989-11-10 1989-11-10 Solar panel

Publications (2)

Publication Number Publication Date
JPH03153132A true JPH03153132A (en) 1991-07-01
JP2612620B2 JP2612620B2 (en) 1997-05-21

Family

ID=17765548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291184A Expired - Fee Related JP2612620B2 (en) 1989-11-10 1989-11-10 Solar panel

Country Status (1)

Country Link
JP (1) JP2612620B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104488190A (en) * 2012-07-20 2015-04-01 郑万顺 Solar panel as infrared signal receiver and processor
JP2015528685A (en) * 2012-08-31 2015-09-28 サンディア コーポレイション Dynamically reconfigurable photovoltaic system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046154A (en) * 1983-08-23 1985-03-12 Sharp Corp Data transfer system
JPS62109540U (en) * 1985-12-27 1987-07-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046154A (en) * 1983-08-23 1985-03-12 Sharp Corp Data transfer system
JPS62109540U (en) * 1985-12-27 1987-07-13

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104488190A (en) * 2012-07-20 2015-04-01 郑万顺 Solar panel as infrared signal receiver and processor
JP2015524631A (en) * 2012-07-20 2015-08-24 チョン、マンスンJEONG, Mansoon Solar panel with infrared signal receiver and processor
JP2015528685A (en) * 2012-08-31 2015-09-28 サンディア コーポレイション Dynamically reconfigurable photovoltaic system
US9356173B2 (en) 2012-08-31 2016-05-31 Sandia Corporation Dynamically reconfigurable photovoltaic system
US9531322B2 (en) 2012-08-31 2016-12-27 Sandia Corporation Dynamically reconfigurable photovoltaic system

Also Published As

Publication number Publication date
JP2612620B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
US7830038B2 (en) Single chip solution for solar-based systems
US5986354A (en) DC source system with solar cell, and its operation method
CN102223111B (en) Device for controlling photovoltaic cell to generate power along with environment illumination change in a stage way and power generating system
JP2009153306A (en) Photovoltaic power generating system
JP2000116007A (en) Hybrid wind turbine power generating system provided with solar battery
US11190031B2 (en) Arc fault detection for battery packs in energy generation systems
US20220200325A1 (en) An apparatus, method and article for maximizing solar charge current through the use of split wire(s) in a solar array with solar panels connected in the combination of series and parallel
Yu et al. Power management and energy harvesting for indoor photovoltaic cells system
Bzura Performance of grid-connected photovoltaic systems on residences and commercial buildings in New England
JPH03153132A (en) Solar battery panel having optical signal reception function
CN104967406B (en) The measuring instrument of a kind of photovoltaic module array DC generation characteristic and measuring method thereof
US10742165B2 (en) Bypass mechanisms for energy generation systems
CN211531032U (en) Wind-light-water complementary power generation system with foreign matter monitoring function
CN102780250A (en) Solar charge controller
US11962155B2 (en) Photovoltaic power generation system
Maire et al. Detection of a defective cell in a solar module through photoresponse modulation
Saravanakumar et al. An overview of hybrid electric vehicle battery charging stations using wind and solar energy for green India
Deshmukh et al. Mobile Charging By Using Coin Insertion Module And Renewable Resource
CN203690943U (en) Photovoltaic off-grid/grid-connection integrated control system
JPH03132081A (en) Solar cell panel having optical signal receiving function
Ghanade et al. Portable solar device
CN210927204U (en) Renewable energy power generation device
Zain et al. Integration of Sun and Wind Tracking system Devices Using Arduino
Pavithra et al. Smart solar charging station
JPH08130837A (en) Solar battery power unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees