JPH031524A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH031524A
JPH031524A JP1135656A JP13565689A JPH031524A JP H031524 A JPH031524 A JP H031524A JP 1135656 A JP1135656 A JP 1135656A JP 13565689 A JP13565689 A JP 13565689A JP H031524 A JPH031524 A JP H031524A
Authority
JP
Japan
Prior art keywords
wafer
pattern
exposure
slippage
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1135656A
Other languages
Japanese (ja)
Inventor
Tomonori Terada
寺田 智則
Makoto Tanigawa
谷川 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1135656A priority Critical patent/JPH031524A/en
Publication of JPH031524A publication Critical patent/JPH031524A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the maximum quantity of the slippage, from the former pattern, of a pattern by exposure in and after the third process so that it may cope enough with high integration such as LSI, etc., by estimating the position of a wafer by the average value of the results of measurement of each position of a wafer using plural alignment marks formed in a preceding process. CONSTITUTION:In the first process, an alignment mark 11 is formed at the same time with formation of a pattern 1. And by detecting this alignment mark 11, and calculating the slippage between the sought coordinates of point P and the preset reference coordinates, and performing the same action at several points on the wafer, the total slippage of the wafer is estimated, and while performing compensation based on it, the exposure of a pattern II is done. In this second process, together with the pattern II an alignment mark 12 is formed. Next, both of the alignment marks 11 and 12 are detected, and the coordinates of point P and point Q are sought and those average is sought, and that is done at several points on the wafer so as to estimate the total slippage of the wafer. Accordingly, the maximum value of the slippage to the pattern in the second process is leveled and decreases.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体の製造方法に関し、更に詳しくは、LS
I等の集積度の高い半導体装置を得るのに適した製造方
法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing a semiconductor, and more specifically, to a method for manufacturing a semiconductor.
The present invention relates to a manufacturing method suitable for obtaining highly integrated semiconductor devices such as I.

〈従来の技術〉 半導体ウェハを露光する方法として、重ね合わせ露光が
知られている。重ね合わせ露光では、同じウェハ表面に
それぞれ異なるパターンの露光を複数回にわたって行う
ことにより、全体として所望のパターンを得る。
<Prior Art> Overlay exposure is known as a method of exposing semiconductor wafers. In overlapping exposure, a desired overall pattern is obtained by exposing the same wafer surface multiple times with different patterns.

このような重ね合わせ露光においては、それぞれの露光
工程間のパターンのずれを無くするために、各露光工程
において、ウェハ表面に形成されたある一定の指標(以
下、アライメントマークと称する)を検出して、テーブ
ル等に対するウェハの位置測定を行い、求めた座標とあ
らかじめ設定された座標とのずれを算出する。この動作
をウェハ上のい(つかの点で行うことによって全体的な
ずれを予測し、その予測に基づいて実際の露光時にテー
ブル位置の補正等を行う。
In such overlapping exposure, in order to eliminate pattern deviation between each exposure process, a certain index (hereinafter referred to as an alignment mark) formed on the wafer surface is detected in each exposure process. Then, the position of the wafer with respect to a table or the like is measured, and the deviation between the determined coordinates and the preset coordinates is calculated. By performing this operation at a few points on the wafer, the overall deviation is predicted, and based on the prediction, the table position is corrected during actual exposure.

第2図は従来の重ね合わせ露光方法の手順の説明図で、
第3図に示すような理想的な露光パターンを第2図(a
)〜(C)に示す第1〜第3の露光工程によって得る場
合の例を示している。
Figure 2 is an explanatory diagram of the procedure of the conventional overlapping exposure method.
The ideal exposure pattern shown in Figure 3 is shown in Figure 2 (a).
) to (C).

この例においては、第1の露光工程において形成された
アライメントマーク11を用いて、換言すればウェハ上
の点Pを基にして、第2および第3の露光工程でのウェ
ハの位置測定を行っている。
In this example, the alignment mark 11 formed in the first exposure process is used to measure the position of the wafer in the second and third exposure processes, in other words, based on the point P on the wafer. ing.

〈発明が解決しようとする課題〉 ところで、以上のような動作を行っても、装置上の他の
要因によって各回の露光工程におけるパターンのずれは
完全には排除できず、そのため、重ね合わせの工程が多
くなるに従ってずれの量も大きくなる。
<Problems to be Solved by the Invention> By the way, even if the above-mentioned operations are performed, it is not possible to completely eliminate pattern deviations in each exposure process due to other factors on the apparatus, and therefore, the overlay process As the number increases, the amount of deviation also increases.

すなわち、装置上の他の要因に基づくずれは、各露光工
程において例えば各方向に均等に、かつ、その量はある
分布に従うとしても、第2図の手順を例にとって考察す
ると、第2工程はアライメントマーク11 (第1工程
)に対して右上方に、また、第3工程は同じく左下方に
それぞれずれたとしたとき、第2工程および第3工程の
パターン■および■はそれぞれ第1工程のパターンIに
対して一回分のずれ量を持つことになるが、第3工程の
パターン■は第2工程のパターンHに対して一回分のず
れ量の2倍のずれを持つことになる。
In other words, even if the deviations due to other factors on the apparatus are equal in each direction in each exposure process, and the amount follows a certain distribution, if we consider the procedure in Figure 2 as an example, the second process will be Assuming that the alignment mark 11 (first step) is shifted upward to the right and the third step is also shifted downward to the left, the patterns ■ and ■ of the second and third steps are the patterns of the first step, respectively. The pattern (2) of the third process has a deviation of one time from I, but the pattern (2) of the third process has a deviation of twice the deviation of one time from the pattern H of the second process.

このような重ね合わせ工程の増加に伴うパターンのずれ
の最大量の増大は、LSI等の半導体装置の高集積化に
伴って無視し得ないものとなってきている。
The increase in the maximum amount of pattern deviation due to the increase in the number of overlapping steps has become impossible to ignore as semiconductor devices such as LSIs become highly integrated.

く課題を解決するための手段〉 本発明は上記の問題点を解消すべくなされたもので、そ
の特徴とするところは、第3工程以降の露光時に、それ
よりも前の露光工程でそれぞれ形成された少なくとも2
以上の指標を基にしてウェハの位置を測定し、得られた
2以上の位置測定結果とあらかじめ設定された基準座標
との差を平均化し、その平均値に基づいてウェハの位置
ずれを予測して露光を行うことにある。
Means for Solving the Problems> The present invention has been made to solve the above problems, and is characterized by the fact that during the exposure after the third step, the at least 2
The position of the wafer is measured based on the above indicators, the differences between the two or more obtained position measurement results and the preset reference coordinates are averaged, and the positional deviation of the wafer is predicted based on the average value. The purpose is to perform exposure using

〈作用〉 例えば第2工程の露光時に形成されたアライメントマー
クは、第1工程の露光時に形成されたアライメントマー
クに対し、その方向、量とも第2工程のパターンの第1
工程のパターンに対する実際のずれと等しいずれを呈す
る。従って、第3工程において、これらの2つのアライ
メントマークによるウェハ位置測定結果を平均化し、そ
の平均値に基づいてウェハの位置ずれを予測して補正を
加えれば、第3工程における前記した他の要因によるず
れの方向がどちらに向いても、第3工程のパターンの第
1ないしは第2工程のパターンに対するずれ量の最大値
は平準化されて減少する。
<Function> For example, the alignment mark formed during exposure in the second step is different from the alignment mark formed during exposure in the first step in both direction and amount.
This is equivalent to the actual deviation from the process pattern. Therefore, in the third step, if the wafer position measurement results from these two alignment marks are averaged, and the wafer position shift is predicted and corrected based on the average value, the other factors mentioned above in the third step can be corrected. Regardless of which direction the deviation occurs, the maximum amount of deviation of the pattern in the third step with respect to the pattern in the first or second step is equalized and reduced.

〈実施例〉 第1図は本発明実施例の製造手順の説明図であり、第2
図の従来例と同様に、第3図に示すようなパターンを第
1〜第3の工程によって重ね合わせ露光を行う場合の例
を示してる。
<Example> Figure 1 is an explanatory diagram of the manufacturing procedure of Example of the present invention.
Similar to the conventional example shown in the figure, an example is shown in which a pattern as shown in FIG. 3 is subjected to overlapping exposure through the first to third steps.

第1工程(a)では、従来と同様にパターンIの形成と
同時にアライメントマーク11を形成する。
In the first step (a), the alignment mark 11 is formed simultaneously with the formation of the pattern I, as in the conventional method.

そして第2工程(b)では、このアライメントマーク1
1を検出して、求めたP点の座標とあらかじめ設定され
ている基準座標とのずれを計算し、ウェハ上のいくつか
の点で同様な動作を行うことによって、ウェハの全体的
なずれを予測し、それに基づく補正を行いつつパターン
■の露光を行う。
In the second step (b), this alignment mark 1
1, calculate the deviation between the obtained coordinates of point P and the preset reference coordinates, and perform the same operation at several points on the wafer to calculate the overall deviation of the wafer. The pattern (2) is exposed while making a prediction and making corrections based on the prediction.

この第2工程において、パターン■とともにアライメン
トマーク12を形成する。
In this second step, alignment marks 12 are formed together with pattern (2).

次に、第3工程(C)においては、アライメントマーク
11と12の双方を検出して、P点とQ点の座標を求め
てそれぞれ基準座標とのずれを算出してこれらの平均値
を求める。このような動作を同様にウェハ上のいくつか
の点で行って全体的なウェハのずれを予測するわけであ
る。つまり、この第3工程においては、P点とQ点の中
点であるR点の座標に基づいてウェハの位置ずれを求め
ることになる。
Next, in the third step (C), both alignment marks 11 and 12 are detected, the coordinates of point P and point Q are determined, the deviation from the reference coordinates is calculated, and the average value of these is determined. . Such operations are similarly performed at several points on the wafer to predict the overall wafer misalignment. That is, in this third step, the positional shift of the wafer is determined based on the coordinates of point R, which is the midpoint between point P and point Q.

第2工程で作成されたアライメントマーク12はアライ
メントマーク11に対して、パターン■と■のずれと等
しいずれを持っているので、結局第3工程ではウェハ上
のパターン■と■の中間の位置を基準にウェハの位置の
予測を行うことになる。
The alignment mark 12 created in the second process has a deviation from the alignment mark 11 that is equal to the deviation between the patterns The wafer position will be predicted based on this.

このことは、前記した第2図での説明と同様な条件、つ
まり第2工程は第1工程に対して右上方に、また、第3
工程は同じく左下方にそれぞれずれたとしたとき、第2
工程と第3工程のパターン■と■の間には一回分のずれ
量の1.5倍のずれが生じるが、第3工程と第1工程の
パターンIと■との間は一回分のずれ量の0.5倍のず
れしか生じない。従って、この実施例によれば、従来の
方法に比して最大のずれ量は1.5/2、つまり3/4
に低減することになる。
This is based on the same conditions as explained above in FIG.
Similarly, if the process is shifted to the lower left, the second
There is a deviation of 1.5 times the amount of deviation of one time between the pattern ■ and ■ of the process and the third process, but there is a deviation of one time between the pattern I and ■ of the third process and the first process. A deviation of only 0.5 times the amount occurs. Therefore, according to this embodiment, the maximum deviation amount compared to the conventional method is 1.5/2, that is, 3/4
It will be reduced to

なお、本発明は4工程以上の重ね合わせ露光に対しても
有効であることは勿論であり、この場合、4工程以降に
ついては、先の全ての工程で付されたアライメントマー
クによる位置測定結果の平均値を用いてもいいし、ある
いは適当な2以上のアライメントマークによる位置測定
結果の平均値を用いてもよい。
It goes without saying that the present invention is also effective for overlapping exposure of four or more steps. An average value may be used, or an average value of position measurement results using two or more appropriate alignment marks may be used.

〈発明の効果〉 以上説明したように、本発明によれば、先の工程で形成
された複数のアライメントマークを用いたウェハの各位
置測定結果の平均値によって、ウェハ位置を予測するの
で、第3工程以降の露光によるパターンのそれまでのパ
ターンに対するずれの最大量が減少し、LSI等の高集
積化に対しても充分に対応できるようになった。
<Effects of the Invention> As explained above, according to the present invention, the wafer position is predicted based on the average value of each position measurement result of the wafer using the plurality of alignment marks formed in the previous process. The maximum amount of deviation of the pattern from the previous pattern due to exposure in the third and subsequent steps has been reduced, and it has become possible to sufficiently cope with high integration of LSI and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の製造手順の説明図、第2図は従
来の製造手順の説明図、第3図は第1図および第2図の
手順で製造しようとする理想的なパターンの説明図であ
る。 11・・・・アライメントマーク 12・・・・アライメントマーク
Fig. 1 is an explanatory diagram of the manufacturing procedure according to the embodiment of the present invention, Fig. 2 is an explanatory diagram of the conventional manufacturing procedure, and Fig. 3 is an illustration of the ideal pattern to be manufactured by the procedure of Figs. 1 and 2. It is an explanatory diagram. 11... Alignment mark 12... Alignment mark

Claims (1)

【特許請求の範囲】[Claims] ウェハ表面に少なくとも3工程以上の露光を行うことに
よって、そのウェハに各工程での露光パターンを重ね合
わせたパターンを形成する方法において、第3工程以降
の露光時に、それよりも前の露光工程でそれぞれ形成さ
れた少なくとも2以上の指標を基にしてウェハの位置を
測定し、得られた2以上の位置測定結果とあらかじめ設
定された基準座標との差を平均化し、その平均値に基づ
いてウェハの位置ずれを予測して露光を行うことを特徴
とする半導体装置の製造方法。
In a method of forming a pattern on the wafer by exposing the wafer surface in at least three steps or more, the exposure patterns of each step are superimposed on the wafer. The position of the wafer is measured based on at least two or more indicators formed respectively, the differences between the two or more obtained position measurement results and preset reference coordinates are averaged, and the wafer is positioned based on the average value. 1. A method of manufacturing a semiconductor device, characterized in that exposure is performed by predicting a positional shift of a semiconductor device.
JP1135656A 1989-05-29 1989-05-29 Manufacture of semiconductor device Pending JPH031524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1135656A JPH031524A (en) 1989-05-29 1989-05-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1135656A JPH031524A (en) 1989-05-29 1989-05-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH031524A true JPH031524A (en) 1991-01-08

Family

ID=15156882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1135656A Pending JPH031524A (en) 1989-05-29 1989-05-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH031524A (en)

Similar Documents

Publication Publication Date Title
US7960078B2 (en) Exposure condition setting method, substrate processing device, and computer program
US6716646B1 (en) Method and apparatus for performing overlay measurements using scatterometry
US6708075B2 (en) Method and apparatus for utilizing integrated metrology data as feed-forward data
US6484064B1 (en) Method and apparatus for running metrology standard wafer routes for cross-fab metrology calibration
US6708129B1 (en) Method and apparatus for wafer-to-wafer control with partial measurement data
JP2821441B2 (en) How to measure the amount of misalignment
JP2000133579A5 (en)
JP2000353657A (en) Exposure method, aligner, and semiconductor device manufactured using the aligner
JP2010502024A (en) Method and system for reducing overlay error in an exposure field with an APC control strategy
US6911287B2 (en) Method and apparatus for measuring process errors and method and apparatus for measuring overlay using the same
JP2011066323A (en) Method for correction of exposure treatment
JPH031524A (en) Manufacture of semiconductor device
US6625514B1 (en) Method and apparatus for optical lifetime tracking of trench features
US7524595B2 (en) Process for forming anti-reflection coating and method for improving accuracy of overlay measurement and alignment
US7031794B2 (en) Smart overlay control
JPH0982612A (en) Inspection method for superpositional deviation
US6784004B2 (en) Method of determining post-etch offset in exposed-to-embedded overlay
JP2003017393A (en) System and method for measurement
TWI835363B (en) Semiconductor wafer, processing apparatus for overlay shift and processing method thereof
JPH1131649A (en) Pattern and method for measurement of pattern dimension and of overlap accuracy
JP2000294489A (en) Pattern overlapping method and aligner
JPH05217845A (en) Pattern for alignment measurement
KR0127661B1 (en) Automatic exposure method using the reticle for semiconductor fabrication
JPH11340133A (en) Method for measuring overlay accuracy and semiconductor manufacturing device
CN105759563B (en) Photomask and method for detecting photomask or wafer contamination