JPH03152483A - Extracting method for characteristic parameter of field effect transistor element - Google Patents

Extracting method for characteristic parameter of field effect transistor element

Info

Publication number
JPH03152483A
JPH03152483A JP1292624A JP29262489A JPH03152483A JP H03152483 A JPH03152483 A JP H03152483A JP 1292624 A JP1292624 A JP 1292624A JP 29262489 A JP29262489 A JP 29262489A JP H03152483 A JPH03152483 A JP H03152483A
Authority
JP
Japan
Prior art keywords
value
temporary
unfixed
formula
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1292624A
Other languages
Japanese (ja)
Other versions
JP2958996B2 (en
Inventor
Akihiko Ebina
昭彦 蝦名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1292624A priority Critical patent/JP2958996B2/en
Publication of JPH03152483A publication Critical patent/JPH03152483A/en
Application granted granted Critical
Publication of JP2958996B2 publication Critical patent/JP2958996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PURPOSE:To speedily extract a parameter easy to calculate while maintaining accuracy by first determining a true value of an unfixed constant from the quantitative evaluating value of a deviation between a temporary linear model including a temporary value of the unfixed constant and an actually-measured value. CONSTITUTION:Based on a nonlinear mathematic model of a field effect transistor, a value of an unfixed constant in a formula is obtained by mathematic and statistical means from a measuring value of a current, voltage or the like, thereby to extract a characteristic parameter of an element such as a threshold voltage, conductance or the like. At this time, a temporary value is given to a part of the unfixed constants in the model formula, so that the nonlinear formula is turned to be linear, and the remaining unfixed constants are temporarily determined. A true value of the unfixed constant to which the temporary value is first given is determined from the quantitative evaluating value of a deviation between the temporary linear model including the temporary value and the actually-measuring value, and then the nonlinear formula is made truly linear. Accordingly, true values of the remaining unfixed constants can be determined without using the general iteration method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、単体で製造される半導体素子、または集積回
路を構成する電界効果トランジスタの電気的特性を定量
的に評価するための素子特性パラメータの抽出方法に関
する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to device characteristic parameters for quantitatively evaluating the electrical characteristics of a semiconductor device manufactured singly or a field effect transistor constituting an integrated circuit. Regarding the extraction method.

〔従来の技術〕[Conventional technology]

電界効果トランジスタの基本的な電気的特性は、一般に
数本の数式によってモデル化されている。閾値電圧、コ
ンダクタンスなどの素子特性パラメータは、これらの数
式の中に未定定数として現れているため、電界効果トラ
ンジスタの電気的特性を定量的に評価するには、電流、
電圧などの実測値にモデルの数式をパラメータフィッテ
ィング法を用いて当てはめることにより、これらの未定
定数を決定する数学的及び統計的操作が必要である、前
記のモデルの数式は未定定数に対して非線形であるため
、パラメータフィッティングには最急降下法やGaus
s−Newton法、またはそれらの組合わせなどの種
々の反復計算法が広く用いられている。
The basic electrical characteristics of field effect transistors are generally modeled by several mathematical equations. Device characteristic parameters such as threshold voltage and conductance appear as undetermined constants in these formulas, so in order to quantitatively evaluate the electrical characteristics of a field effect transistor, current,
Mathematics and statistical operations are required to determine these undetermined constants by fitting the model formula to actual measured values such as voltage using a parameter fitting method.The above model formula is nonlinear with respect to the undetermined constants. Therefore, the steepest descent method or Gaussian method is used for parameter fitting.
Various iterative calculation methods such as the s-Newton method or combinations thereof are widely used.

〔発明が解決しようとする課題] しかし、従来の技術による反復計算法は、計算時間が長
くかかる上、初期値によっては発散して答えが得られな
いため初期値設定が難しいなどの欠点をもっており、例
えば大量生産される製品の日常的な管理への応用はほと
んど不可能である。
[Problem to be solved by the invention] However, the iterative calculation method using conventional technology has drawbacks such as requiring a long calculation time and making it difficult to set the initial value because the answer may not be obtained due to divergence depending on the initial value. For example, it is almost impossible to apply it to the daily management of mass-produced products.

このため、従来の技術によるパラメータ抽出は、研究開
発などの目的に限られ、量産品の日常管理には、モデル
そのものを簡略化して疑似的に線形化した。いわゆる二
乗特性法や最大傾斜法など、簡便ではあるがモデルとし
ての精度が劣り、パラメータの持つ情報量の小さい方法
が使われてきた。
For this reason, parameter extraction using conventional techniques is limited to purposes such as research and development, and for daily management of mass-produced products, the model itself is simplified and pseudo-linearized. Methods such as the so-called square characteristic method and the maximum slope method, which are simple but have inferior model accuracy and whose parameters have a small amount of information, have been used.

本発明は、このような従来の電界効果トランジスタ素子
特性パラメータ抽出法に関わる問題を解決するもので、
その目的とするところは、電界効果トランジスタ特性モ
デルの持つ本来の精度を損なうことなく、計算が簡便で
速度の速いパラメータ抽出アルゴリズムを提供するとこ
ろにある。
The present invention solves the problems associated with the conventional field effect transistor element characteristic parameter extraction method.
The purpose is to provide a parameter extraction algorithm that is easy to calculate and fast, without sacrificing the inherent accuracy of the field effect transistor characteristic model.

[課題を解決するための手段] 本発明の電界効果トランジスタ素子特性パラメータ抽出
方法は、電界効果トランジスタの非線形な数学モデルに
基づき、電流、電圧などの実測値から、数学的及び統計
的手段を用いて数式中の未定定数の値を求めることによ
り、閾値電圧、コンダクタンスなどの素子特性パラメー
タを抽出する方法において、前記数学モデルの数式中の
一部の未定定数に「仮の値」を与えて非線形な数式を線
形化することによって残りの未定定数の値を仮に決定し
、「仮の値」を含んだ線形な仮のモデルと実測値との「
ずれ」の定量的な評価値、即ち評価誤差の極小条件から
、最初に「仮の値」を与えた未定定数の真の値をまず決
定し、これをもって非線形な数式を真に線形化すること
によって、一般的な反復計算法を用いることなく残りの
未定定数の真の値を決定することを特徴とする。
[Means for Solving the Problem] The field effect transistor device characteristic parameter extraction method of the present invention is based on a nonlinear mathematical model of a field effect transistor, and uses mathematical and statistical means from actual measured values such as current and voltage. In this method, device characteristic parameters such as threshold voltage and conductance are extracted by determining the values of undetermined constants in the formula of the mathematical model. By linearizing the mathematical expression, the values of the remaining undetermined constants are tentatively determined, and the relationship between the linear tentative model containing the "tentative values" and the actual measured values is calculated.
First, determine the true value of the undetermined constant to which a "temporary value" is initially given based on the quantitative evaluation value of "deviation", that is, the minimum evaluation error condition, and use this to truly linearize the nonlinear formula. It is characterized by determining the true value of the remaining undetermined constants without using the general iterative calculation method.

〔作 用] 本発明の上記の方法によれば、前記数学モデルの数式中
の未定定数の中から適切なものを選び、これに「仮の値
」を与えて非線形な数式を線形化することによって、残
りの未定定数の値を最小二乗法などの簡単な線形パラメ
ータフィッティングによって決定できるようになる。そ
して、線形パラメータフィッティングにおける評価誤差
は偏差平方和などで表されるから、「仮の値」と評価誤
差の関係は単純な関数になり、数点の「仮の値」から評
価誤差の最小値を簡単な計算で求めることができる。ま
た、この最小値に対応する値として、最初に「仮の値」
を与えた未定定数の真の値を決定すれば、[仮の値」に
よる線形化と同様の操作で残りの未定定数の真の値も決
定される。
[Operation] According to the above method of the present invention, an appropriate one is selected from among the undetermined constants in the formula of the mathematical model, and a "temporary value" is given to it to linearize the nonlinear formula. This allows the values of the remaining undetermined constants to be determined by simple linear parameter fitting such as the least squares method. Since the evaluation error in linear parameter fitting is expressed as the sum of squared deviations, the relationship between the "tentative value" and the evaluation error is a simple function, and the minimum evaluation error is calculated from the "tentative value" of several points. can be determined by simple calculations. Also, as a value corresponding to this minimum value, first a "temporary value"
Once the true value of the undetermined constant given is determined, the true values of the remaining undetermined constants can also be determined by the same operation as linearization using [temporary values].

〔実 施 例] 以下本発明を電界効果トランジスタの二極前動作領域モ
デルに基づく閾値電圧、トランスコンダクタンス、電界
降下係数の抽出の実施例に基づいて説明する。
[Example] The present invention will be described below based on an example of extraction of threshold voltage, transconductance, and field drop coefficient based on a bipolar pre-operating region model of a field effect transistor.

一般に電界効果トランジスタの二極前動作領域モデルは
次の数式によって表される。
Generally, the bipolar pre-operating region model of a field effect transistor is expressed by the following formula.

Va、> > Vosの時、 Ion =  [n o/(1+e (Vas−VyH
l)](]Van−Vvh−Vos/21Vo*  H
H+  (1)Co ”uocoyVI*tt/L、*
tt     ・・・(2)但し、 VDnはドレイン
電圧で既知の定数、Vowはゲート電圧、Insはドレ
イン−ソース間の電流、未定定数V丁□、θはそれぞれ
閾値電圧と電界降下係数であり、トランスコンダクタン
スはβ。■o1で表されるから、上記の3つのパラメー
タを決定するにはVTH1θ、β0の3つの未定定数を
求めればよいことになる。尚、式(2)において、μ。
When Va, >> Vos, Ion = [no/(1+e (Vas-VyH
l)](]Van-Vvh-Vos/21Vo*H
H+ (1)Co “uocoyVI*tt/L,*
tt...(2) However, VDn is the drain voltage and is a known constant, Vow is the gate voltage, Ins is the current between the drain and source, and the undetermined constants Vd and θ are the threshold voltage and electric field drop coefficient, respectively. Transconductance is β. (2) Since it is expressed as o1, in order to determine the above three parameters, it is sufficient to find three undetermined constants, VTH1θ and β0. Note that in equation (2), μ.

は易動度、Coxは酸化膜容量+Lftは実効チャネル
幅、L、ffは実効チャネル長である。
is the mobility, Cox is the oxide film capacitance+Lft is the effective channel width, and L and ff are the effective channel lengths.

式(1)を変形して、 (Van−Vy、I−Vos/21/Ls=(θ/βo
Vosl (Van−Vyo) + (1/ B oV
osl(3) ココテ、X = Vas−VvH,Y = fVa*−
VyH−Vos/2) /Lsと変数変換を行えば、式
(3)はXとYの一次式の形になることが分かる* V
owを一定の値に固定し、 VaSを適当に変化させて
対応するI。3の値を実測し、三極管領域のデータV。
Transforming equation (1), (Van-Vy, I-Vos/21/Ls=(θ/βo
Vosl (Van-Vyo) + (1/BoV
osl (3) Kokote, X = Vas-VvH, Y = fVa*-
By performing variable conversion with VyH-Vos/2)/Ls, it can be seen that equation (3) becomes a linear equation of X and Y*V
Fix ow to a constant value and change VaS appropriately to obtain I. Measure the value of 3 and obtain the triode region data V.

、(1)、IomNlを得る*VTllの値を仮に与え
れば、各データに対応したX +++ とYcl+を計
算でき、−次の最小二乗法によって、式(3)の未定係
数(θ/β。■。、)と(1/β。vo、)を仮に求め
ることが可能である。この時、回帰からの偏差平方和S
は、 S=Σ(YLlじ(θ/β。Voml X +++−(1/ βoVos))” ・・(4)で
表され、X (B 、 Y +。共にVTHの一次式で
あるからSはVTHの二次式となり、両者の関係は、次
式で表現される。
, (1), Obtain IomNl *If the value of VTll is temporarily given, X +++ and Ycl+ corresponding to each data can be calculated, and the undetermined coefficient (θ/β) of equation (3) can be calculated by the -order least squares method. ■., ) and (1/β.vo,) can be temporarily obtained. At this time, the sum of squared deviations from regression S
is expressed as S=Σ(YLlji(θ/β. Voml This is a quadratic equation of VTH, and the relationship between the two is expressed by the following equation.

5=aV7H” + bVtn + c    ・・・
(5)よって、数点に設定した仮のVvHIJI各々に
ついて上記の線形回帰計算を行い、対応するS Nl 
を計算し、二次の最小二乗法によって式(5)の係数a
、b、cを求め、Sが最小値を取るときのVTM (7
)値、即ちVT、 =−b/2aが真(7) VTHト
ft !。
5=aV7H" + bVtn + c...
(5) Therefore, perform the above linear regression calculation for each provisional VvHIJI set at several points, and calculate the corresponding S Nl
is calculated, and the coefficient a of equation (5) is calculated using the second-order least squares method.
, b, c, and when S takes the minimum value, VTM (7
) value, i.e. VT, =-b/2a is true (7) VTHtft! .

この値を式(3)に代入して再び前記の線形回帰計算を
実行すれば、(θ/β。va、l と(1/β。Vos
lの真の値が求められ、即ち、β0とθの値を決定した
ことになる。
By substituting this value into Equation (3) and executing the above linear regression calculation again, (θ/β.va, l and (1/β.Vos
The true value of l has been found, that is, the values of β0 and θ have been determined.

計算の簡便性を示すため、以上の操作を第1図に示すフ
ローチャートに沿って説明する。まず、■測定点の数n
と「仮のVTHJの数mを決定する0通常、nは20〜
30、mは5点程度で十分である0次に、■二極管動作
領域でn点のデータを実測し、VO@lIl+ l6s
H1とする。但し、i=1.2−・・、nであるa V
as+uとlog +uの関係は第2図のようになる1
m点の「仮のVTHJをv7□、として、■各々の「仮
のV丁□」について式(3)に基づく線形回帰計算を実
行し、対応するS IJI (j=1+2、・・・、m
)を計算する。つまり、ここで式(3)に基づく線形回
帰計算をm回行うことになる。
In order to demonstrate the simplicity of calculation, the above operations will be explained along the flowchart shown in FIG. First, ■ Number of measurement points n
and ``determine the number m of temporary VTHJ 0 Usually, n is 20~
30. About 5 points is sufficient for m. Next, measure the data at n points in the diode operating region and calculate VO@lIl+l6s.
Let it be H1. However, a V where i=1.2-..., n
The relationship between as+u and log+u is as shown in Figure 21
Assuming that the "temporary VTHJ of m points is v7□," perform the linear regression calculation based on equation (3) for each "temporary VTHJ", and calculate the corresponding S IJI (j=1+2,..., m
). In other words, the linear regression calculation based on equation (3) is performed m times.

VTIIIJIと5IJIとの関係は第3図のようにな
る。
The relationship between VTIIIJI and 5IJI is as shown in FIG.

次に、■得られたm組のVto IJI、SIJ+につ
いて式(5)に基づく二次の回帰計算を行い、Sの最小
条件から真のVTHを得る。これを、0式(3)にフィ
ードバックして線形回帰計算を実行することによって、
β。とθを得る。
Next, (2) perform a quadratic regression calculation based on equation (5) for the m sets of Vto IJI and SIJ+ obtained, and obtain the true VTH from the minimum condition of S; By feeding this back into equation (3) and performing linear regression calculation,
β. and θ are obtained.

このように、本発明による方法では、−次と二次の回帰
計算を数回行うだけであり、0行m列の偏微分係数行列
計算を少なくとも十数口繰り返す従来の反復法に比べて
非常に単純である。
As described above, the method according to the present invention requires only a few times of -order and quadratic regression calculations, and is much more efficient than the conventional iterative method of repeating the calculation of the 0-by-m partial differential coefficient matrix at least ten times. It is simple.

[発明の効果] 以上述べたように本発明によれば、各繰り返し毎に複雑
な偏微分係数行列(ヤコビアン)の計算が必要な上に収
束性を考慮しながら試行錯誤によって初期値を調整しな
ければならない前記反復計算法に比べて、極めて迅速、
単純、且つ安定的に電界効果トランジスタの素子特性バ
ラメーク抽出が可能であり、また、モデル自身の簡略化
は行っていないため、前記反復計算法と同程度の精度を
得ることができるという優れた効果を有する。
[Effects of the Invention] As described above, according to the present invention, it is not only necessary to calculate a complex partial differential coefficient matrix (Jacobian) for each iteration, but also to adjust the initial value by trial and error while considering convergence. extremely fast compared to the iterative calculation method that requires
It is possible to simply and stably extract the element characteristic variations of field effect transistors, and since the model itself is not simplified, it has the excellent effect of being able to obtain the same level of accuracy as the iterative calculation method described above. has.

素子特性パラメータ抽出方法の実施例を示すフローチャ
ート、第2図は同じ〈実施例中の電界効果トランジスタ
の三極管動作領域における電流−電圧特性図、第3図は
実施例中の偏差平方和Sと「仮のVTHJとの関係を表
す図。
Flowchart showing an embodiment of the device characteristic parameter extraction method. FIG. 2 is a current-voltage characteristic diagram in the triode operation region of the field effect transistor in the embodiment. FIG. A diagram showing a relationship with a temporary VTHJ.

以上that's all

Claims (1)

【特許請求の範囲】[Claims]  電界効果トランジスタの非線形な数学モデルに基づき
、電流、電圧などの実測値から、数学的及び統計的手段
を用いて数式中の未定定数の値を求めることにより、閾
値電圧、コンダクタンスなどの素子特性パラメータを抽
出する方法において、前記数学モデルの数式中の一部の
未定定数に「仮の値」を与えて非線形な数式を線形化す
ることによって残りの未定定数の値を仮に決定し、「仮
の値」を含んだ線形な仮のモデルと実測値との「ずれ」
の定量的な評価値、即ち、評価誤差の極小条件から、最
初に「仮の値」を与えた未定定数の真の値をまず決定し
、これをもって非線形な数式を真に線形化することによ
って、一般的な反復計算法を用いることなく残りの未定
定数の真の値を決定することを特徴とする電界効果トラ
ンジスタ素子特性パラメータの抽出方法。
Based on a nonlinear mathematical model of a field-effect transistor, device characteristic parameters such as threshold voltage and conductance can be determined by calculating the values of undetermined constants in the formula from actual measured values such as current and voltage using mathematical and statistical means. In this method, the values of the remaining undetermined constants are tentatively determined by linearizing the nonlinear formula by giving "temporary values" to some of the undetermined constants in the formula of the mathematical model, and ``Difference'' between the linear temporary model containing the ``value'' and the actual measured value.
From the quantitative evaluation value of , a method for extracting characteristic parameters of a field effect transistor, characterized in that the true value of a remaining undetermined constant is determined without using a general iterative calculation method.
JP1292624A 1989-11-10 1989-11-10 Method for extracting characteristic parameters of field effect transistor device Expired - Fee Related JP2958996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1292624A JP2958996B2 (en) 1989-11-10 1989-11-10 Method for extracting characteristic parameters of field effect transistor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1292624A JP2958996B2 (en) 1989-11-10 1989-11-10 Method for extracting characteristic parameters of field effect transistor device

Publications (2)

Publication Number Publication Date
JPH03152483A true JPH03152483A (en) 1991-06-28
JP2958996B2 JP2958996B2 (en) 1999-10-06

Family

ID=17784209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1292624A Expired - Fee Related JP2958996B2 (en) 1989-11-10 1989-11-10 Method for extracting characteristic parameters of field effect transistor device

Country Status (1)

Country Link
JP (1) JP2958996B2 (en)

Also Published As

Publication number Publication date
JP2958996B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
Ortiz-Conde et al. A review of recent MOSFET threshold voltage extraction methods
Croon et al. An easy-to-use mismatch model for the MOS transistor
Lovelace et al. Extracting small-signal model parameters of silicon MOSFET transistors
Bucher et al. An efficient parameter extraction methodology for the EKV MOST model
Naimi et al. Temperature influence on pH-ISFET sensor operating in weak and moderate inversion regime: Model and circuitry
Sánchez et al. New simple procedure to determine the threshold voltage of MOSFETs
Jespers et al. Calculation of MOSFET distortion using the transconductance-to-current ratio (g m/I D)
Torres-Torres et al. MOSFET bias dependent series resistance extraction from RF measurements
Lallement et al. Modelling and characterization of non-uniform substrate doping
Ortiz-Conde et al. A new approach to extract the threshold voltage of MOSFETs
Deen et al. A new method for measuring the threshold voltage of small-geometry MOSFETs from subthreshold conduction
Liou et al. Extraction of the threshold voltage of MOSFETs: an overview
Kalofonou et al. An ISFET based chemical gilbert cell
JPH03152483A (en) Extracting method for characteristic parameter of field effect transistor element
JP2699844B2 (en) M0SFET device model and parameter extraction method
JPH0836020A (en) Method and device for evaluating characteristic of mosfet
Eftimie et al. MOSFET model with simple extraction procedures suitable for sensitive analog simulations
Dobrescu et al. On the limit between subthreshold and strong inversion regions in the EKV model using the nonlinear electrical conduction theorem
Hillebrand et al. A New Approach to Threshold Voltage Measurements of Transistors
Karlsson et al. A direct method to extract effective geometries and series resistances of MOS transistors
Klimach et al. Consistent model for drain current mismatch in MOSFETs using the carrier number fluctuation theory
Pinto et al. Assessment of the Zero Distortion Bias Point Using Design-Oriented 7-Parameter MOSFET Model
Mahapatra et al. Quasi-analytical modeling of drain current and conductance of single-electron transistors with MIB
Li et al. Bias‐dependent small‐signal modeling based on neuro‐space mapping for MOSFET
Craciun et al. MOS saturation model based on channel resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees