JPH03151024A - Method for preventing trouble due to sulfuric acid in waste combustion gas - Google Patents

Method for preventing trouble due to sulfuric acid in waste combustion gas

Info

Publication number
JPH03151024A
JPH03151024A JP1287211A JP28721189A JPH03151024A JP H03151024 A JPH03151024 A JP H03151024A JP 1287211 A JP1287211 A JP 1287211A JP 28721189 A JP28721189 A JP 28721189A JP H03151024 A JPH03151024 A JP H03151024A
Authority
JP
Japan
Prior art keywords
mgo
cao
grains
sulfuric acid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1287211A
Other languages
Japanese (ja)
Other versions
JPH0512009B2 (en
Inventor
Masayuki Morimoto
正之 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Kagaku Kogyo KK
Original Assignee
Toa Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Kagaku Kogyo KK filed Critical Toa Kagaku Kogyo KK
Priority to JP1287211A priority Critical patent/JPH03151024A/en
Publication of JPH03151024A publication Critical patent/JPH03151024A/en
Publication of JPH0512009B2 publication Critical patent/JPH0512009B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To remarkably reduce flocculation, to enhance scattering into the waste fossil fuel combustion gas and to compeletly preventing trouble due to sulfuric acid in the waste gas by coating the surfaces of the grains of MgO and CaO with a specified liq. organosilicic compd. CONSTITUTION:A liq. organosilicic compd. (its amt. controlled to 0.2-2.0wt.% based on MgO or a mixture of MgO and CaO) such as dimethylhydropolysiloxane and methylmethoxypolysiloxane is brought into contact with the grains of MgO and CaO (the content controlled to <=30wt.%) and chemically adsorbed on the surfaces of the grains. Consequently, the grains are coated with the monomolecular layer of the organosilicic compd. When the coated grains are scattered in the waste fossil fuel combustion gas, the flocculation of the grains is remarkably reduced, the fluidity is increased, the movement as the single grain is facilitated, and the scattering property is remarkably enhanced. As a result, trouble due to the sulfuric acid in the waste gas is completely prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に流動性、飛散性を増加せしめた微粉状の
MgO又はMgOとCaOの混合物を、ボイラ等の硫黄
含有化石燃料の燃焼排煙中に添加飛散させて、排煙中の
硫酸による障害を防止する方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a method for applying finely powdered MgO or a mixture of MgO and CaO, which has particularly increased fluidity and scattering properties, to the combustion exhaust of sulfur-containing fossil fuels such as boilers. This invention relates to a method for preventing damage caused by sulfuric acid in flue gas by adding it into smoke and scattering it.

〔従来の技術〕[Conventional technology]

排煙中の硫酸による障害としては、煙突からの酸性煤の
降下、煙道の腐食、電気集塵機及びエアヒータの酸性煤
の付着による機能低下がある。
Hazards caused by sulfuric acid in flue gas include falling of acidic soot from chimneys, corrosion of flues, and functional deterioration of electrostatic precipitators and air heaters due to adhesion of acidic soot.

これ等の障害は主として、煤粒子が硫酸を吸着して付着
性を帯びることが基本原因であることが知られている。
It is known that the basic cause of these problems is that soot particles adsorb sulfuric acid and become sticky.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

特に酸性煤は、アシッド・スマット又はスノーヒユーム
とも言われ、煙突内壁に硫酸を吸着した煤が付着を重ね
、成長して離脱し雪片状となって降下する。これは強酸
性である為、降下付着した場合総ての物質に披害を及ぼ
すので、効果的な防止方法が緊急課題となっている。
In particular, acidic soot is also called acid smut or snow fume, and soot that has adsorbed sulfuric acid adheres to the inner wall of the chimney, grows and separates, and falls in the form of snowflakes. Since this is a strong acid, if it falls on it, it will harm all substances, so effective prevention methods are an urgent issue.

従来、これ等の硫酸障害の防止方法として、(1) M
g(oH)sの微粒子をオイルスラリとして燃料中に添
加する方法、(21MgO又はCaOの粉状物を煙道中
に添加する方法が試みられてきた。
Conventionally, as methods for preventing these sulfuric acid injuries, (1) M
Attempts have been made to add fine particles of g(oH)s into the fuel as an oil slurry, and to add powdered MgO or CaO into the flue.

しかしながら(1)の方法では添加したMgOの約50
重量%が炉内に付着残留し、効率が悪く、添加量を増加
すればMgO付着による炉内伝熱部の熱伝導を妨げるた
め、炉内伝熱部の保護作用に必要最小限な添加量に留ま
ることを余儀なくされている。(2の粉状物添加はMg
O及びCaO共に凝集性が強く、貯槽下部からスクリュ
ーフィーダ等で定量供給する場合しばしば所謂ブリッジ
現象により供給が空転するため連続添加が困蒔である。
However, in method (1), approximately 50% of the added MgO
% by weight remains in the furnace, resulting in poor efficiency.If the amount added is increased, the adhesion of MgO will impede the heat conduction of the heat transfer part in the furnace, so the minimum amount added is necessary to protect the heat transfer part in the furnace. are forced to stay. (The addition of powder in step 2 is Mg.
Both O and CaO have strong aggregation properties, and when they are supplied quantitatively from the bottom of the storage tank using a screw feeder or the like, the supply often idles due to the so-called bridging phenomenon, making continuous addition difficult.

又ブリッジ予防措置を施し一定時間添加しても凝集性粉
体であるため単粒子状での飛%が不完全で、このため硫
酸の部分的中和に留まり効果が乏しく一般に普及するに
至らないのが現状である。
In addition, even if bridging prevention measures are taken and it is added for a certain period of time, since it is a cohesive powder, the flying percentage in the form of single particles is incomplete, and for this reason, it only partially neutralizes sulfuric acid, and the effect is poor, so it is not widely used. is the current situation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、特定の液状の有機珪素化合物によって、Mg
O及び使用するときにはcaOの粒子表面をボールミル
又はリボンブレンダーなどにより混合攪拌してコーチン
グすることにより凝集性を顕著に低下させ、化石燃料排
煙中への飛散性を飛躍的に高めることによって排煙硫酸
障害を完全に防止できることを発見したことによるもの
である。
The present invention uses a specific liquid organosilicon compound to
By mixing and agitating the particle surface of O and caO with a ball mill or ribbon blender, etc., and coating the particle surface, the agglomeration property is significantly reduced, and the dispersion into fossil fuel flue gas is dramatically increased. This is due to the discovery that sulfuric acid damage can be completely prevented.

本発明を構成する組成物は、液状の有機珪素化合物と、
MgO又はMgOとCaOの混合物からなり、有機珪素
化合物としては、ジメチル水素ボリシo−t−サン(以
下p−xと記す)、メチルメトキシポリシロキサン(以
下p−2と記す)が最も好適で、これ等の有機珪素化合
物はLigO及びCaO粒子との接触により粒子表面に
化学吸着され、これらの粒子は有機珪素化合物の単分子
層によりフーチングされる。f機牙素化合物によってコ
ーチングされたMgO及びCaO粒子は、粒子相互間の
凝集性が著しく低下し、流動性を増加すると共に単粒子
としての行動が容易となるため、飛散性が飛躍的に増大
することが確認された。
The composition constituting the present invention includes a liquid organosilicon compound,
It consists of MgO or a mixture of MgO and CaO, and as the organosilicon compound, dimethylhydrogen polysiloxane (hereinafter referred to as p-x) and methylmethoxypolysiloxane (hereinafter referred to as p-2) are most suitable. These organosilicon compounds are chemisorbed onto the particle surfaces by contact with LigO and CaO particles, and these particles are footed by a monomolecular layer of the organosilicon compound. f MgO and CaO particles coated with a mechanical compound have significantly reduced cohesiveness between particles, increasing fluidity and making it easier to act as a single particle, resulting in a dramatic increase in scatterability. It was confirmed that

本発明により使用する有機珪素化合物の添加量は、Mg
O又はMgOとCaOの混合物に対し、重量で0.2%
から2.0%まで有効である。特に好適な範囲は0.8
%〜1.5%である。0.2%未満では実用的効果が殆
どなくなり好ましくない。
The amount of the organosilicon compound used in the present invention is Mg
0.2% by weight for O or a mixture of MgO and CaO
It is effective from 2.0% to 2.0%. A particularly suitable range is 0.8
% to 1.5%. If it is less than 0.2%, there will be almost no practical effect, which is not preferable.

又2%を越えると有機珪素化合物が未吸着液体として介
在し、むしろ流動性、飛散性を低下させるので好ましく
ない。
Moreover, if it exceeds 2%, the organosilicon compound will be present as an unadsorbed liquid, which will rather reduce fluidity and dispersibility, which is not preferable.

本発明で使用する主成分のMgO即ち酸化マグネシウム
は、別名マグネシャとも称され、市販工業製品の成分は
まちまちで、海水、苦汁から得られる製品(A)とマグ
ネサイト鉱石から得られる製品(B)ではMgO純度に
大きな差があるが、Mgo + (1!ao = 65
%以上なれば他の含有無機物は本発明で使用するに当っ
て支障はない。特に3102は微細粒子状態であれば、
組成物の固結防止に有効で、15重量%程度まで含有す
ることが許容できる。第1表に市販のマグネシャの主要
成分を示す。
MgO, that is, magnesium oxide, which is the main component used in the present invention, is also known as magnesha, and the components of commercially available industrial products vary, with products obtained from seawater and bittern (A) and products obtained from magnesite ore (B). There is a large difference in MgO purity, but Mgo + (1!ao = 65
% or more, there is no problem in using other contained inorganic substances in the present invention. Especially if 3102 is in a fine particle state,
It is effective in preventing caking of the composition, and its content up to about 15% by weight is permissible. Table 1 shows the main components of commercially available magnesha.

第1表 MgO0ILO5ift    Fe宜Os重童% 重
量% 重量% 重量% (A)   9 4.5   0.9    1.2 
  0.0 5(B)   8 5.2   1.8 
   4.1   0.6又CaOIIJも酸化カルシ
ウムは、生石灰として安価、大量に市販され通常工業製
品は040分95重量%以上であり、平均粒子径は40
〜50μm程度で本発明の構成組成物対象として好適範
囲である。
Table 1 MgO0ILO5ift FeIOSJido% Weight% Weight% Weight% (A) 9 4.5 0.9 1.2
0.0 5(B) 8 5.2 1.8
4.1 0.6 Calcium oxide, also known as CaOIIJ, is cheap and commercially available in large quantities as quicklime, and industrial products usually contain 95% by weight or more, and the average particle size is 40%.
The thickness is approximately 50 μm, which is a suitable range for the constituent composition of the present invention.

MgOとCaOの混合物を用いる場合、CaOの含有量
はMgOとCaOの合計に対して30重量%以下にする
とよく好適範囲は10重量%以下である。
When using a mixture of MgO and CaO, the content of CaO is preferably 30% by weight or less based on the total of MgO and CaO, and a preferable range is 10% by weight or less.

一般に硫酸を中和する反応速度はMgOよりCaOの方
が迅速であるが、水に不溶性の0aSO+の硬い結晶が
周囲に付着し、定期修理時の水洗除来が困難となるため
CaOの配合割合は制限される。これに対しMgOは硫
酸を中和する反応速度はCaOに劣るが、中和後のMg
5O<は水溶性であるため容易に水洗除去できる利点を
有する。
In general, the reaction rate for neutralizing sulfuric acid is faster with CaO than with MgO, but hard crystals of 0aSO+, which are insoluble in water, adhere to the surrounding area and are difficult to remove by washing during periodic repairs. is limited. On the other hand, the reaction rate of MgO to neutralize sulfuric acid is inferior to that of CaO, but after neutralization MgO
Since 5O< is water-soluble, it has the advantage of being easily removed by washing with water.

このためCaOの含有量は、後の水洗除去可能性を考慮
してOao 30重量%以下にするとよい。
Therefore, the content of CaO is preferably set to 30% by weight or less of Oao in consideration of the possibility of removing it by washing with water later.

〔実施例〕〔Example〕

以下に実施例をあげて本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 1 第1表に示す割合で平均粒子径3.5μ鵠の酸化マグネ
シウム、平均粒子径45μmの酸化カルシウムからなる
粉状物100?に、第1表に示す割合でP−1及び/又
はP−2を添加した後ボールミルで5分間攪拌してP−
1及び/又はp−2の処理粉状物を得た。得られた処理
粉状物501i’を振動機に固定して一定条件で振動中
のV型ガラスロートに投入して流下時間を測定した。ガ
ラスロートのサイズは次の通りであった。角度60度V
字型、足の内径11m、長さ110mo流下時間の測定
結果を第2表に示す。
Example 1 Powder 100 consisting of magnesium oxide with an average particle size of 3.5 μm and calcium oxide with an average particle size of 45 μm in the proportions shown in Table 1 was prepared. After adding P-1 and/or P-2 in the proportions shown in Table 1, the P-1 and/or P-2 were stirred in a ball mill for 5 minutes to obtain P-1.
1 and/or p-2 treated powders were obtained. The obtained treated powdery material 501i' was fixed to a vibrator and put into a V-shaped glass funnel which was being vibrated under certain conditions, and the flow time was measured. The size of the glass funnel was as follows. Angle 60 degrees V
Table 2 shows the measurement results of the flow time for the shape, inner diameter of the foot of 11 m, and length of 110 m.

表中%は重量%である。The percentages in the table are by weight.

第2表 MgOCaO他の成分  P−I   P−2流下時間
%%%%%秒 95   2   3−−   15095   2 
  3    0.2         3095  
 2   3    0.5          59
5   2   3    1.0         
 295   2   3    1.5   −  
   295   2   3    2.0   −
     395   2   3         
0.5     595   2   3      
   1.0     295   2   3   
      1.5     295   2   3
    0.5   0.5     195   2
   3    07   0.7     180 
 15   5    0.5   0.5     
165  30   5    0.5   0.5 
    160  35   5    0.5   
0.5     1第2表の結果から明らかなように、
適量のp−1及び/又はP−2によって処理された粉状
物の流下時間は僅か1秒であるのにたいし、無処理物は
150秒を要している。特にP−1及び/又はP−2の
併用は、単体による処理よりも効果的であることが確認
された。
Table 2 MgOCaO Other components P-I P-2 Flow time %%%%% seconds 95 2 3-- 15095 2
3 0.2 3095
2 3 0.5 59
5 2 3 1.0
295 2 3 1.5 -
295 2 3 2.0 -
395 2 3
0.5 595 2 3
1.0 295 2 3
1.5 295 2 3
0.5 0.5 195 2
3 07 0.7 180
15 5 0.5 0.5
165 30 5 0.5 0.5
160 35 5 0.5
0.5 1 As is clear from the results in Table 2,
The flow time of the powdered material treated with an appropriate amount of p-1 and/or P-2 is only 1 second, whereas the flow time of the untreated material is 150 seconds. In particular, it was confirmed that the combined use of P-1 and/or P-2 was more effective than treatment with either alone.

又、P−1及び/又はp−2の添加量が2重量%以上に
なると、逆に流下時間は増す傾向があり、実用的に好適
な範囲は0.2重量%〜2,0重量%である。特に効果
的な添加量は0.8重量%〜1.5重量%であった。
Furthermore, when the amount of P-1 and/or p-2 added is 2% by weight or more, the flow time tends to increase, and the practically preferred range is 0.2% to 2.0% by weight. It is. A particularly effective addition amount was 0.8% to 1.5% by weight.

このように流下時間の劇的変化は、P−1及び/又はP
−2によってコーチングされた粒子が凝集性を失い単粒
子が自由に運動できるようになったためと推定され、気
体中への飛散性も飛躍的に増加することになる。
This dramatic change in flow time is caused by P-1 and/or P
It is presumed that this is because the particles coated with -2 lost their cohesiveness and the single particles became able to move freely, and the scatterability into the gas also increased dramatically.

実施例 2 十分に混合攪拌された第3表の組成物〔但し、(C)に
は有機珪素化合物を添加せず、(D)にP−1を添加し
た〕を、ボイラ稼動中の煙道に添加してその飛散性を測
定した。煙道の状況は面積:2.5 rrLX 1.9
 m N長さ: 26 WL Nガス量:150万rr
t/1時間、入り口温度:160°Cであった。
Example 2 The thoroughly mixed and stirred composition shown in Table 3 [however, no organosilicon compound was added to (C) and P-1 was added to (D)] was poured into a flue during boiler operation. was added to the water and its scattering property was measured. The area of the flue is: 2.5 rrLX 1.9
m N length: 26 WL N gas amount: 1.5 million rr
t/1 hour, inlet temperature: 160°C.

組成物の添加量は煤量の10重量%、組成物の添加方法
は、定量連続投入し投入落下直後の組成物を加圧エアに
よって強制的に飛散させた。
The amount of the composition added was 10% by weight of the soot amount, and the method of adding the composition was to continuously add a fixed amount of the composition, and immediately after dropping, the composition was forcibly dispersed with pressurized air.

このような方法で煙道入口近辺の上部から添加し、20
m下流の煙道中心部から等辿吸引により煤を捕集し、媒
中のMgO量を測定した。その結果を第3表に示す。表
中%は重量%である。
Add it from the top near the flue entrance in this way, and add it for 20 minutes.
Soot was collected from the center of the flue downstream m by isometric suction, and the amount of MgO in the medium was measured. The results are shown in Table 3. The percentages in the table are by weight.

第   3   表 Mg0  0aO他の成分  P−1捕集媒中%   
%   %    %  のMg0%(c)   96
  1.5   2.5        1.2(D)
   96  1.5   2.5   1.6   
9.1第3表の結果から、抽象媒中のMgOの%には明
らかに大きな差が見られ無処理の組成物(C)は、飛散
性不良のため捕集点まで到達せず大部分が途中に沈降し
たものと判断される。このような場合添加剤組成物が煙
突内まで飛散到達する可能性は少なく、煙突内壁で発生
する酸性媒の防止は全く期待できないものとなる。
Table 3 Mg0 0aO Other components % in P-1 collection medium
% % % Mg0%(c) 96
1.5 2.5 1.2(D)
96 1.5 2.5 1.6
9.1 From the results in Table 3, there is clearly a large difference in the percentage of MgO in the abstraction medium, and untreated composition (C) does not reach the collection point due to poor scattering properties and most of the It is assumed that the water settled during the process. In such a case, there is little possibility that the additive composition will reach the inside of the chimney by scattering, and prevention of acidic media generated on the inner wall of the chimney cannot be expected at all.

これに比し組成物(D)は、大部分が捕集点まで到達し
ており飛散性が飛躍的に増加していることが確認された
In contrast, in composition (D), most of the particles reached the collection point, and it was confirmed that the scattering property was dramatically increased.

実施例 3 0重油(S=1.2〜1.4%)燃焼稼動中のボイラ煙
道(実施例2と同一)中に第3表の組成物(D)を実施
例2と同様な方法で煤量の6重量%を連続添加し、酸性
媒降下防止の効果を測定した。坪突から107F!離れ
た地面の東西南北の4地点に1 m X 1 mの木製
板を設置し24時間内に降下した酸性煤の4地点合計数
を測定した。
Example 3 The composition (D) in Table 3 was added to the boiler flue (same as in Example 2) during combustion operation of 0 heavy oil (S = 1.2 to 1.4%) in the same manner as in Example 2. 6% by weight of the soot amount was continuously added and the effect of preventing acidic medium drop was measured. 107F from Tsubotsu! Wooden boards measuring 1 m x 1 m were placed at four separate locations on the ground, north, south, east, and west, and the total number of acidic soot that fell at the four locations within 24 hours was measured.

その結果を第4表に示す。The results are shown in Table 4.

第   4   表 添加後経過日数  降下酸性基の合計個数0     
   26 3        21 10         5 20          2 30         1 第4表の結果にみられるように、添加30日経過後から
酸性媒降下は殆ど無くなり、顕著な防止降下が確認され
た。
Table 4 Number of days elapsed after addition Total number of descending acid groups 0
26 3 21 10 5 20 2 30 1 As seen in the results in Table 4, the acidic medium drop almost disappeared 30 days after the addition, and a remarkable preventive drop was confirmed.

実施例 4 実施例2と同様な方法で、稼動中の同一ボイラの電気集
塵機入口に、第5表の組成物を添加して集塵機効率上昇
のテストを行なった。表中%は重量%である。組成物の
添加量は測定煤量の5重量%であった。
Example 4 In the same manner as in Example 2, the compositions shown in Table 5 were added to the inlet of the electrostatic precipitator of the same boiler in operation to test for increasing the efficiency of the precipitator. The percentages in the table are by weight. The amount of the composition added was 5% by weight of the measured soot amount.

MgOCaOP−I   P−2 %    %     %     %(E)   6
6  2B    0.7    0.7ff)   
60  35   0.7    0.7約6力月間連
続添加した結果、集V機の捕集性能が増加し、組成物(
E) 、 (F)何れの場合も平均して5%の効率上昇
が確認された。煤粒子に吸着された硫酸が、MgO、C
aOによって中和され、付着力が低下してII!極から
の離脱が促進された結果によるものと推定される。
MgOCaOP-I P-2 % % % % (E) 6
6 2B 0.7 0.7ff)
60 35 0.7 0.7 As a result of continuous addition for about 6 months, the collection performance of the V collector increased and the composition (
E) and (F) In both cases, an average efficiency increase of 5% was confirmed. Sulfuric acid adsorbed on soot particles causes MgO, C
It is neutralized by aO, the adhesion force decreases, and II! This is presumed to be the result of accelerated departure from the poles.

停止時の観察では、組成物(功の場合、電極固定部周辺
に0aSC+4の硬質沈着物が堆積し、細部の水洗除去
は困難であった。組成物(]10にもこのような傾向が
若干みられたが実用上の支障はないものと判断された。
In the case of composition (10), hard deposits of 0aSC+4 were deposited around the electrode fixing part, and it was difficult to remove the fine details by washing with water.Composition (10) also had this tendency. However, it was judged that there was no practical problem.

このテスト結果から組成物中のCaO分は30重量%迄
が実用上安全であることが判明した。
The test results revealed that a CaO content of up to 30% by weight in the composition is practically safe.

実施例 5 実施例2と同様な方法で、移動中の同一ボイラのエアヒ
ータ(回転式)入口に測定煤量の4重量%の第3表(D
)の組成物が添加され、約6カ月テストされた。その結
果、約3型皿%の効率上昇が認められた。停止時の観察
によると、煤の付着量が無添加時に比し著しく減少して
おり、水洗除去も容易であった。
Example 5 In the same manner as in Example 2, 4% by weight of the measured soot amount as shown in Table 3 (D
) was added and tested for approximately 6 months. As a result, an increase in efficiency of about 3% was observed. According to the observation at the time of stopping, the amount of soot attached was significantly reduced compared to when no additive was added, and it was easy to remove by washing with water.

〔発明の効果〕〔Effect of the invention〕

上述した各実施例のデータより明らかなように、MgO
又はMgOとCaOの混合物に有機珪素化合物を添加す
ることにより酸性煤の除去効率が向上する。
As is clear from the data of each example described above, MgO
Alternatively, the acidic soot removal efficiency can be improved by adding an organosilicon compound to the mixture of MgO and CaO.

Claims (4)

【特許請求の範囲】[Claims] (1)液状の有機珪素化合物を少量添加攪拌して流動性
及び飛散性を増加せしめた微粉状のMgO又はMgOと
CaOの混合物を、化石燃料の燃焼排煙中に添加飛散さ
せて、排煙中の硫酸による障害を防止する方法。
(1) Finely powdered MgO or a mixture of MgO and CaO, in which a small amount of a liquid organosilicon compound is added and stirred to increase fluidity and dispersion, is added to and dispersed in the flue gas from fossil fuel combustion. How to prevent damage caused by sulfuric acid inside.
(2)有機珪素化合物がジメチル水素ポリシロキサン及
び/又はメチルメトキシポリシロキサンである請求項1
記載の方法。
(2) Claim 1 wherein the organosilicon compound is dimethylhydrogen polysiloxane and/or methylmethoxypolysiloxane.
Method described.
(3)有機珪素化合物の添加量が、重量百分率で、Mg
O又はMgOとCaOの合計量に対し0.2重量%以上
、2.0重量%以下である請求項1記載の方法。
(3) The amount of organic silicon compound added is Mg
The method according to claim 1, wherein the amount is 0.2% by weight or more and 2.0% by weight or less based on the total amount of O or MgO and CaO.
(4)MgOとCaOの混合物において、CaOがその
30重量%以下である請求項1記載の方法。
(4) The method according to claim 1, wherein in the mixture of MgO and CaO, CaO accounts for 30% by weight or less.
JP1287211A 1989-11-02 1989-11-02 Method for preventing trouble due to sulfuric acid in waste combustion gas Granted JPH03151024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287211A JPH03151024A (en) 1989-11-02 1989-11-02 Method for preventing trouble due to sulfuric acid in waste combustion gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287211A JPH03151024A (en) 1989-11-02 1989-11-02 Method for preventing trouble due to sulfuric acid in waste combustion gas

Publications (2)

Publication Number Publication Date
JPH03151024A true JPH03151024A (en) 1991-06-27
JPH0512009B2 JPH0512009B2 (en) 1993-02-17

Family

ID=17714492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287211A Granted JPH03151024A (en) 1989-11-02 1989-11-02 Method for preventing trouble due to sulfuric acid in waste combustion gas

Country Status (1)

Country Link
JP (1) JPH03151024A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514633B1 (en) * 2014-03-05 2015-04-23 에스케이텔레콤 주식회사 Method and apparatus for managing speech quality in packet network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577087A (en) * 1980-06-16 1982-01-14 Nippon Telegraph & Telephone Thin film electroluminescent light source element
JPS577085A (en) * 1980-05-13 1982-01-14 Bitsushiyu Mashiinooerekutorot Device for protecting insulator against glow discharge
JPS5715167A (en) * 1980-07-01 1982-01-26 Tohoku Mikuni Kogyo Kk Proportional control valve for gas
JPS58120519A (en) * 1982-01-14 1983-07-18 Mitsuhiro Hamada Surface treatment of fine powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577085A (en) * 1980-05-13 1982-01-14 Bitsushiyu Mashiinooerekutorot Device for protecting insulator against glow discharge
JPS577087A (en) * 1980-06-16 1982-01-14 Nippon Telegraph & Telephone Thin film electroluminescent light source element
JPS5715167A (en) * 1980-07-01 1982-01-26 Tohoku Mikuni Kogyo Kk Proportional control valve for gas
JPS58120519A (en) * 1982-01-14 1983-07-18 Mitsuhiro Hamada Surface treatment of fine powder

Also Published As

Publication number Publication date
JPH0512009B2 (en) 1993-02-17

Similar Documents

Publication Publication Date Title
EP0296068B1 (en) Process for agglomerating ore concentrate utilizing non-aqueous dispersions of water-soluble polymer binders.
CA2440168A1 (en) Anti-slagging fuel additve and method for combustion of fuel
US4245573A (en) Air heater corrosion prevention
AU2003257638A1 (en) Method of granulating sintering material for iron manufacturing
US4294588A (en) Electrostatic precipitator efficiency enhancement
US3880620A (en) Method for scrubbing gases derived from blast furnaces
US4325711A (en) Method of conditioning flue gas and separating the particles therefrom
JPH03151024A (en) Method for preventing trouble due to sulfuric acid in waste combustion gas
JP2015015975A (en) Method for making fly ash harmless
US6676911B1 (en) Exhaust gas treating agent, process for producing the same, and method of treating exhaust gas
JP3746010B2 (en) Fuel additive for preventing slagging and fuel combustion method
CA1302707C (en) Process for removing sulfur gases from a combustion gas
US3514273A (en) Fuel oil additive
CA1180553A (en) Method of conditioning fireside fouling deposits using large particle size amorphous silica
JP2004018704A (en) Fuel additive for preventing slagging and method of burning fuel
JPH0377237B2 (en)
JP3746026B2 (en) Fuel additive for preventing slagging and fuel combustion method
JP6548094B2 (en) Method of detoxifying fly ash
JP2010201428A (en) Method of treating gas
JPS6251157B2 (en)
JP2001149743A (en) Waste gas treating agent and waste gas treating method
JPS636491B2 (en)
KR19990028593A (en) How to improve the conveyability of pulverized coal
AU597558B2 (en) Sodium addition to low rank coal to enhance particulate removal from combustion effluent
JPS6054349B2 (en) Surface treatment agent for storage of powder and granular materials piled up in the open