JPH0315062B2 - - Google Patents

Info

Publication number
JPH0315062B2
JPH0315062B2 JP56084096A JP8409681A JPH0315062B2 JP H0315062 B2 JPH0315062 B2 JP H0315062B2 JP 56084096 A JP56084096 A JP 56084096A JP 8409681 A JP8409681 A JP 8409681A JP H0315062 B2 JPH0315062 B2 JP H0315062B2
Authority
JP
Japan
Prior art keywords
tooth
gear
hardened
contact
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56084096A
Other languages
Japanese (ja)
Other versions
JPS57200760A (en
Inventor
Kametaro Hashimoto
Hiroo Nakamura
Mineo Ogino
Masazumi Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8409681A priority Critical patent/JPS57200760A/en
Publication of JPS57200760A publication Critical patent/JPS57200760A/en
Publication of JPH0315062B2 publication Critical patent/JPH0315062B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)

Description

【発明の詳細な説明】 本発明は歯車に関し、特に歯部の表面が硬化処
理された表面硬化歯車に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gear, and more particularly to a surface-hardened gear in which the surface of the teeth is hardened.

歯車の歯元の疲れ強さを向上させ、また歯面に
耐磨耗性を与えるためには、歯ミゾも含めて歯の
表面を適度の深度をもつて硬化させることが有効
とされており、その硬化処理法としては例えば、
高周波焼入、浸炭、窒化或いは軟室化等が知られ
ている。
In order to improve the fatigue strength of the tooth roots of gears and provide wear resistance to the tooth surfaces, it is effective to harden the tooth surfaces, including the tooth grooves, to an appropriate depth. For example, the hardening treatment method is as follows:
Induction hardening, carburizing, nitriding, soft chambering, etc. are known.

ところで、従来の表面硬化歯車においては、歯
形(歯車の輪郭)に沿い且つ歯巾の全巾にわたつ
て硬化処理され、歯面、歯先面および歯底面から
成る歯車周面には余すところなく硬化部分が形成
されるのが普通であつた。このような表面硬化歯
車は、相手方の歯車とかみ合う際、歯巾のほぼ全
巾にわたる歯面で高精度に歯当り(全体当り)す
るならば、確かに表面硬化処理のされていない焼
入れ焼もどしによる歯車と比べて、大巾な疲れ強
さの向上を達成し得る。
By the way, in conventional surface-hardened gears, the hardening treatment is applied along the tooth profile (outline of the gear) and over the entire width of the tooth, and the peripheral surface of the gear consisting of the tooth surface, tooth top surface, and tooth bottom surface is completely hardened. It was common for hardened areas to form. If such a surface-hardened gear has highly accurate tooth contact (total contact) over almost the entire tooth width when meshing with a mating gear, then it is certainly quenched and tempered without surface hardening treatment. Compared to conventional gears, it is possible to achieve a significant improvement in fatigue strength.

ところが実際上、歯車の組付け時の誤差、ある
いは歯車を支持する回転軸などの荷重変形等に起
因して、実際の歯車のかみ合い時においては程度
の差こそあれ歯巾方向の端部の歯面のみが歯当り
する状態(部分当り)となることが多い。
However, in reality, due to errors in gear assembly or load deformation of the rotating shaft that supports the gears, when the gears actually mesh, the teeth at the ends in the tooth width direction may change to a greater or lesser extent. Often, only the surface is in contact with the teeth (partial contact).

従来の、周面全体が表面硬化処理された歯車
は、このような部分当りの状態で使用されると、
歯端面の歯元に曲げ応力が集中するために、その
歯元から疲れき裂が生じ易くなり、その結果、歯
が早く破壊されてしまう傾向があつた。つまり、
部分当りに対する歯元の疲れ破壊限度が、理想的
な全体当りの場合のそれと比べて著しく低下して
しまい、結局、部分当りの状態では脆いという欠
点があつたのである。
When a conventional gear whose entire peripheral surface is surface hardened is used in such conditions,
Since bending stress is concentrated at the root of the tooth end face, fatigue cracks tend to occur from the tooth root, and as a result, the tooth tends to be destroyed quickly. In other words,
The fatigue fracture limit of the root of the tooth for each part was significantly lower than that for the ideal whole part, and as a result, the part was brittle.

一方、歯車のかみ合いをほぼ歯巾全体で歯当り
する理想的な状態に近づけようとすれば、歯車の
製作及び組付精度の向上、さらには歯車支持機構
の剛性強化などが要求され、しかもある程度の組
付け誤差が生ずるのは避け難く、また支持機構の
剛性強化にも限度がある。
On the other hand, in order to bring the meshing of gears closer to the ideal state where almost the entire tooth width is in contact with the teeth, it is necessary to improve the manufacturing and assembly accuracy of the gears, and to strengthen the rigidity of the gear support mechanism. It is difficult to avoid assembly errors, and there is a limit to how rigid the support mechanism can be strengthened.

本発明は、以上のような事情を背景として、歯
車の歯がかみ合い時に部分当りする状態であつて
も、十分な疲れ強さを維持できる表面硬化歯車を
提供することを目的としてなされたものであり、
その要旨とするところは、歯面、歯先面および歯
底面から成る歯車周面を、歯先面上における歯端
面から歯巾の5〜15%の距離内側の点と、歯端面
におけるほぼピツチ円上の点とを通るほぼ平面状
の切断面で歯を斜めに切断したと考えた場合に該
切断面より歯端面側の部分を硬化させることなく
残した状態で、表面硬化処理する点にある。
The present invention was made against the background of the above-mentioned circumstances, with the object of providing a surface-hardened gear that can maintain sufficient fatigue strength even when the teeth of the gear are in contact with each other during meshing. can be,
The gist of this is that the gear circumferential surface, which consists of the tooth surface, tooth top surface, and tooth bottom surface, is located at a point on the tooth tip surface that is within a distance of 5 to 15% of the tooth width from the tooth end surface, and at a point approximately at the pitch on the tooth end surface. If we consider that the tooth is cut diagonally with a nearly planar cut surface that passes through a point on a circle, we will leave the part on the tooth end surface side of the cut surface without hardening, and then be.

このように歯車周面のうち歯巾方向端部の歯先
部分の表面を非硬化部分とすれば、かみ合い時に
歯が部分当りして上記歯先部分に局部的に大きな
負荷が加えられても、その歯先部分の非硬化部分
が圧縮変形し得るため、歯面の当り範囲を歯巾方
向に拡げ、その歯先部分の面圧を低くすることが
できる。従つて、歯端面の歯元に曲げ応力が集中
する傾向が緩和され、その結果、歯元の疲れ強度
(疲れ破壊限度)は、歯面が全体当りする場合と
比べてそれ程低下することなく高水準に維持され
るのである。
In this way, if the surface of the tip of the tooth at the edge in the tooth width direction of the gear circumferential surface is made into a non-hardened part, even if the teeth contact the tooth part during meshing and a large load is locally applied to the tip of the tooth. Since the non-hardened portion of the tooth tip can be compressively deformed, the contact range of the tooth surface can be expanded in the tooth width direction, and the surface pressure of the tooth tip can be lowered. Therefore, the tendency for bending stress to concentrate at the tooth root of the tooth end face is alleviated, and as a result, the fatigue strength (fatigue fracture limit) of the tooth root is increased without significantly decreasing compared to when the tooth face is applied to the entire tooth surface. It is maintained at the same level.

しかも、本発明に係る歯車においては、大きな
応力が発生する歯車周面の歯元部分はすべて硬化
させられており、その硬化部に残留する圧縮応力
によつて疲れ強さが向上し、歯元に亀裂が生ずる
ことによつて決まる歯車の寿命を延長する効果
は、歯車周面全部を表面硬化させた歯車と同様に
得られる。
In addition, in the gear according to the present invention, all the root portions of the gear circumference where large stress occurs are hardened, and the compressive stress remaining in the hardened portion improves the fatigue strength and improves the tooth root portion. The effect of extending the life of the gear, which is determined by the occurrence of cracks in the gear, can be obtained in the same way as with a gear whose entire peripheral surface is surface hardened.

また、硬化させられることなく残される部分は
真に必要な限られた部分であつて、歯面の大部分
は硬化させられているため、歯面の摩耗に基づく
歯車の寿命も歯面全部が硬化させられた歯車と殆
ど変わりはない。
In addition, the part that is left unhardened is a limited portion that is truly necessary, and most of the tooth surface is hardened, so the life of the gear based on the wear of the tooth surface is limited to the entire tooth surface. There is almost no difference from hardened gears.

以下、本発明の実施例を図面に基づいて説明す
る。なおわかり易くするために、歯車としては最
も基本的な平歯車に本発明が適用された場合を例
にとつて説明する。
Embodiments of the present invention will be described below based on the drawings. For the sake of clarity, an example will be described in which the present invention is applied to a spur gear, which is the most basic type of gear.

第1図には平歯車の歯の部分が示されており、
その歯車の周面すなわち歯面、歯先面、および歯
底面には、一部を除き表面硬化処理が施され、硬
化部分2(硬化表面)が形成されている。
Figure 1 shows the teeth of a spur gear.
The circumferential surface of the gear, that is, the tooth surface, tooth top surface, and tooth bottom surface, except for a portion, is subjected to a surface hardening treatment to form a hardened portion 2 (hardened surface).

本実施例における硬化処理は、公知の高周波焼
入れによつて行なわれている。すなわち、高周波
電流を鋼材の表面に誘導し、その抵抗熱により表
面層を急速に加熱した後、水か油で急冷して表面
付近が硬化させられているのである。そしてこの
ような高周波焼入れが採用されているため、歯車
の歯の母材も、一般に高周波焼入れに適した鋼
(通常、焼入れ焼もどし等により調質された炭素
含有量が約0.40〜0.55%の炭素鋼)が用いられて
いる。
The hardening treatment in this example is performed by known induction hardening. That is, a high frequency current is induced on the surface of the steel material, the surface layer is rapidly heated by the resistance heat, and then the surface layer is rapidly cooled with water or oil to harden the surface area. Since induction hardening is used, the base material of gear teeth is generally made of steel suitable for induction hardening (usually steel with a carbon content of about 0.40 to 0.55%, which has been tempered by quenching and tempering, etc.). Carbon steel) is used.

さて、歯車の周面の硬化処理されている範囲、
つまり焼入れパターンは、第1図に示す例から明
らかなように、歯巾方向の両端部における歯先部
分の表面は硬化処理されることなく残されて非硬
化部分4(非硬化表面)とされる一方、その部分
以外の歯車周面は全体にわたつて硬化処理が施さ
れ、前記硬化部分2が形成されている。なお、表
面硬化させられないで残されるべき部分は、歯
面、歯先面および歯底面から成る歯車周面の歯先
部分であつて、歯の端部を含む歯車の両端面につ
いては表面硬化させられてもさせられなくてもど
ちらでもよい。本実施例においては、歯車の外周
に配置されたコイルによる高周波焼入れによつて
表面硬化が行われるため、歯車の両端面は殆ど表
面硬化させられず、ただ、端面のうち、歯底面に
隣接した小部分が表面硬化させられている。この
小部分が表面硬化させられることは歯元の疲労強
度向上の観点から望ましい。
Now, the hardened area of the gear's circumferential surface,
In other words, in the hardening pattern, as is clear from the example shown in Fig. 1, the surface of the tooth tips at both ends in the tooth width direction is left unhardened and becomes a non-hardened portion 4 (non-hardened surface). On the other hand, the entire peripheral surface of the gear other than that portion is hardened to form the hardened portion 2. The part that should be left without surface hardening is the tooth tip part of the gear peripheral surface consisting of the tooth surface, tooth top surface, and tooth bottom surface, and surface hardening is applied to both end surfaces of the gear including the tooth ends. It doesn't matter whether you are allowed to do it or not. In this example, since the surface hardening is performed by induction hardening using a coil placed around the outer circumference of the gear, the surface of both end faces of the gear is hardly hardened, but the surface of the end face adjacent to the bottom face of the gear is hardly hardened. Small areas are surface hardened. It is desirable that this small portion be surface hardened from the viewpoint of improving the fatigue strength of the tooth base.

硬化部分2は歯の耐磨耗性を向上させるととも
に表面部に残留する圧縮応力によつて歯の疲れ強
さを強化する一方、非硬化部分4は圧縮変形させ
られることで歯の部分当りを緩和する機能をもつ
ている。そこで、非硬化部分4と硬化部分2との
面積的なバランスが重要となつてくる。非硬化部
分4を歯巾方向に歯端面から大きく入り込むよう
に拡げたり、あるいは歯タケ方向で余りに歯元近
傍までを非硬化部分4とすると、歯の耐摩耗性が
悪くなるおそれがあり、また歯端面の歯元の疲れ
強さが低下する弊害も生じ易く、他方、非硬化部
分4の範囲が狭すぎると、歯の部分当りを緩和す
る効果が小さくなつてしまうからである。
The hardened portion 2 improves the wear resistance of the tooth and strengthens the fatigue strength of the tooth due to compressive stress remaining on the surface, while the non-hardened portion 4 is compressively deformed to reduce contact with the tooth. It has a relaxing function. Therefore, the area balance between the non-hardened portion 4 and the hardened portion 2 becomes important. If the non-hardened portion 4 is expanded in the tooth width direction so as to extend far beyond the tooth end face, or if the non-hardened portion 4 extends too far near the root of the tooth in the tooth thickness direction, the wear resistance of the tooth may deteriorate. This is because the fatigue strength of the root of the tooth end surface is likely to be reduced, and on the other hand, if the range of the non-hardened portion 4 is too narrow, the effect of alleviating tooth part contact will be reduced.

そこで、非硬化部分4の範囲は、歯先面上にお
ける歯端面から歯巾Wの5〜15%の距離Lだけ内
側の点Aと、歯端面におけるほぼピツチ円P上の
点Bとを通るほぼ平面状の切断面で歯を斜めに切
断したと考えた場合に、その切断面より歯先面側
の表面部分となるように設定されている。この程
度の範囲を非硬化部分4とすることが、歯の耐摩
耗性等との兼合からみて最も好ましいのである。
Therefore, the range of the non-hardened portion 4 passes through a point A on the tooth tip surface that is located inside by a distance L of 5 to 15% of the tooth width W from the tooth end surface, and a point B on the tooth end surface that is approximately on the pitch circle P. When a tooth is cut diagonally with a substantially planar cut surface, it is set to be the surface portion on the tooth tip side from the cut surface. It is most preferable to make the unhardened portion 4 within this range in view of the wear resistance of the teeth and the like.

なお、このような範囲の表面が非硬化部分4と
して残るように歯の表面を硬化処理するために
は、高周波電流が流されるコイルを歯巾方向に両
端部の歯先部分を避けるように歯に対向させ、非
硬化部分4となるべき表面には誘導加熱作用が及
ばないようにすればよい。加熱作用を受けない部
分は、当然焼入れされることなく歯の母材表面が
ほぼそのままの状態で残された非硬化部分4とな
る。
In addition, in order to harden the surface of the tooth so that the surface in such a range remains as the unhardened portion 4, the coil through which the high-frequency current is passed is placed in the direction of the tooth width so as to avoid the tips of the tooth at both ends. It is sufficient that the induction heating effect is not applied to the surface that is to become the non-hardened portion 4. The portion that is not subjected to the heating action is naturally not hardened and becomes a non-hardened portion 4 in which the surface of the tooth base material remains almost as it is.

高周波焼入れによれば、非硬化部分4となるべ
き表面を残した状態で、硬化部分2となるべき表
面のみを容易に焼入れすることができ、硬化処理
に要する時間も短かく、量産性もよい。また、硬
化深度つまり硬化部分2の深さは、歯の材質、形
状、大きさ或いはかみ合い時の回転トルク等に応
じて最も適当な深度に設定される訳であるが、そ
の深度調整も、サイクル数或いは通電時間を適宜
に設定することで容易になし得る。
According to induction hardening, it is possible to easily harden only the surface that should become the hardened part 2 while leaving the surface that should become the unhardened part 4, and the time required for the hardening process is short and mass production is good. . In addition, the hardening depth, that is, the depth of the hardened portion 2, is set to the most appropriate depth depending on the material, shape, and size of the teeth, the rotational torque during engagement, etc., and the depth adjustment can also be done by changing the cycle. This can be easily achieved by appropriately setting the number or the energization time.

さて、以上のような硬化部分2および非硬化部
分4を歯の表面に備えた歯車がかみ合いに与かる
場合、歯の歯面が歯巾の全長にわたつて歯当り
(全体当り)しないときがある。むしろ多少なり
ともそのような状態となるのが普通である。全体
当りしなくても、歯巾方向にある程度の巾をもつ
た当り方であればそれほど問題とはならないが、
局部的に歯巾方向の端部の歯先部分のみが歯当り
させられると、その歯先部分に集中的に負荷が加
えられるため、歯端面の歯元に曲げ応力が集中し
てしまう。ところが、本実施例における歯車で
は、局部的に歯当りさせられる頬度の多い上記歯
先部分の周面が、硬化処理されていない非硬化部
分4(歯の母材そのままの状態)となつているた
め、部分当たりしてもこの非硬化部分4が負荷の
作用する方向にある程度塑性変形させられ、また
は摩耗して歯当り範囲を歯巾方向に拡げることが
できる。その結果、歯端面の歯元に大きな曲げ応
力が発生することが防止または緩和されて、その
歯元における疲れき裂の発生、成長が抑制される
ため、歯元の疲れ破壊限度が、歯当り状態にそれ
程影響されることなく高水準に維持されるのであ
る。
Now, when a gear with the above hardened portion 2 and non-hardened portion 4 on the tooth surface participates in meshing, there are times when the tooth surface of the tooth does not contact the tooth over the entire length of the tooth width (total contact). be. In fact, it is normal for the situation to be more or less like that. Even if it doesn't hit all the way, it won't be much of a problem as long as it has a certain width in the tooth width direction.
If only the tip of the tooth at the end in the tooth width direction is brought into contact with the tooth, a load is concentrated on the tip of the tooth, resulting in concentration of bending stress at the root of the tooth end surface. However, in the gear of this embodiment, the circumferential surface of the tooth tip portion, which has a high degree of hardness and is brought into local tooth contact, becomes a non-hardened portion 4 that has not been hardened (the base material of the tooth remains as it is). Therefore, even if there is a partial contact, the non-hardened portion 4 is plastically deformed to some extent in the direction in which the load acts, or is worn out, and the range of tooth contact can be expanded in the tooth width direction. As a result, the occurrence of large bending stress at the root of the tooth end surface is prevented or alleviated, and the occurrence and growth of fatigue cracks at the root of the tooth are suppressed. It is maintained at a high level without being affected much by the condition.

言い換れば、非硬化部分4の存在によつて歯車
の製作または組付誤差が、全体当りとまではいか
なくとも、歯端面の歯元に大きな負担をかけない
程度にまで修正させることになるのである。
In other words, due to the presence of the non-hardened portion 4, manufacturing or assembly errors of the gear can be corrected to the extent that it does not place a large burden on the root of the tooth end surface, although it may not be corrected on the entire gear. It will become.

なお、歯が部分当りする状況は実際には微妙な
ものであり、歯巾方向のどちら側の歯端部が歯当
りするかは予想し難く、そのため本実施例のよう
に歯巾方向両端部の歯先部分の表面を非硬化部分
4とすることが望ましい。
Incidentally, the situation in which teeth partially touch each other is actually delicate, and it is difficult to predict which side of the tooth end in the tooth width direction will make contact with the tooth. Therefore, as in this example, both ends in the tooth width direction It is desirable that the surface of the tip of the tooth be the non-hardened portion 4.

非硬化部分4の存在によつて上記のような効果
が得られることは下記の実験によつて確認されて
おり、しかもその効果が非常に大きいことが実験
データによつて明らかにされている。
It has been confirmed through the experiments described below that the above-mentioned effects can be obtained due to the presence of the non-hardened portion 4, and furthermore, the experimental data has revealed that the effects are very large.

(実験)本実施例における前記非硬化部分4を
備えた歯車(本歯車)と、従来の歯車周面全体に
わたつて硬化処理された歯車(従来歯車)とを
各々試料として用意し、通常使用される場合に起
こるであろう歯の部分当りの状況を意図的に設定
し、その状況における歯元の疲れ破壊限度を夫々
の歯車について測定し、また従来歯車については
歯が高精度にほぼ全体当りする場合のそれについ
ても測定した。
(Experiment) A gear equipped with the non-hardened portion 4 in this example (main gear) and a conventional gear whose entire peripheral surface was hardened (conventional gear) were prepared as samples, and the gears were tested for normal use. For conventional gears, we intentionally set the situation for each part of the tooth that would occur when In the case of a hit, it was also measured.

なお、上記二種類の試料用歯車は、いずれも次
のような高周波焼入れ条件によつて表面硬化処理
された。ただし加熱用コイルの形態は当然ながら
若干異なる。
Note that both of the above two types of sample gears were surface hardened under the following induction hardening conditions. However, the form of the heating coil is naturally slightly different.

〔予熱〕〔preheat〕

600℃×10秒 〔本加熱〕 サイクル数:4000Hz 電力密度:4000W/cm2 加熱時間:0.5sec 歯車回転:100rpm 〔冷却〕 冷却水量:150/min ※なお、焼入れ後100°〜200℃で焼もどし。 600℃×10 seconds [Main heating] Number of cycles: 4000Hz Power density: 4000W/ cm2Heating time: 0.5sec Gear rotation: 100rpm [Cooling] Cooling water amount: 150/min Return.

上記実験結果を示す第2図のグラフにおいて、
実線C1および破線C2は従来歯車が全体当りさ
せられた場合および部分当りさせられた場合の
夫々の歯元の疲れ破壊限度すなわち歯元に繰り返
し及ぼされる曲げ応力に歯がどの程度まで耐えら
れるかを示しており、また一点鎖線のグラフDは
本歯車の部分当り状態における歯元の疲れ破壊限
度を示している。
In the graph of Figure 2 showing the above experimental results,
The solid line C1 and the broken line C2 indicate the fatigue fracture limit of the root of the tooth when the conventional gear is brought into contact with the entire part and when it is brought into contact with the part, that is, the extent to which the tooth can withstand the bending stress that is repeatedly applied to the tooth root. Graph D, which is a dot-dash line, shows the fatigue fracture limit of the root of the gear in a state where it is in contact with a portion of the gear.

これから明らかなように、従来歯車においては
全体当りさせられる場合は十分な疲れ強さを維持
する反面、部分当りの状態となると疲れ強さが著
しく低下してしまつている。(破線C2) これに対して本発明に係る歯車の場合には、一
点鎖線Dで示されているように、部分当りさせら
れた状態でも従来歯車に比べて遥かに高い疲れ強
さを発揮しており、従来歯車の全体当り時におけ
るそれと殆んど変らない程である。
As is clear from this, in conventional gears, while sufficient fatigue strength is maintained when the entire gear is brought into contact, the fatigue strength is significantly reduced when it is brought into a state where the part is brought into contact. (Dotted line C2) On the other hand, in the case of the gear according to the present invention, as shown by the dashed line D, it exhibits much higher fatigue strength than the conventional gear even when it is partially hit. This is almost the same as when the whole gear is hit by a conventional gear.

しかもこのような効果を得るために、歯車の母
材として特殊なものを採用するわけでもなく、ま
た複雑な表面硬化処理を施すわけでもない。表面
処理される歯車の周面の一部分を非硬化部分4と
して残すという従来と殆んどコストの変らない方
法で、部分当り時における歯元の疲れ破壊限度ひ
いては歯の寿命を格段に向上させ得るのである。
Moreover, in order to obtain such an effect, a special material is not used as the base material of the gear, and no complicated surface hardening treatment is performed. By leaving a part of the peripheral surface of the gear to be surface-treated as a non-hardened part 4, which is almost cost-effective compared to the conventional method, it is possible to significantly improve the fatigue fracture limit of the tooth root at the time of partial contact, and thus the life of the tooth. It is.

次に別の実施例を第3図に示す。 Next, another embodiment is shown in FIG.

この例は、浸炭、すなわち鋼を浸炭剤(例えば
固体浸炭剤であれば硬質木炭粒に炭酸塩を混合し
たものなど)の中で加熱することにより鋼の表面
層に炭素を拡散浸透させる処理によつて、前記実
施例とほぼ同様の範囲を非硬化部分6として残し
た状態で、歯車の歯の表面を硬化処理して硬化部
分8を形成したものである。同じ部分は同じ符号
で示し説明は省略する。
An example of this is carburizing, a process in which carbon is diffused into the surface layer of the steel by heating the steel in a carburizing agent (for example, a solid carburizing agent is a mixture of hard charcoal grains and carbonate). Therefore, the hardened portion 8 is formed by hardening the surface of the tooth of the gear, while leaving a non-hardened portion 6 in the same area as in the previous embodiment. Identical parts are indicated by the same reference numerals and explanations will be omitted.

ただ、歯先部分の歯面における非硬化部分6と
硬化部分8との境界線が、歯端面側に凹となるほ
ぼ円弧状をなしており、言い換れば前記実施例に
おいて仮想した切断面がほぼ円筒面状に設定され
ている。
However, the boundary line between the non-hardened portion 6 and the hardened portion 8 on the tooth surface of the tooth tip has an almost circular arc shape that is concave toward the tooth end surface, in other words, the virtual cut surface in the above example. is set in an almost cylindrical shape.

そして、第3図に示すような非硬化部分6を得
るためには、浸炭処理に先立つて非硬化部分とな
るべき歯表面を銅メツキ等で浸炭防止しておけば
よく、また浸炭によれば第3図に示すように、歯
端面の歯元側も表面硬化されることとなる。
In order to obtain the non-hardened portion 6 as shown in FIG. 3, it is sufficient to prevent carburization of the tooth surface that should become the non-hardened portion with copper plating or the like prior to carburizing treatment. As shown in FIG. 3, the root side of the tooth end face is also surface hardened.

なお、このように浸炭法が採用される場合の歯
車(歯)の母材としては、一般に肌焼用鋼として
好適な低炭素鋼、低炭素合金鋼などを用いること
が望ましい。
In addition, when the carburizing method is adopted as described above, it is desirable to use low carbon steel, low carbon alloy steel, etc., which are generally suitable as case hardening steel, as the base material of the gear (teeth).

この実施例においても前記実施例とほぼ同様な
作用効果が得られ、やはりそれは実験により確認
されている。第4図に示すグラフは、ともに浸炭
処理された非硬化部分8を有する歯車と有しない
歯車との疲れ強さを前述のように比較したもので
あり、第2図に示す前記実施例の実験データと同
様な結果が得られている。同一の符号を第4図の
グラフに付し説明は省略するが、この結果から表
面硬化のために採用される処理手法と非硬化部分
の効果との間には関連性がないことがわかる。
This embodiment also provides substantially the same effects as those of the previous embodiment, which have also been confirmed through experiments. The graph shown in FIG. 4 compares the fatigue strength of a gear with and without a carburized non-hardened portion 8, as described above, and compares the fatigue strength of a gear with and without a carburized non-hardened portion 8. Results similar to the data are obtained. Although the same reference numerals are given to the graph in FIG. 4 and the explanation thereof is omitted, it can be seen from this result that there is no relationship between the treatment method employed for surface hardening and the effect of the unhardened portion.

なお、本発明は以上詳記した実施例に限定され
て解釈されるものでは決してない。
It should be noted that the present invention is by no means to be construed as being limited to the embodiments described in detail above.

例えば、平歯車に限らず、ハスバ歯車、ラツ
ク、カサ歯車、内歯車等、種々の歯車に本発明を
適用し得ることは言うまでもない。
For example, it goes without saying that the present invention is applicable not only to spur gears but also to various gears such as helical gears, racks, bevel gears, and internal gears.

さらに表面硬化処理方法は、代表的な方法とし
て示した高周波焼入れ、浸炭の他にも、例えば窒
化等、要するに歯の表面を非硬化部分を残した状
態で硬化処理できれば、殆何なる手法も採用可能
である。
Furthermore, in addition to induction hardening and carburizing, which are shown as typical methods, almost any surface hardening method can be used, such as nitriding, as long as the surface of the tooth can be hardened while leaving unhardened parts. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す歯車の要部斜
視図であり、第2図はその歯車の歯元疲れ破壊限
度を従来の歯車と比較して示すグラフである。第
3図は本発明の別の実施例を示す第1図に相当す
る図であり、第4図は第3図における歯車の効果
を示す第2図に相当するグラフである。 2,6:硬化部分、4,8:非硬化部分。
FIG. 1 is a perspective view of a main part of a gear showing an embodiment of the present invention, and FIG. 2 is a graph showing the root fatigue fracture limit of the gear in comparison with a conventional gear. 3 is a diagram corresponding to FIG. 1 showing another embodiment of the present invention, and FIG. 4 is a graph corresponding to FIG. 2 showing the effect of the gear in FIG. 3. 2, 6: hardened portion, 4, 8: non-hardened portion.

Claims (1)

【特許請求の範囲】[Claims] 1 歯面、歯先面および歯底面から成る歯車周面
が、歯先面上における歯端面から歯巾の5〜15%
の距離内側の点と、歯端面におけるほぼピツチ円
上の点とを通るほぼ平面状の切断面で歯を斜めに
切断したと考えた場合に該切断面より歯端面側の
部分が硬化されることなく残された状態で、表面
硬化処理されたことを特徴とする表面硬化歯車。
1 The gear peripheral surface consisting of tooth surface, tooth top surface and tooth bottom surface is 5 to 15% of the tooth width from the tooth end surface on the tooth top surface.
If we consider that the tooth is cut diagonally with a nearly planar cut surface that passes through a point inside the distance of A surface hardened gear characterized by being surface hardened without being left behind.
JP8409681A 1981-06-01 1981-06-01 Case hardened gear Granted JPS57200760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8409681A JPS57200760A (en) 1981-06-01 1981-06-01 Case hardened gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8409681A JPS57200760A (en) 1981-06-01 1981-06-01 Case hardened gear

Publications (2)

Publication Number Publication Date
JPS57200760A JPS57200760A (en) 1982-12-09
JPH0315062B2 true JPH0315062B2 (en) 1991-02-28

Family

ID=13820978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8409681A Granted JPS57200760A (en) 1981-06-01 1981-06-01 Case hardened gear

Country Status (1)

Country Link
JP (1) JPS57200760A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932273A (en) * 1987-12-26 1990-06-12 Mitsubishi Denki Kabushiki Kaisha Starter for an internal combustion engine
JP4547795B2 (en) * 2000-12-13 2010-09-22 トヨタ自動車株式会社 gear
JP4557240B2 (en) * 2001-07-18 2010-10-06 高周波熱錬株式会社 Induction hardening method and gear
JP7179286B2 (en) * 2018-11-20 2022-11-29 学校法人近畿大学 Gear for low oxygen environment and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4429210Y1 (en) * 1966-05-11 1969-12-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4429210Y1 (en) * 1966-05-11 1969-12-03

Also Published As

Publication number Publication date
JPS57200760A (en) 1982-12-09

Similar Documents

Publication Publication Date Title
US6059898A (en) Induction hardening of heat treated gear teeth
JP2008280610A (en) Carburized and high-frequency hardened part having high strength
JP4354277B2 (en) Method for manufacturing carburized and quenched members
EP1548141B1 (en) Machine part and method for manufacturing same
JPH0315062B2 (en)
US4481264A (en) Method for chromizing metallic pieces such as steel pieces and chromized metallic pieces obtained thereby
KR100317712B1 (en) Carburizing heat treatment method and carburizing heat transfer member
JPH10202435A (en) Manufacture of helical gear
JPH06264992A (en) Steering rack shaft
KR0183209B1 (en) Method for producing cast iron gear
JPH09241821A (en) Carburized gear
JPS60162726A (en) Method for surface-hardening toothed part of ring gear of flywheel
US20160002747A1 (en) Process for treating steel alloys for gears
EP0808909B1 (en) A process for production of a steel component
JPS63109152A (en) Production of toothed parts
JPS6156242A (en) Method for manufacturing high strength gear
JP3721522B2 (en) Gear for use in a vehicle axle assembly and method for manufacturing the gear
JP4526616B2 (en) Gear made of spheroidal graphite cast iron material and manufacturing method thereof
TWI816092B (en) Method for manufacturing a screw, and screw
JPH10238548A (en) High strength spline and manufacture thereof
JPH0968261A (en) Cast iron gear and its manufacture
JPS62253723A (en) Production of gear
JPH02294463A (en) Production of nitrified-steel member
JPH102322A (en) High strength spline
JPH04250927A (en) Manufacture of gear