JPH03150260A - Production of alumina substrate - Google Patents

Production of alumina substrate

Info

Publication number
JPH03150260A
JPH03150260A JP1289682A JP28968289A JPH03150260A JP H03150260 A JPH03150260 A JP H03150260A JP 1289682 A JP1289682 A JP 1289682A JP 28968289 A JP28968289 A JP 28968289A JP H03150260 A JPH03150260 A JP H03150260A
Authority
JP
Japan
Prior art keywords
alumina
substrate
powder
organic solvent
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1289682A
Other languages
Japanese (ja)
Inventor
Kouji Kajiyoshi
梶芳 浩二
Yukio Sakabe
行雄 坂部
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1289682A priority Critical patent/JPH03150260A/en
Publication of JPH03150260A publication Critical patent/JPH03150260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To inexpensively obtain a dense alumina substrate having excellent surface smoothness by dispersing alumina powder into an organic solvent containing Mg-acetylacetonate dissolved therein, evaporating the solvent to form powder, heat-treating the powder, grinding, molding and calcining. CONSTITUTION:Magnesium-aceceylacetonate is dissolved in an organic solvent (e.g. ethanol). Then the alumina powder is dispersed into the solution to form a slurry and each alumina particle 1 is covered with a coating film 2 of the organic solvent containing the magnesium component. Then the organic solvent is evaporated from the slurry to give powder, which is heat-treated, further ground, the magnesium component in the coating film 2 is oxidized, an outer shell 3 of magnesium oxide are formed on the surface of the alumina particle 1 to produce a substrate raw material. Then the substrate raw material is molded and calcined to give an alumina substrate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アルミナ基板の製造方法に関し、より具体的
にいえば、緻密で極めて平滑な表面を備えたアルミナセ
ラミックス基板を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an alumina substrate, and more specifically, to a method for manufacturing an alumina ceramic substrate having a dense and extremely smooth surface.

[背景技術とその問題点1 近年、マイクロエレクトロニクス部品の高速化及び高密
度化に伴い、基板材料としてアルミナセラミックスが多
用されている。この基板の特性として、電気的、機械的
及び熱的特性と共に表面の平滑性が重視されている。特
に、、薄膜混成集積回路用基板においては、例えば薄膜
抵抗の抵抗値安定化の要求から、高度な平滑性を有する
基板が望まれている。
[Background Art and its Problems 1] In recent years, as microelectronic components become faster and more densely packed, alumina ceramics are frequently used as substrate materials. As the characteristics of this substrate, importance is placed on electrical, mechanical, and thermal characteristics as well as surface smoothness. Particularly, in the case of substrates for thin film hybrid integrated circuits, a substrate having a high level of smoothness is desired, for example, due to the requirement of stabilizing the resistance value of a thin film resistor.

そこで、表面の平滑なアルミナ基板としては、アルミナ
基板の表面に施釉してガラスグレーズでコーティングし
、表面を平滑にしたグレーズド基板や焼成後のアルミナ
基板の表面を機械的に研磨した研磨基板等が用いられて
いる。しかしなから、グレーズド基板にあっては放熱性
が悪く、また耐熱性に劣るという欠点があり、研磨基板
にあってはアルミナが高硬度であるために研磨コストが
高価につくという問題があった。
Therefore, as alumina substrates with smooth surfaces, there are glazed substrates whose surfaces are glazed and coated with glass glaze to make the surfaces smooth, and polished substrates whose surfaces are mechanically polished after firing. It is used. However, glazed substrates have the disadvantage of poor heat dissipation and poor heat resistance, and polished substrates have the problem of high polishing costs due to the high hardness of alumina. .

一方、純度99.9%以上、平均粒径0.7uIn以下
のアルミナ(AhOs)微粉末100wt%に対して、
酸化マグネシウム(MgO)を0−05〜G−4wL%
添加すると、酸化マグネシウムが粒成長抑制剤として働
き、焼結の際に結晶粒子の増大がある程度制御され、I
Ii密で表面平滑性の優れたアルミナ基板が得られるこ
とは^s−Fire法としてよく知られている。
On the other hand, for 100wt% of alumina (AhOs) fine powder with a purity of 99.9% or more and an average particle size of 0.7uIn or less,
Magnesium oxide (MgO) 0-05~G-4wL%
When added, magnesium oxide acts as a grain growth inhibitor, controlling the growth of crystal grains to some extent during sintering, and increasing the I
The ability to obtain an alumina substrate with high Ii density and excellent surface smoothness is well known as the ^s-Fire method.

この八s−Fire法においては、MgO粒子をアルミ
ナの分散媒質に完全に均一に分散させる必要がある。し
かしなから、アルミナが基板組成の99.6〜99.9
5wt%を占めており、粒径が0.フー以下の個々のア
ルミナ粒子に一つ一つMgO粒子を割り当てるには、ア
ルミナ粒子より61オーダー小さな粒径のMgO粒子を
用いる必要がある。例えば、アルミナが99.90wt
%とMに0が0.lOwL%の組成で、アルミナの粒径
を0.5#lI+とした場合には、アルミナ粒子とMg
O粒子とを1対1に対応させるためには、MgO粒子の
粒径を0.05tm以下の細かさにする必要がある。そ
して、MgOの添加量が少なくなるほどMgO粒子の粒
径を小さくする必要がある。
In this 8s-Fire method, it is necessary to completely and uniformly disperse the MgO particles in the alumina dispersion medium. However, since alumina has a substrate composition of 99.6 to 99.9
It accounts for 5wt%, and the particle size is 0. In order to allocate MgO particles to each alumina particle smaller than Hu, it is necessary to use MgO particles whose particle size is 61 orders of magnitude smaller than the alumina particles. For example, alumina is 99.90wt
0 is 0 in % and M. When the alumina particle size is 0.5#lI+ with a composition of lOwL%, the alumina particles and Mg
In order to have a one-to-one correspondence with O particles, it is necessary to make the particle size of MgO particles as fine as 0.05 tm or less. The smaller the amount of MgO added is, the smaller the particle size of the MgO particles needs to be.

しかし、従来のようにアルミナとMgOを機械的に混合
する方法では、MgO粒子がRaになるほど混合中に凝
集し易くなり、MgO粒子をアルミナ粒子中に完全に分
散させることは困難であった。このため、あまり粒径の
小さなMgOを用いることができず、従来のAs−Fi
re法においては、上記のごと< 0.05〜0.4w
t%のMgOを添加していた−。
However, in the conventional method of mechanically mixing alumina and MgO, the higher the Ra of the MgO particles, the more likely they are to aggregate during mixing, making it difficult to completely disperse the MgO particles in the alumina particles. For this reason, it is not possible to use MgO with a very small particle size, and the conventional As-Fi
In the re method, as above < 0.05~0.4w
t% of MgO was added.

しかしなから、このMgOの添加量はアルミナの粒成長
の抑制のために必要な量を超過していると考えられる。
However, it is considered that the amount of MgO added exceeds the amount necessary for suppressing alumina grain growth.

[発明が解決しようとする課題] しかして、本発明は叙上の従来例の欠点に鑑みてなされ
たものであり、その目的とするところは、極<*a+な
少量のマグネシウム成分をアルミナの分Ni媒質中に完
全に分散させることができるようにし、酸化マグネシウ
ムの添加量を少なくすることにある。
[Problems to be solved by the invention] However, the present invention has been made in view of the drawbacks of the conventional examples described above, and its purpose is to add a small amount of extremely <*a+ magnesium component to alumina. The objective is to enable complete dispersion in the Ni medium and to reduce the amount of magnesium oxide added.

[課題を解決するための手段] このため、本発明のアルミナ基板の製造方法は、マグネ
シウム−アセチルアセトネートを溶解させた有機溶媒中
にアルミナ粉体を分散させてスラリーを形成し、このス
ラリーから有機溶媒を蒸発させて粉体にした後、この粉
体に熱処理を施し、さらに解砕して基板原料を調製し、
この基板原料を成形及び焼成してアルミナ基板を製作す
ることを特徴としている。
[Means for Solving the Problems] Therefore, the method for manufacturing an alumina substrate of the present invention involves dispersing alumina powder in an organic solvent in which magnesium-acetylacetonate is dissolved to form a slurry, and dispersing the slurry from this slurry. After evaporating the organic solvent and turning it into powder, this powder is heat-treated and further crushed to prepare the substrate raw material.
The method is characterized in that an alumina substrate is manufactured by molding and firing this substrate raw material.

[作用] Mgの有機金属化合物であるマグネシウム−アセチルア
セトネート0軸−aceLyleacetonate 
)を溶解させた有機溶媒中にアルミナ粉体を分散させる
ことにより、アルミナ粉体の個々のアルミナ粒子をマグ
ネシウム−アセチルアセトネートを含んだ有機溶媒によ
って被覆することができる。この後、スラリーから有機
溶媒を蒸発させると、アルミナ粉体の粒子表面にマグネ
シウム成分が残り、これに熱処理を施すことによって各
アルミナ粒子の表面に酸化マグネシウムの外殻を形成す
ることができる。したがって、掻く少量のマグネシウム
成分を含んだマグネシウム−アセチルアセトネートを用
いた場合でも、各アルミナ粒子に確実に酸化マグネシウ
ムを付着させることができ、これを基板原料としてアル
ミナ基板を製作することにより、アルミナの粒成長を抑
制し、緻密で表面平滑性の高いアルミナ基板を得ること
ができる。
[Action] Magnesium-acetylacetonate 0 axis-aceLyleacetonate, which is an organometallic compound of Mg
), individual alumina particles of the alumina powder can be coated with an organic solvent containing magnesium-acetylacetonate. Thereafter, when the organic solvent is evaporated from the slurry, a magnesium component remains on the surface of the alumina powder particles, and by heat-treating this, an outer shell of magnesium oxide can be formed on the surface of each alumina particle. Therefore, even when using magnesium acetylacetonate containing a small amount of magnesium component, it is possible to reliably attach magnesium oxide to each alumina particle, and by manufacturing an alumina substrate using this as a substrate material, it is possible to It is possible to suppress grain growth and obtain an alumina substrate that is dense and has a high surface smoothness.

[実施例1 以下、本発明の一実施例を添付図に基づいて詳述する。[Example 1 Hereinafter, one embodiment of the present invention will be described in detail based on the accompanying drawings.

まず、トルエンやエタノール等の有機溶媒に必要量のマ
グネシウム−アセチルアセトネートを溶解させ、ついで
この有機溶媒中にアルミナ粉体を入れてスラリーを形成
し、よく攪拌してアルミナ粒子を有機溶媒中に均一に分
赦させる。なお、マグネシウム−アセチルアセトネート
の必要量は。
First, dissolve the required amount of magnesium-acetylacetonate in an organic solvent such as toluene or ethanol, then add alumina powder to the organic solvent to form a slurry, stir well, and add the alumina particles to the organic solvent. Give a uniform pardon. In addition, what is the required amount of magnesium acetylacetonate?

アルミナの量や粒径等によっても異なるが、アルミナ基
板原料の焼成後にアルミナ100wt%に対して酸化マ
グネシウムが(LOO5vt%以上となるようにする。
Although it varies depending on the amount of alumina, particle size, etc., after firing the alumina substrate raw material, the amount of magnesium oxide (LOO) should be 5vt% or more based on 100wt% of alumina.

この工程により、各アルミナ粒子lは、第1図に示すよ
うに、マグネシウム成分を含んだ有機溶媒の被覆2によ
り1つ1つ包まれる。ついで、このスラリーから有機溶
媒を蒸発させ粉体を得る。この粉体に800〜1000
℃の温度で2時間程度熱処理を施し、さらに熱処理によ
って焼結した粉体を解砕して細かくする。これにより、
被覆2中のマグネシウム成分が#lieされて、各アル
ミナ粒子lの表面に酸化マグネシウムの外殻3が形成さ
れる。したがって、掻く少量の酸化マグネシウムであっ
ても、確実に個々のアルミナ粒子に付着させることがで
きる。
Through this step, each alumina particle 1 is individually wrapped in a coating 2 of an organic solvent containing a magnesium component, as shown in FIG. Next, the organic solvent is evaporated from this slurry to obtain a powder. 800 to 1000 to this powder
A heat treatment is performed at a temperature of 10.degree. C. for about 2 hours, and the powder sintered by the heat treatment is further crushed to make it finer. This results in
The magnesium component in the coating 2 is #lieed to form a magnesium oxide shell 3 on the surface of each alumina particle l. Therefore, even a small amount of magnesium oxide can be reliably attached to each alumina particle.

この酸化マグネシウムの外殻3によって包まれたアルミ
ナ粒子lを基板原料とし、適宜バインダーや可塑剤等を
添加しードクターブレード法で基板の形状に成形した後
、焼成してアルミナ基板を製作する。しかして、このア
ルミナ基板の製造工程においては、各アルミナ粒子lが
酸化マグネシウムの外!t3によって覆われているので
、個々のアルミナ粒子に粒成長抑制効果が働き、粒子径
が−一で表面の極めて平滑なアルミナ基板を得ることが
できる。
The alumina particles 1 surrounded by the outer shell 3 of magnesium oxide are used as a substrate raw material, a binder, a plasticizer, etc. are added as appropriate, and after being formed into the shape of a substrate by a doctor blade method, the alumina substrate is produced by firing. However, in the manufacturing process of this alumina substrate, each alumina particle l is made of magnesium oxide! Since it is covered by t3, a grain growth suppressing effect acts on each alumina particle, and an alumina substrate having a particle diameter of -1 and an extremely smooth surface can be obtained.

(実験例) 上記製造工程に従い、下記の第1表に示したサンプルN
Ll〜に20(2インチ角のアルミナ基板)を製作し、
各サンプルNILl−llJIL20の基板の表面粗さ
とその結晶径の最大値及び平均値を測定した。
(Experiment example) According to the above manufacturing process, sample N shown in Table 1 below
Fabricate 20 (2 inch square alumina substrate) on Ll ~,
The surface roughness of the substrate of each sample NILl-llJIL20 and the maximum value and average value of its crystal diameter were measured.

ここで、アルミナは、純度9199%、粒子径0.5#
111のものが用いられ、マグネシウム−アセチルアセ
トネートの添加量は、焼成後の酸化マグネシウムのwt
%に換算して0.001wt%、0.005wt%。
Here, the alumina has a purity of 9199% and a particle size of 0.5#.
111 was used, and the amount of magnesium acetylacetonate added was the wt of magnesium oxide after firing.
0.001wt%, 0.005wt% in terms of percentage.

0.010wt%及び0.050wt%の5種とした。There were five types, 0.010 wt% and 0.050 wt%.

有機溶媒としては、トルエン50%、エタノール50%
のものを用いた。また熱処理温度は700℃、800℃
、900c、tooo℃、1100℃の5段階に変化さ
せた。
Organic solvent: toluene 50%, ethanol 50%
I used the one from Also, the heat treatment temperature is 700℃, 800℃
, 900°C, tooo°C, and 1100°C.

さらに、基板原料に、基板原料100vt%に対してバ
インダーとしてPVDを10wt%添加し、可塑剤とし
てDOPを5wt%添加し、2インチ角の板状に成形し
、空気中において1550℃で2時間焼成した。
Furthermore, 10 wt% of PVD as a binder and 5 wt% of DOP as a plasticizer were added to the substrate raw material based on 100 vt% of the substrate raw material, and the mixture was molded into a 2-inch square plate shape and kept in air at 1550°C for 2 hours. Fired.

(以下余白) 第1表 この結果、マグネシウム−アセチルアセトネートの添加
量としては、酸化マグネシウムの冒t%に換算して0.
005wt%以上で、熱処理温度が800〜tooo℃
の場合に、良好な結果が得られることがわかった。すな
わち、上記条件内においては、第1表に示されているよ
うに、基板の表面粗さは0.04〜(LO5mであった
のに対し、上記条件外では0.07〜0.13111m
であり、また結晶径は上記条件下では平均値で1.0〜
1.3111aであったのに対し、上記条件外では1.
6〜3.1−とかなり大きな値を示した。
(Margins below) Table 1 As a result, the amount of magnesium acetylacetonate added was 0.0% in terms of % of magnesium oxide.
005wt% or more, heat treatment temperature is 800~tooo℃
It was found that good results could be obtained in the case of That is, as shown in Table 1, within the above conditions, the surface roughness of the substrate was 0.04~(LO5m), whereas outside the above conditions, it was 0.07~0.13111m.
, and the crystal diameter is 1.0 to 1.0 on average under the above conditions.
1.3111a, but outside the above conditions it was 1.3111a.
It showed a fairly large value of 6 to 3.1-.

これより本発明によれば、極く少量のマグネシウムの添
加により、良好な表面平滑性を有するアルミナ基板を製
作できることが明らかになった。特に、マグネシウム−
アセチルアセトネートの添加量としては、酸化マグネシ
ウムの冒t%に換算して、0.005wt%以上が好ま
しく、熱処理温度としては800〜1000℃が良好で
ある。
From this, it has been revealed that according to the present invention, an alumina substrate having good surface smoothness can be produced by adding a very small amount of magnesium. In particular, magnesium
The amount of acetylacetonate added is preferably 0.005 wt% or more in terms of % of magnesium oxide, and the heat treatment temperature is preferably 800 to 1000°C.

[発明の効果] 本発明によれば、As−Fire法において従来に比べ
てわずかな量の酸化マグネシウムの添加によリ、表面平
滑性の極めて良好なアルミナ基板を製作することができ
るようになった。
[Effects of the Invention] According to the present invention, it has become possible to produce an alumina substrate with extremely good surface smoothness by adding a small amount of magnesium oxide compared to the conventional method in the As-Fire method. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例における基板原料
の製造工程を説明するための概略断面図である。 ■−・・アルミナ粒子 2−・・有機溶媒の被覆 3・・・酸化マグネシウムの外殻 )ζ、−′−二′−,ノ 第2図
FIGS. 1 and 2 are schematic cross-sectional views for explaining the manufacturing process of a substrate raw material in one embodiment of the present invention. ■-...Alumina particles 2--Coating with organic solvent 3...Outer shell of magnesium oxide) ζ, -'-2'-, Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1) マグネシウム−アセチルアセトネートを溶解さ
せた有機溶媒中にアルミナ粉体を分散させてスラリーを
形成し、このスラリーから有機溶媒を蒸発させて粉体に
した後、この粉体に熱処理を施し、さらに解砕して基板
原料を調製し、この基板原料を成形及び焼成してアルミ
ナ基板を製作することを特徴とするアルミナ基板の製造
方法。
(1) Alumina powder is dispersed in an organic solvent in which magnesium-acetylacetonate is dissolved to form a slurry, the organic solvent is evaporated from this slurry to form a powder, and then this powder is heat-treated. , further crushing to prepare a substrate raw material, molding and firing this substrate raw material to produce an alumina substrate.
JP1289682A 1989-11-07 1989-11-07 Production of alumina substrate Pending JPH03150260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1289682A JPH03150260A (en) 1989-11-07 1989-11-07 Production of alumina substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1289682A JPH03150260A (en) 1989-11-07 1989-11-07 Production of alumina substrate

Publications (1)

Publication Number Publication Date
JPH03150260A true JPH03150260A (en) 1991-06-26

Family

ID=17746384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1289682A Pending JPH03150260A (en) 1989-11-07 1989-11-07 Production of alumina substrate

Country Status (1)

Country Link
JP (1) JPH03150260A (en)

Similar Documents

Publication Publication Date Title
US4045412A (en) Alumina substrate and method of manufacturing same
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
KR102124766B1 (en) Plasma processing apparatus and manufacturing method of the same
KR101692219B1 (en) Composite for vacuum-chuck and manufacturing method of the same
CN112939608B (en) White aluminum nitride ceramic and hot-pressing sintering method and application thereof
WO2024125118A1 (en) Oxide target and preparation method therefor
JP2023155427A (en) IGZO sputtering target
JP2017149636A (en) Oxide sintered body and oxide transparent conductive film
JPH03150260A (en) Production of alumina substrate
JP2001158674A (en) Sintered compact of porous silicon carbide, method for producing the same, member for wafer-polishing device and table for wafer-polishing device
JPH11335824A (en) Target material essentially consisting of mgo and its production
JPS59156961A (en) Manufacture of alumina sintered substrate
CN110937891A (en) Sintered body, sputtering target, and method for producing sintered body
JP3129233B2 (en) Sputtering target for forming a high dielectric film comprising a composite oxide sintered body of Ba, Sr and Ti
JPH03126658A (en) Production of alumina base plate
TWI761821B (en) A high-strength zirconium-alumina composite ceramic substrate for semiconductor devices and the method of manufacturing of the same
KR890002445B1 (en) Process of ceramic capacitor manufacture
CN106365633B (en) A kind of chip PTC thermistors and preparation method thereof
JP2002201070A (en) Silicon carbide sintered compact and its manufacturing method
JPS6021854A (en) Manufacture of alumina sintered substrate
JP2001003164A (en) Sputtering target for forming high dielectric film free from generation of cracking even in the case of high speed film formation
JPH02167856A (en) Production of alumina substrate
KR101629149B1 (en) Semiconducting ceramics composition for electrostatic dissipation and manufacturing method thereof
JPS59156960A (en) Manufacture of alumina sintered substrate
JP3255586B2 (en) Electrode plate for plasma etching