JPH03149185A - Electrodeposited grindstone and its manufacture - Google Patents

Electrodeposited grindstone and its manufacture

Info

Publication number
JPH03149185A
JPH03149185A JP28686889A JP28686889A JPH03149185A JP H03149185 A JPH03149185 A JP H03149185A JP 28686889 A JP28686889 A JP 28686889A JP 28686889 A JP28686889 A JP 28686889A JP H03149185 A JPH03149185 A JP H03149185A
Authority
JP
Japan
Prior art keywords
grindstone
electrodeposited
layer
substrate
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28686889A
Other languages
Japanese (ja)
Other versions
JP2849930B2 (en
Inventor
Susumu Komine
小峰 進
Eiji Inagaki
稲垣 英二
Toyoshi Tsukawaki
塚脇 豊志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Diamond Industrial Co Ltd
Original Assignee
Asahi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Diamond Industrial Co Ltd filed Critical Asahi Diamond Industrial Co Ltd
Priority to JP1286868A priority Critical patent/JP2849930B2/en
Publication of JPH03149185A publication Critical patent/JPH03149185A/en
Application granted granted Critical
Publication of JP2849930B2 publication Critical patent/JP2849930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To give elasticy to an electrodeposited grindstone for the absorption of vibration during machining so as to dump shocks applied to a work by using synthetic resin for a substrate. CONSTITUTION:An electroless deposition process is applied to the outer circumference of a conductive synthetic resin substrate 6 in a disk shape having a fitting hole at the center thereof, or to the outer circumference and the inside of the fitting hole 5. Later, an ultrahard grindgrain layer 13 is formed on the elecroless deposite layer of the outer circumference of the substrate 6 by an electroplating process, and thereby an electro-deposited grindstone.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は新規な電着砥石及びその製造方法に関するもの
である。さらに詳しくいえば、本発明は、長寿命でかつ
切断面のチッピングを低減しうるなどの特徴を有し、各
種工業材料の研削加工、特に硝子、セラミックスなどの
硬脆材料の切断や溝加工及び難研削材料や複合材料の電
解研削切断などに好適に用いられる電着砥石、及びこの
ものを効率よく製造する方法に関するものである。 [従来の技術1 従来、硝子、セラミックス、フェライトなどは、電子部
品材料などとして広く使用されているが、、多くの場合
、これら材料を一定寸法に切断又は一定形状に溝入れし
て用いられている。また、建築材料分野においては、近
年PC板にみられるような表面を硝子で被覆されたセメ
ント材と鋼材との複合材料が多く用いられるようになっ
てきているが、この場合、該複合材料を同時切断するこ
とがしばしば要求される。 これらの加工においては、切断面のチッピングが小さい
ことが要求されるが、例えば表面が硝子で被覆された鉄
筋入りセメント板であるPC板は、切断時に硝子層にチ
ッピングが発生しやすく、特に鉄筋を切断する際、切断
抵抗が増大して、砥石の振動が烈しくなるため、チッピ
ングが最大となる難剛材料であることが知られている。 このような加工においては、従来鋼板を基板としたメタ
ルボンド砥石や電着砥石、合成樹脂板を基板としたレジ
ンボンド砥石などが用いられている。しかしながら、一
般的に硬脆材料の切断や溝加工では、前記メタルボンド
や電着砥石は、レジンボンド砥石に比べてチッピングが
大きいという欠点を有しており、これに対し、レジンボ
ンド砥石はチッピングは小さいものの、砥石摩耗が大き
く、例えば一定形状の溝加工などを施す場合に、所定の
砥石形状が容易に変化するため、所望の溝形状の加工が
困難であるという欠点を有している。 一方、導電性を有する合成樹脂基板を用いたダイヤモン
ド砥石については、本出願人は先に、導電性合成樹脂基
板を用いたメタルボンド砥石を提案したが(特願昭63
−270008号)、このものは鋼製基板に比べて軽量
化及び防錆効果を目的としたもので、主として自動車用
窓硝子の面取りを対象としている上、基板と砥粒層との
接着力の関係から製造できる砥石寸法の限界は免れず、
切断や溝加工に用いる砥石には適用しにくいという欠点
があった。 また、全綱を合成樹脂で固めた導電性を有する合成樹脂
基板を用いた電着砥石や〔特開昭63−300869号
公報)、金属線条を合成樹脂で固めた電解研削用砥石(
特願昭5G−12634号公報)なども提案されている
。しかしながら、前者の電着砥石においては、該基板の
露出した金属部分にのみダイヤモンド砥粒が電着される
ので、砥粒層は断続的になるのを免れず、その結果切断
面のチッピングが増大するという問題が生じるし、一方
後者の電解研削用砥石は砥粒層がレジンボンドで固着さ
れているため、寿命が短く、前記したようなレジンボン
ド砥石としての欠点を有している。 他方、導電性合成樹脂基板を用いた電着砥石においては
、該基板として、通常金網や金属線条を合成樹脂で固め
たものが用いられるが、このような基板では、超硬砥粒
を電着する場合や該砥石を電解研削用砥石として使用す
る場合、該基板の取付孔と電極との接触抵抗が大きく、
特に砥石を研削盤に取り付けて電解研削を行う場合、取
付孔とスピンドル軸間には1 / 1 G G〜3/R
oomm8度のギャップがあるので、接触不良を起こし
やすいという問題がしばしば生じる。
[Industrial Field of Application] The present invention relates to a novel electrodeposited grindstone and a method for manufacturing the same. More specifically, the present invention has features such as long life and reduced chipping on cut surfaces, and is suitable for grinding various industrial materials, especially cutting and grooving hard and brittle materials such as glass and ceramics. The present invention relates to an electrodeposited grindstone that is suitably used for electrolytic grinding and cutting of difficult-to-grind materials and composite materials, and a method for efficiently manufacturing the same. [Conventional technology 1 Glass, ceramics, ferrite, etc. have been widely used as materials for electronic components, but in many cases, these materials are cut to a certain size or grooved into a certain shape. There is. In addition, in the field of building materials, composite materials of cement and steel whose surfaces are coated with glass, such as those found in PC boards, have been increasingly used in recent years; Simultaneous cutting is often required. In these processes, chipping on the cut surface is required to be small, but for example, when cutting a PC board, which is a cement board with reinforcing steel whose surface is coated with glass, chipping is likely to occur in the glass layer when cutting. It is known that when cutting, the cutting resistance increases and the vibration of the grindstone becomes intense, making it a difficult material that causes maximum chipping. In such processing, metal bond grindstones and electroplated grindstones using steel plates as substrates, resin bond grindstones using synthetic resin plates as substrates, and the like have conventionally been used. However, in general, when cutting or grooving hard and brittle materials, the metal bond and electroplated grindstones have the disadvantage of more chipping than the resin bond grindstones. Although it is small, grindstone wear is large, and when machining grooves of a fixed shape, for example, the predetermined shape of the whetstone changes easily, making it difficult to process the desired groove shape. On the other hand, regarding diamond grinding wheels using conductive synthetic resin substrates, the present applicant previously proposed a metal bond grinding wheel using conductive synthetic resin substrates (Patent Application No. 63
-270008), this product is intended to be lighter and more rust-proof than steel substrates, and is mainly used for chamfering automobile window glass. Due to the relationship, there is a limit to the size of the grindstone that can be manufactured.
The drawback is that it is difficult to apply to grindstones used for cutting and grooving. In addition, we have developed an electroplated grindstone using a conductive synthetic resin substrate in which the entire wire is hardened with synthetic resin (Japanese Patent Laid-Open No. 63-300869), and an electrolytic grinding wheel in which the metal wire is hardened with synthetic resin (
Japanese Patent Application No. 5G-12634) has also been proposed. However, in the former electrodeposited grindstone, diamond abrasive grains are electrodeposited only on the exposed metal parts of the substrate, so the abrasive grain layer inevitably becomes intermittent, resulting in increased chipping on the cut surface. On the other hand, the latter type of electrolytic grinding wheel has a short lifespan because the abrasive grain layer is fixed with resin bond, and has the above-mentioned drawbacks as a resin bonded grinding wheel. On the other hand, in electrodeposited grindstones using conductive synthetic resin substrates, the substrate is usually wire mesh or metal wire hardened with synthetic resin, but in such substrates, the carbide abrasive grains are When the grinding wheel is used as a grinding wheel for electrolytic grinding, the contact resistance between the mounting hole of the substrate and the electrode is large.
In particular, when attaching a grinding wheel to a grinding machine and performing electrolytic grinding, there should be a distance of 1/1 G to 3/R between the mounting hole and the spindle shaft.
Since there is a gap of 8 degrees, the problem often arises that poor contact is likely to occur.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明は、このような従来のレジンボンド砥石、メタル
ボンド砥石及び電着砥石が有する欠点を克服し、長寿命
を有する上、チッピングが小さく、かつ少ない加工が可
能な電着砥石、及び前記特性を有するとともに、その作
成の際の超硬砥粒の電着時や電解研削加工時における電
極と取付孔との接触抵抗を減少させた電着砥石を提供す
ることを目的としてなされたものである。 【課題を解決するための手段J 本発明者らは、前記の好ましい性質を有する電着砥石を
開発すべく鋭意研究を重ねた結果、導電性合成樹脂基板
を用い、外周面の超硬砥粒を電着する部分に予め無電解
メッキ処理を施すことにより、超硬砥粒層が連続的に形
成され寿命が長い上、チッピングが小さくかつ少ない研
削加工が可能な電着砥石が得られること、及び、さらに
基板の取付孔の内面に無電解メッキ処理を施すことによ
り、超硬砥粒の電着時や電解研削加工時における電極と
取付孔との接触抵抗を減少させうろことを見い出し、こ
の知見に基づいて本発明を完成するに至った。 すなわち、本発明は、中心に取付孔を有する円板状の導
電性合成樹脂基板の外周面に、電気メッキ処理により超
硬砥粒層を形成させた電着砥石において、該超硬砥粒層
が無電解メッキ層を介して基板に電着され、かつ所望に
より該取付孔の内面に無電解メッキ層が設けられている
ことを特徴とする電着砥石を提供するものである。 本発明に従えば、前記電着砥石は、中心に取付孔を有す
る円板状の導電性合成樹脂基板の外周面に、又はこの外
周面と該取付孔の内面とに無電解メッキ処理を施したの
ち、基板外周面の無電解メッキ層の上に、電気メッキ処
理により超硬砥粒層を形成させることにより製造するこ
とができる。 以下、本発明を詳細に説明する。 本発明においては、基板として中心に取付孔を有する円
板状の導電性合成樹脂から成るものが用いられる。この
導電性合成樹脂における樹脂としては、例えば熱硬化性
のフェノール樹脂やポリイミド樹脂などの耐熱性樹脂が
好ましく挙げられる。 導電性合成樹脂基板を製造する方法については特に制限
はなく、従来該基板の製造において慣用されている方法
を用いることができる。例えば、前記樹脂を導電性金網
や金属線条とともに、加熱プレスを用いて所望形状に成
形する方法などを用いることができる。      本発明においては、このようにして得られた導電性合成
樹脂基板の外周面に、超硬砥粒層を電気メッキ処理によ
り形成させるが、この際、予め、該超硬砥粒層を形成さ
せる部分に無電解メッキ処理を施すことが必要である。 この無電解メッキ処理を施さないと、超硬砥粒は露出し
た金属部分にのみ電着されるので、形成された超硬砥粒
層は連続層とならず、その結果、研削加工時に、チッピ
ングが発生しやすくなるのを免れないが、無電解メッキ
処理を施すことにより、該超硬砥粒層は連続層を形成し
、前記問題が解決され、本発明の目的が達成される。 無電解メッキ処理については特に制限はなく、従来合成
樹脂の表面に無電解メッキ処理を施す際に慣用されてい
る方法、例えば温度10〜70℃程度の無電解ニッケル
メッキ液、銅メッキ液、クロムメッキ液などの中に、被
処理基板を、必 要ならば無電解メッキ処理を施す部分
を除いて樹脂塗装や樹脂製治具によりマスキングを施し
 た被処理基板を適当な時間浸漬する方法などを用いる
ことができる。この際、基板のあらさについては、比較
的粗い方が無電解メッキ層と基板との密着性がよいので
、通常基板の旋削面あらさは1〜20μmRmaxの範
囲で選ばれる。また、無電解メッキ層の膜厚については
、厚すぎると残留応力が大きくなって、膜に割れが発生
したり、極端な場合には膜が基板面から剥がれることが
あるし、また薄すぎると次工程の電着工程において、電
気メッキの電流密度を所望値まで上げることができず、
形成される電着層が不均質になるおそれが生じる。した
がって、無電解メッキ層の膜厚は、通常1〜5Gpmの
範囲で選ばれる。 次に、学のようにして導電性合Ilt樹脂基板の外周面
に設けられた無電解メッキ層の上に、必要ならば該マス
キングを取り除いて、電着法により超硬砥粒層を形成さ
せるが、この電着法については特に制限はなく、従来電
着砥石の製造の際に慣用されている方法を用いることが
できる。例えばニッケル電着法、クロム電着法、銅電着
法などにより、該無電解メッキ層の上に、超硬砥粒層が
設けられる。この際、無電解メッキ層メ同種の金属を用
いて電着を行ってもよいし、異種の金属を用いて電着を
行ってもよいが、異種の金属を用いて電着を行う場合、
両金属の熱膨張係数が異なるの     で電着液の温
度には十分な配慮が必要である。また、電着層の厚さは
、通常1 G=200μmの範囲で選ばれる。 本発明で用いられる超硬砥粒としては、例えば天然産や
人造のダイヤモンド砥粒及びCBN砥粒などが挙げられ
る。これらの砥粒は、通常粒子径が10〜200μmの
範囲のものが用いられる。 本発明においては、前記無電解メッキ処理を施す際に、
所望に応じ該導電性合成樹脂基板の取付孔の内面にも無
電解メッキ処理を施し、無電解メッキ層を設けてもよい
。これにより、本発明の電着砥石を作製する際の超硬砥
粒の電着時や、該砥石を電解研削用として使用する際に
、電極と取付孔との接触抵抗が減少し、効率よく超硬砥
粒の電着や電解研削を行うことができる。特に砥石を研
削盤に取り付けて電解研削を行う場合、取付孔とスピン
ドル軸間にl/100〜3/10011II+程度のギ
ャップがあるので、無電解メッキ処理を施さず、そのま
までは接触不良を起こしやすいという問題が生じるが、
本発明のように無電解メッキ処理を施すことにより、前
記問題を容易に解決することができる。該取付孔の内面
に設けられる無電解メッキ層の膜厚は、通常1〜50μ
mの範囲で選ばれる。 次に、本発明の好適な実施態様の1例を添付図面に従っ
て説明すると、第1図(イ)ないしくへ)は本発明の電
着砥石の製造工程の1例を示す説明図であって、まず、
(イ)で示すように、金星1の中に所望の合成樹脂粉末
2と導電性金網3を入れ、加熱プレス4により加熱成形
して、導電性合成樹脂板を作成したのち、(ロ)で示す
ような中心に取付孔5を有する所定寸法の円板状導電性
合成樹脂基板6に旋盤加工する。 。 次に、(ハ)で示すように、該基板6に無電解メッキ処
理を施す部分を除いて、樹脂塗膜又は樹脂製治具7によ
りマスキングを施したのち、これを(ニ)で示すように
無電解メッキ液8中に浸漬して無電解メッキ処理を行い
、次いで前記マスキングを除去し、(ホ)で示すような
、その外周面及び所望に応じ取付孔5の内面に無電解メ
ッキ層9が設けられた基板を作成する。次に、(へ)で
示すように、電着用超硬砥粒ioを含有する電着用メッ
キ液ll中に、前記のようにして基板の外周面に設けら
れた無電解メッキ層が浸漬するように基板6を配設し、
該基板を矢印の方向に回転させながら電極12と基板6
との間に電流を流して、基板の外周面に設けられた無電
解メッキ層の上に超硬砥粒電着層13を形成させる。 このようにして、中心に取付孔を有する円板状の導電性
合成樹脂基板の外周面に、無電解メッキ層を介して超硬
砥粒層が電着され、かつ所望に応じ該取付孔の内面に無
電解メッキ層が設けられた本発明の電着砥石が得られる
。 【実施例1 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。 実施例1 市販のフェノール樹脂を200メツシュの導電性金網と
ともに、加熱プレスにより加熱成形を行い、導電性フェ
ノール樹脂板を作成したのち、第2図(a)に示すよう
な凸形基板6に旋盤加工した。 次に、市販の無電解ニッケルメッキ液を充満したメッキ
槽中に該基板を浸漬して無電解ニッケルメッキ処理を施
し、基板の外周面及び取付孔の内面に厚さ10μmの無
電解メッキ層を設けたのち、該外周面に設けられた無電
解メッキ層の上に、粒子径3 G=40 pm (#5
00)の合成ダイヤモンド砥粒を用いてニッケル電着法
により、ダイヤモンド砥粒層を形成させ、本発明の電着
砥石を製造した。この際の電着条件及び電着に用いた液
組成、物性を次に示す。 電着条件 浴温    :45℃ 陰極電流密度= 2−8 A / d m ”メッキ時
間:2時間 電着に用いた液の組成、物性 スルファミン酸ニツケル=400gl&塩化ニツケル 
    =15g/l ホ  ウ  酸        =35ti/lスルフ
ァミン酸    :少量 pH調整剤      :少量 光沢剤   :少量 9H=3−7 表面張力     = 28 dyne/ cmこれに
より、基板外周面に、ダイヤモンド砥粒含有量30vo
1%でニッケルメッキ層の厚さが28μmの電着層が形
成された。 用いた#500ダイヤモンド砥粒の粒子径は30〜40
pmであることから、形成された電着層面はニッケル面
からダイヤモンド砥粒が僅かに突出している状態である
。 このようにして得られた本発明の砥石の使用に当たって
は、使用前にWA500−Jの砥石を用い、予めドレッ
シングしたものを用いた。また、比較用のレジンボンド
砥石についても同様のドレッシングを施した。 実施例2 実施例1と同様にして、第2図(b)に示す切断砥石用
の基板を作成した。 この基板に、実施例1と同様にして、無電解メッキ気層
を施したのち、ニッケル電着法によりダイヤモンド砥粒
層を形成させ、本発明の電着砥石を製造し、テストに用
いた。 実施例3 実施例1において#500ダイヤモンド砥粒の代わりに
#120ダイヤモンド砥粒を用いた以外は、実施例1と
全く同様1こして、本発明の電着砥石を製造した。 実施例4 実施例1と同様にして、第2図(c)及び(d)に示す
平形砥石用基板を作成した。 この基板l;、実施例1と同じ方法を用い、無電解銅メ
ッキ槽中で無電解銅メッキ処理を施した。この際、無電
解銅メッキ液として市販のものを用い、液温約50℃に
加温して、この液中に基板を約2時間浸漬して処理を行
い、膜厚2Gpmの無電解銅メッキ層を基板の外周面及
び取付孔の内面に形成させた。次いで、基板の外周面に
設けられた無電解銅メッキ層の上に、粒子径105〜1
2.5μm(suzo)のCBN砥粒を用いて銅電着法
により、CBN砥粒層を形成させ、本発明の電着砥石を
製造した。この際の電着条件及び電着に用いた液組成、
物性を次に示す。 電着条件 浴温    :50℃ 陰極電流密度=2−5A/dm” メッキ時間=3時間 電着に用いた液の組成、物性 ピロドンコンク(商品名):O−51/1アンモニア 
      = 5 ccl &レベリング剤、光沢剤
  :5cc/悲比重          :l、3 9H=8.6 表面張力        =77dy■e/Cmこれに
より、基板外周面に、銅メッキ層の厚さが約90μmで
、このメッキ層表面からCBN砥粒が約20pm突出し
た電着層が形成された。 応用例1 第3図に示すような石英硝子の加工を、ダイヤモンド砥
粒層500、砥石外径100履腫、砥石厚み3 mm、
外周が90[V形状の従来のレジンポンド砥石、メタル
ボンド砥石及び実施例1で得られた本発明の電着砥石を
用い、砥石回転数8.00Or−p−m−、加工物送り
速度10su+/min、切り込み0.8mm、研削液
(水道水)液量をl/minの条件で行い、その性能を
比較した。 その結果、レジンボンド砥石は切れ味が良く、山頂のチ
ッピングはlO〜20pmと小さかったが、lOライン
の溝加工で砥石の先端が半円状に摩耗し、石英硝子の溝
底が丸み形状になった。また、メタルボンド砥石の場合
は、砥石摩耗はほとんどないが山頂部のチッピングが大
きく、50〜1007wmの大きさのチッピングが頻繁
に発生した。これに対し本発明の電着砥石を用いると、
いずれも耐摩耗性はメタルボンド砥石と同様に大きく、
砥石先端が半円状になることはなく、石英硝子山頂部の
チッピングもNG〜20μm程度で極めて小さい値でb
つだ。 応用例2 厚さ15mmの表面が硝子で被覆された鉄筋入りのPC
板を、ダイヤモンド砥粒層120、砥石外径200 y
xya、砥石厚み4龍の従来のメタルボンド砥石及び実
施N3で得られた本発明の電着砥石を用いて、砥石回転
数600Or−p、m。、加工物送り速度2m/min
、研削液(硝酸塩水溶液)液量8ffi/minの条件
で電解研削切断した。この際加工物中の鉄筋を陽極に、
砥石を陰極として硝酸塩水溶液を注いで切断した。この
結果、メタルボンド砥石による電解研削切断では鉄筋切
断時の硝子層のチッピングが0.5〜1.0+m+wに
減少し、一般の切断の場合よりも小さくなった。これに
対し本電着砥石で電解研削切断した場合は0.3〜0−
6rxxsとさらにチッピングが減少した。 応用例3 実施例4で得られた本発明の電着砥石及び従来のレジン
ボンド砥石を用い、SKH−51(HRC:60)を平
面研削盤で下記の条件にて湿式研削し、その性能を比較
した。 研削条件 砥石周速     =1600m/minテーブル送り
速度 = 10 m/m i nテーブル前後送り量=
3mm/pass切込み      =20μm/回 なお、砥石の大きさは両砥石とも外径180+mである
。 この結果、レジンボンド砥石の研削比は約450であっ
たのに対し、本発明の電着砥石は約2000であった。 研削面あらさについては両砥石ともRmax(2〜3)
μmで、はとんど差は認められなかった。 [発明の効果] 本発明の電着砥石は、基板に合成樹脂を用いているので
弾性があり、加工中の振動を吸収し、振動を吸収しにく
い鉄製基板の砥石に比べて被加工物に加わる衝撃が緩和
され、その結果チッピングが低減し、騒音も小さい。ま
た、砥粒層が連続的に形成されているので、チッピング
が発生しやすい材料の研削、特に溝加工や切断において
、°電着砥石であるにもかかわらず、チッピングを小さ
くすることができる上、砥粒層は金属ボンドで電着され
ているので、レジンボンド砥石に比べて耐摩耗性に優れ
、寿命が長い。その上、本発明の砥石は導電性を有して
いるので、ダイヤモンド砥石には不向きの鋼材加工も、
電解研削することによって解決することができ、しかも
基板に含有されている金属は導電性と共に、補強材の役
割も果たしている。 さらに、本発明の砥石は、基板の取付孔の内面に無電解
メッキ層を設けることにより、例えばPC板のような鉄
筋を含む脆性材料を電解研削切断する場合、砥石への給
電の信頼性が高くなり、鉄筋が容易に切断できるので、
振動が低減され、その結果PC板のような難削材を含む
複合材料においてもチッピングが低減される上、電着砥
石を作成する際の超硬砥粒の電着においても、給電の信
頼性が高くなるので、効率よく電着が行える。
The present invention overcomes the drawbacks of such conventional resin bonded grindstones, metal bonded grindstones, and electroplated grindstones, and provides an electroplated grindstone that has a long life, has small chipping, and can be processed with less processing, and has the above-mentioned characteristics. The purpose of this invention is to provide an electrodeposited grindstone that has a high level of corrosion resistance and reduces the contact resistance between the electrode and the mounting hole during the electrodeposition of cemented carbide abrasive grains and during electrolytic grinding. . [Means for Solving the Problems J] As a result of extensive research in order to develop an electrodeposited grindstone having the above-mentioned preferable properties, the inventors of the present invention discovered that using a conductive synthetic resin substrate, the superhard abrasive grains on the outer circumferential surface of the grindstone were By performing electroless plating treatment on the part to be electrodeposited in advance, a layer of carbide abrasive grains is continuously formed, and an electrodeposited grindstone with a long service life, with small chipping and capable of grinding can be obtained. Furthermore, they discovered that by applying electroless plating to the inner surface of the mounting hole of the board, they could reduce the contact resistance between the electrode and the mounting hole during electrodeposition of carbide abrasive grains or during electrolytic grinding. The present invention was completed based on the findings. That is, the present invention provides an electrodeposited grindstone in which a superhard abrasive grain layer is formed by electroplating on the outer peripheral surface of a disk-shaped conductive synthetic resin substrate having a mounting hole in the center. is electrodeposited on a substrate via an electroless plating layer, and if desired, an electroless plating layer is provided on the inner surface of the attachment hole. According to the present invention, the electrodeposited grindstone is provided with electroless plating on the outer peripheral surface of a disk-shaped conductive synthetic resin substrate having a mounting hole in the center, or on the outer peripheral surface and the inner surface of the mounting hole. Thereafter, a superhard abrasive grain layer is formed on the electroless plating layer on the outer circumferential surface of the substrate by electroplating. The present invention will be explained in detail below. In the present invention, a disk-shaped substrate made of conductive synthetic resin and having a mounting hole in the center is used as the substrate. Preferred examples of the resin in this conductive synthetic resin include heat-resistant resins such as thermosetting phenol resins and polyimide resins. There are no particular limitations on the method of manufacturing the conductive synthetic resin substrate, and any method conventionally used in the manufacture of such substrates can be used. For example, a method may be used in which the resin is molded into a desired shape using a hot press together with a conductive wire mesh or metal wire. In the present invention, a super-hard abrasive layer is formed on the outer circumferential surface of the conductive synthetic resin substrate thus obtained by electroplating. At this time, the super-hard abrasive layer is formed in advance. It is necessary to perform electroless plating treatment on the parts. If this electroless plating treatment is not performed, the carbide abrasive grains will be electrodeposited only on the exposed metal parts, and the formed carbide abrasive grain layer will not be a continuous layer, resulting in chipping during the grinding process. However, by performing the electroless plating treatment, the cemented carbide abrasive grain layer forms a continuous layer, the above-mentioned problem is solved, and the object of the present invention is achieved. There are no particular restrictions on the electroless plating process, and methods commonly used for electroless plating on the surface of synthetic resins, such as electroless nickel plating solution, copper plating solution, and chromium plating solution at a temperature of about 10 to 70°C, can be used. The substrate to be processed, if necessary, is coated with resin or masked using a resin jig, except for the areas to be electroless plated, and then immersed in a plating solution for an appropriate amount of time. Can be used. At this time, the roughness of the turned surface of the substrate is usually selected within the range of 1 to 20 μmRmax, since the relatively rougher the substrate, the better the adhesion between the electroless plating layer and the substrate. Regarding the thickness of the electroless plating layer, if it is too thick, the residual stress will increase and the film may crack, or in extreme cases, the film may peel off from the substrate surface. In the next electrodeposition process, the current density of electroplating could not be increased to the desired value,
There is a risk that the electrodeposited layer formed will be non-uniform. Therefore, the thickness of the electroless plating layer is usually selected in the range of 1 to 5 Gpm. Next, on the electroless plating layer provided on the outer peripheral surface of the conductive composite Ilt resin substrate as described above, the masking is removed if necessary, and a superhard abrasive grain layer is formed by electrodeposition. However, there are no particular limitations on this electrodeposition method, and any method conventionally used in the production of electrodeposited grindstones can be used. For example, a super hard abrasive grain layer is provided on the electroless plating layer by a nickel electrodeposition method, a chromium electrodeposition method, a copper electrodeposition method, or the like. At this time, the electroless plating layer may be electrodeposited using the same type of metal or different types of metals, but when electrodeposition is performed using different types of metals,
Since the coefficients of thermal expansion of the two metals are different, sufficient consideration must be given to the temperature of the electrodeposition solution. Further, the thickness of the electrodeposited layer is usually selected within the range of 1 G = 200 μm. Examples of the carbide abrasive grains used in the present invention include naturally produced or artificial diamond abrasive grains and CBN abrasive grains. These abrasive grains usually have a particle size in the range of 10 to 200 μm. In the present invention, when performing the electroless plating treatment,
If desired, the inner surface of the attachment hole of the conductive synthetic resin substrate may also be subjected to electroless plating treatment to provide an electroless plating layer. As a result, the contact resistance between the electrode and the mounting hole is reduced when the carbide abrasive grains are electrodeposited when producing the electrodeposited grindstone of the present invention, or when the grindstone is used for electrolytic grinding. Electrodeposition and electrolytic grinding of carbide abrasive grains can be performed. In particular, when electrolytically grinding is performed by attaching a grinding wheel to a grinding machine, there is a gap of approximately l/100 to 3/10011II+ between the mounting hole and the spindle shaft, so contact failure is likely to occur if electroless plating is not performed. However, the problem arises that
By performing electroless plating treatment as in the present invention, the above problem can be easily solved. The thickness of the electroless plating layer provided on the inner surface of the mounting hole is usually 1 to 50 μm.
selected within the range of m. Next, one example of a preferred embodiment of the present invention will be described with reference to the accompanying drawings. FIG. ,first,
As shown in (a), a desired synthetic resin powder 2 and a conductive wire mesh 3 are placed in a Venus 1 and heated and formed using a hot press 4 to create a conductive synthetic resin plate, and then in (b). A disc-shaped conductive synthetic resin substrate 6 of a predetermined size having a mounting hole 5 in the center as shown is lathed. . Next, as shown in (c), the substrate 6 is masked with a resin coating or a resin jig 7, except for the part to be subjected to electroless plating, and then this is masked as shown in (d). Then, the masking is removed and an electroless plating layer is formed on the outer peripheral surface and the inner surface of the mounting hole 5 as desired, as shown in (E). 9 is provided. Next, as shown in (f), the electroless plating layer provided on the outer circumferential surface of the substrate as described above is immersed in the electrodeposition plating solution 11 containing the electrodeposition cemented carbide abrasive grains io. The board 6 is arranged in
The electrode 12 and the substrate 6 are rotated in the direction of the arrow.
A current is passed between the two electrodes to form a superhard abrasive electrodeposited layer 13 on the electroless plating layer provided on the outer peripheral surface of the substrate. In this way, the carbide abrasive grain layer is electrodeposited on the outer peripheral surface of the disk-shaped conductive synthetic resin substrate with the mounting hole in the center via the electroless plating layer, and the mounting hole is fixed as desired. The electrodeposited grindstone of the present invention is obtained, the inner surface of which is provided with an electroless plating layer. [Example 1] Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by these examples. Example 1 A conductive phenol resin plate was prepared by heating and forming a commercially available phenol resin together with a 200-mesh conductive wire mesh using a hot press. processed. Next, the board is immersed in a plating bath filled with a commercially available electroless nickel plating solution to perform electroless nickel plating, thereby forming an electroless plating layer with a thickness of 10 μm on the outer peripheral surface of the board and the inner surface of the mounting hole. After that, a particle size of 3G=40 pm (#5
A diamond abrasive layer was formed using the synthetic diamond abrasive grains of No. 00) by a nickel electrodeposition method to produce an electrodeposited grindstone of the present invention. The electrodeposition conditions, liquid composition and physical properties used for electrodeposition are shown below. Electrodeposition conditions Bath temperature: 45°C Cathode current density = 2-8 A/dm Plating time: 2 hours Composition of liquid used for electrodeposition, physical properties Nickel sulfamate = 400g & nickel chloride
= 15 g/l Boric acid = 35 ti/l Sulfamic acid: Small amount pH adjuster: Small amount Brightener: Small amount 9H = 3-7 Surface tension = 28 dyne/cm As a result, a diamond abrasive grain content of 30 vo was applied to the outer peripheral surface of the substrate.
At 1%, an electrodeposited layer with a thickness of 28 μm was formed as a nickel plating layer. The particle size of #500 diamond abrasive grains used was 30 to 40.
pm, the surface of the formed electrodeposited layer has diamond abrasive grains slightly protruding from the nickel surface. When using the thus obtained whetstone of the present invention, a WA500-J whetstone was used, and the whetstone was dressed in advance. In addition, a similar dressing was applied to a resin bonded grindstone for comparison. Example 2 A substrate for a cutting wheel shown in FIG. 2(b) was prepared in the same manner as in Example 1. After applying an electroless plating layer to this substrate in the same manner as in Example 1, a diamond abrasive grain layer was formed by nickel electrodeposition to produce an electrodeposited grindstone of the present invention, which was used for testing. Example 3 An electrodeposited grindstone of the present invention was produced in exactly the same manner as in Example 1 except that #120 diamond abrasive grains were used instead of #500 diamond abrasive grains in Example 1. Example 4 In the same manner as in Example 1, flat grindstone substrates shown in FIGS. 2(c) and 2(d) were created. This substrate 1 was subjected to electroless copper plating treatment in an electroless copper plating tank using the same method as in Example 1. At this time, a commercially available electroless copper plating solution was used, the solution was heated to about 50°C, and the substrate was immersed in this solution for about 2 hours to perform electroless copper plating with a film thickness of 2 Gpm. A layer was formed on the outer peripheral surface of the substrate and the inner surface of the mounting hole. Next, on the electroless copper plating layer provided on the outer peripheral surface of the substrate, particles with a particle size of 105 to 1
A CBN abrasive layer was formed by a copper electrodeposition method using CBN abrasive grains of 2.5 μm (suzo) to produce an electrodeposited grindstone of the present invention. The electrodeposition conditions at this time and the liquid composition used for electrodeposition,
The physical properties are shown below. Electrodeposition conditions Bath temperature: 50°C Cathode current density = 2-5A/dm'' Plating time = 3 hours Composition and physical properties of the liquid used for electrodeposition Pyrodone Conc (trade name): O-51/1 ammonia
= 5 ccl & leveling agent, brightening agent: 5 cc / Tragic specific gravity: l, 3 9H = 8.6 Surface tension = 77 dy ■ e / Cm As a result, the thickness of the copper plating layer on the outer peripheral surface of the board is about 90 μm, An electrodeposited layer was formed in which CBN abrasive grains protruded by about 20 pm from the surface of the plated layer. Application example 1 The processing of quartz glass as shown in Fig. 3 was carried out using a diamond abrasive layer of 500 mm, a grindstone outer diameter of 100 mm, a grindstone thickness of 3 mm,
Using a conventional resin pound grindstone with a V-shaped outer circumference, a metal bond grindstone, and an electroplated grindstone of the present invention obtained in Example 1, the grindstone rotation speed was 8.00 Or-pm-, and the workpiece feed rate was 10 su+. The performance was compared under the conditions of: /min, depth of cut: 0.8 mm, and grinding fluid (tap water) flow rate: l/min. As a result, the resin bonded whetstone had good sharpness and the chipping at the peak was as small as lO ~ 20pm, but when grooving the lO line, the tip of the whetstone wore out in a semicircular shape, and the bottom of the quartz glass groove became rounded. Ta. In addition, in the case of the metal bonded whetstone, there was almost no wear on the whetstone, but chipping at the top of the mountain was large, and chipping with a size of 50 to 1007 wm frequently occurred. On the other hand, when the electrodeposited grindstone of the present invention is used,
Both have high wear resistance, similar to metal bonded grinding wheels.
The tip of the grinding wheel does not become semicircular, and the chipping at the top of the quartz glass is extremely small, ranging from NG to 20 μm.
One. Application example 2 PC with reinforcing steel whose surface is covered with glass and has a thickness of 15 mm
The plate has a diamond abrasive layer of 120 mm and a grindstone outer diameter of 200 mm.
xya, a conventional metal bonded grindstone with a grindstone thickness of 4 dragons, and an electroplated grindstone of the present invention obtained in Example N3, and a grindstone rotation speed of 600 Or-p, m. , workpiece feed speed 2m/min
Electrolytic grinding cutting was carried out under conditions of a grinding fluid (nitrate aqueous solution) flow rate of 8ffi/min. At this time, the reinforcing bar in the workpiece is used as an anode,
Cutting was performed by pouring a nitrate aqueous solution using the grindstone as a cathode. As a result, in electrolytic grinding cutting using a metal bond grindstone, chipping of the glass layer during cutting of reinforcing bars was reduced to 0.5 to 1.0+m+w, which was smaller than in the case of general cutting. On the other hand, when cutting by electrolytic grinding with this electroplated grindstone, 0.3 to 0-
6rxxs and chipping was further reduced. Application Example 3 Using the electrodeposited grindstone of the present invention obtained in Example 4 and the conventional resin bonded grindstone, SKH-51 (HRC: 60) was wet-ground using a surface grinder under the following conditions, and its performance was evaluated. compared. Grinding conditions Grinding wheel circumferential speed = 1600 m/min Table feed speed = 10 m/min Table longitudinal feed amount =
3mm/pass cutting = 20μm/times The size of the grindstones is that both grindstones have an outer diameter of 180+m. As a result, the grinding ratio of the resin bonded grindstone was about 450, whereas the grinding ratio of the electrodeposited grindstone of the present invention was about 2000. Regarding the roughness of the grinding surface, both grindstones have Rmax (2 to 3)
No difference was observed in μm. [Effects of the Invention] The electrodeposited grindstone of the present invention uses a synthetic resin for the substrate, so it is elastic and absorbs vibrations during processing, and is more effective against the workpiece than a grindstone with a steel substrate, which is difficult to absorb vibrations. The applied impact is alleviated, resulting in less chipping and less noise. In addition, since the abrasive grain layer is continuously formed, chipping can be reduced even though it is an electroplated grindstone, especially when grinding materials that are prone to chipping, especially when grooving or cutting. Since the abrasive grain layer is electrodeposited with a metal bond, it has superior wear resistance and a longer life than resin bonded grindstones. Furthermore, since the grinding wheel of the present invention has electrical conductivity, it can be used to process steel materials that are unsuitable for diamond grinding wheels.
This problem can be solved by electrolytic grinding, and the metal contained in the substrate is not only conductive but also serves as a reinforcing material. Furthermore, the grinding wheel of the present invention has an electroless plating layer on the inner surface of the mounting hole of the substrate, so that the reliability of power supply to the grinding wheel is improved when cutting brittle materials including reinforcing bars, such as PC boards, by electrolytic grinding. Because it is higher and the reinforcing bars can be easily cut,
Vibration is reduced, and as a result, chipping is reduced even in composite materials including difficult-to-cut materials such as PC boards, and the reliability of the power supply is improved even when electrodepositing carbide abrasive grains when making electrodeposited grinding wheels. Since the electrodeposition becomes high, electrodeposition can be carried out efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)ないしくへ)は、本発明の電着砥石の製造
工程の1例を示す説明図、第2図(a)、(b)及び(
e)は、それぞれ本発明の電着砥石の異なった形態の例
を示す断面図、第2図(d)は(c)砥石の砥粒層の拡
大斜視図、第3図は砥石による石英硝子の溝加工を説明
するための図である。 図中符号3は金網、5は取付孔、6は基板、7は樹脂塗
膜又は樹脂製治具、8は無電解メッキ液、9は無電解メ
ッキ層、10は電着用砥粒、11は電着用メッキ液、1
3は超硬砥粒層、14は電解液浸透溝、15は砥石、1
6は石英硝子である。
FIG. 1 (a) to (a) to (c) are explanatory diagrams showing one example of the manufacturing process of the electrodeposited grindstone of the present invention, and FIGS. 2 (a), (b) and (
e) is a cross-sectional view showing examples of different forms of the electrodeposited grinding wheel of the present invention, FIG. 2(d) is an enlarged perspective view of the abrasive grain layer of the grinding wheel (c), and FIG. FIG. 3 is a diagram for explaining groove machining. In the figure, 3 is a wire mesh, 5 is a mounting hole, 6 is a substrate, 7 is a resin coating film or a resin jig, 8 is an electroless plating solution, 9 is an electroless plating layer, 10 is an abrasive grain for electrodeposition, 11 is a Electroplating solution, 1
3 is a cemented carbide abrasive grain layer, 14 is an electrolyte penetration groove, 15 is a grinding wheel, 1
6 is quartz glass.

Claims (1)

【特許請求の範囲】 1 中心に取付孔を有する円板状の導電性合成樹脂基板
の外周面に、電気メッキ処理により超硬砥粒層を形成さ
せた電着砥石において、該超硬砥粒層が無電解メッキ層
を介して基板に電着されていることを特徴とする電着砥
石。 2 中心に取付孔を有する円板状の導電性合成樹脂基板
の外周面に、電気メッキ処理により超硬砥粒層を形成さ
せた電着砥石において、該超硬砥粒層が無電解メッキ層
を介して基板に電着され、かつ該取付孔の内面に無電解
メッキ層が設けられていることを特徴とする電着砥石。 3 中心に取付孔を有する円板状の導電性合成樹脂基板
の外周面に、又はこの外周面と該取付孔の内面とに無電
解メッキ処理を施したのち、基板外周面の無電解メッキ
層の上に、電気メッキ処理により超硬砥粒層を形成させ
ることを特徴とする請求項1又は2記載の電着砥石の製
造方法。
[Scope of Claims] 1. An electrodeposited grindstone in which a layer of carbide abrasive grains is formed by electroplating on the outer peripheral surface of a disk-shaped conductive synthetic resin substrate having a mounting hole in the center, the carbide abrasive grains An electrodeposited grindstone characterized in that the layer is electrodeposited on a substrate via an electroless plating layer. 2. In an electrodeposited grindstone in which a superhard abrasive grain layer is formed by electroplating on the outer peripheral surface of a disc-shaped conductive synthetic resin substrate with a mounting hole in the center, the superhard abrasive grain layer is an electroless plating layer. 1. An electrodeposited grindstone, characterized in that the grindstone is electrodeposited on a substrate through a mounting hole, and an electroless plating layer is provided on the inner surface of the mounting hole. 3 After electroless plating is applied to the outer peripheral surface of a disc-shaped conductive synthetic resin substrate with a mounting hole in the center, or to this outer peripheral surface and the inner surface of the mounting hole, an electroless plating layer is applied to the outer peripheral surface of the substrate. 3. The method for manufacturing an electrodeposited grindstone according to claim 1, wherein a layer of superhard abrasive grains is formed on the electrodeposited grindstone by electroplating.
JP1286868A 1989-11-02 1989-11-02 Electroplated whetstone and method of manufacturing the same Expired - Fee Related JP2849930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1286868A JP2849930B2 (en) 1989-11-02 1989-11-02 Electroplated whetstone and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286868A JP2849930B2 (en) 1989-11-02 1989-11-02 Electroplated whetstone and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03149185A true JPH03149185A (en) 1991-06-25
JP2849930B2 JP2849930B2 (en) 1999-01-27

Family

ID=17710048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286868A Expired - Fee Related JP2849930B2 (en) 1989-11-02 1989-11-02 Electroplated whetstone and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2849930B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042395U (en) * 1973-08-14 1975-04-28
JPS59193662U (en) * 1983-06-09 1984-12-22 株式会社 呉英製作所 Grinding wheel based on synthetic resin
JPS6120262U (en) * 1984-07-06 1986-02-05 吉弘 梅本 diamond whetstone
JPS63139670A (en) * 1986-12-01 1988-06-11 Kobe Steel Ltd Grinding tool
JPH0379276A (en) * 1989-08-24 1991-04-04 Toyoda Mach Works Ltd Electrodeposition grindstone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042395U (en) * 1973-08-14 1975-04-28
JPS59193662U (en) * 1983-06-09 1984-12-22 株式会社 呉英製作所 Grinding wheel based on synthetic resin
JPS6120262U (en) * 1984-07-06 1986-02-05 吉弘 梅本 diamond whetstone
JPS63139670A (en) * 1986-12-01 1988-06-11 Kobe Steel Ltd Grinding tool
JPH0379276A (en) * 1989-08-24 1991-04-04 Toyoda Mach Works Ltd Electrodeposition grindstone

Also Published As

Publication number Publication date
JP2849930B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
US11364591B2 (en) Outer blade cutting wheel and making method
CN103459091B (en) Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof
CA2519342C (en) High precision multi-grit slicing blade
TW201238715A (en) Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof
KR970003489B1 (en) On edge honing device
JP5853946B2 (en) Manufacturing method of outer peripheral cutting blade
JP2001341076A (en) Grinding wheel
JPH10113878A (en) Super abrasive grain wheel and its manufacturing method
JPS5822663A (en) Electrodeposition type grinding stone and manufacture thereof
JPH03149185A (en) Electrodeposited grindstone and its manufacture
JPS5845871A (en) Production method of grindstone
JP3134469B2 (en) Electroplated whetstone and method of manufacturing the same
KR102137792B1 (en) Method for manufacturing multi-layer electro deposition cutting tool and multi-layer electro deposition cutting tool manufactured thereby
JP3280639B2 (en) Super abrasive cutting wheel
JP2969440B2 (en) Rotary multi-blade tool for aluminum alloy
JPH0215978A (en) Grinding tool
KR200307890Y1 (en) Electrodeposited diamond stone for grinding ferrite
JPS62213965A (en) Grinding wheel with electroformed thin cutting edge and its manufacturing method
JPH0372434B2 (en)
JPH04223878A (en) Grindwheel for grinding lens and manufacture thereof
JPS5959352A (en) Method for producing grinding wheel for cutting off
JP2000210871A (en) Electrocast cutter with base metal and its manufacture
JPH02167671A (en) Electrodeposited grindstone containing carbon
JPS59110561A (en) Manufacturing method of cutting grindstone
JPH10146766A (en) Super abrasive grain wheel

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees