JPH0314867A - Manufacture of impact-resistant thermoplastic resin composition - Google Patents

Manufacture of impact-resistant thermoplastic resin composition

Info

Publication number
JPH0314867A
JPH0314867A JP14834389A JP14834389A JPH0314867A JP H0314867 A JPH0314867 A JP H0314867A JP 14834389 A JP14834389 A JP 14834389A JP 14834389 A JP14834389 A JP 14834389A JP H0314867 A JPH0314867 A JP H0314867A
Authority
JP
Japan
Prior art keywords
acid
weight
composition
resin
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14834389A
Other languages
Japanese (ja)
Inventor
Kiyoji Takagi
高木 喜代次
Koji Nishida
耕治 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP14834389A priority Critical patent/JPH0314867A/en
Publication of JPH0314867A publication Critical patent/JPH0314867A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject composition excellent in both low temperature impact resistance and dimensional stability and having an appearance with good gloss by melt-compounding a polyamide resin with an intermediate composition comprising a melt-compounded material consisting mainly of a polyphenylene ether resin. CONSTITUTION:70-99wt.% polyphenylene ether resin (a) is melt-compounded with 0.1-19.9wt.% polyamide resin (b), 0.1-35wt.% impact modifier (c) (e.g. an ethylene-propylene rubber modified with maleic anhydride), and 0.01-10wt.% compound (d) having both an unsaturated group and a polar group in the same molecule (e.g. maleic anhydride) to give 100wt.% intermediate composition (A). 10-80wt.% of composition A is melt-compounded with 20-90wt.% polyamide resin (B) to give a resin composition having an improved high speed impact resistance at low temperature and rigidity well-balanced with each other and having an appearance with good gloss.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐低温衝撃性及び寸法安定性が優れ、外観光
沢が良好な熱可塑性樹脂組成物の製造方法に関する. (従来の技術) ボリフ二二レンエーテル樹脂は,優れた機械的性質及び
耐熱性を有する有用な樹脂として注目されており、スチ
レン系樹脂等とブレンドして用いられているが、耐溶剤
性が著しく悪く、この点を改良するために,ポリアミド
とのブレンド(特公昭59−41663号公報等)又は
ポリエステルとのブレンド(特公昭51−21662号
公報等)が提案されている. さらに、これらのブレンド物の衝撃強度改良を目的とし
て、ポリフェニレンエーテルとポリアミドの組合せに、
カルボキシル基、イミド基、エボキシ基等の極性基を含
む化合物と耐衝撃改良材としてゴム質を加えてなる組成
物(特開昭59−49753号公報)が提案されている
.近年、このような耐衝撃性、耐溶剤性、耐熱性、成形
性、寸法安定性等が優れた特性を有するポリフェニレン
エーテル樹脂組成物は、自動車外板材として、例えばフ
ェンダー、ドアパネルとして利用されつつあるが、さら
に耐衝撃性の向上が要求されるようになった. (発明が解決しようとする課題) 従来のポリフェニレンエーテル樹脂組成物は、耐高速衝
撃性は満足されるが、その反面、剛性、耐熱性及び寸法
安定性の低下が大きいという欠点がある.特に、上記の
ような用途においては、低温での高速衝撃では延性破壊
となることが望ましい. そこで本発明は、上記の樹脂組成物が有する欠点を改良
し、耐低温衝撃性が優れ、外観光沢が改良された樹脂組
成物を提供することを目的とする. (課題を解決するための手段) 本発明者らは、上記の目的を達成するために鋭意検討を
重ねた結果、ポリフェニレンエーテル樹脂、ポリアミド
樹脂、耐衝撃改良材及び不飽和基と極性基を併せ持つ化
合物からなる中間組成物をあらかじめブレンドし、次い
でこれにポリアミド樹脂を配合して製造した樹脂組成物
は、耐低温高速衝撃性と剛性の物性バランスが優れ、か
つ外観光沢が良好な組成物となることを見い出し、本発
明に到達した, すなわち、本発明はポリフェニレンエーテル樹脂(a)
70〜99重量%、ポリアミド樹脂(b)0.1〜19
.9重量%、耐衝撃性改良材(c)0.1〜35重量%
及び同一分子内に不飽和基と極性基とを併せ持つ化合物
(d)0.01〜10重量%を溶融溪練して中間組成物
(A)100重量%を得、 次いでこの中間組成物(A)10〜80重量%と、ポリ
アミド樹脂(B)20〜90重量%とを溶融混線するこ
とを特徴とする耐衝撃熱可塑性樹脂組成物の製造方法で
ある. 成分(a)のポリフェニレンエーテル樹脂は、次式: で示される構造単位を有し、式中、nは少なくとも50
であり、R1、R2、R3及びR4はそれぞれ独立して
、水素原子、ハロゲン原子、三級α一炭素原子を含有し
ない炭化水素基、ハロゲン原子が少なくとも2個の炭素
原子を介して置換したハロ炭化水素基、炭化水素才キシ
基及びハロゲン原子が少なくとも2個の炭素原子を介し
て置換したハロ炭化水素オキシ基からなる群より選択し
たー価の置換基を表す. 上記三級α一炭素原子を含有しない炭化水素基としては
、例えば、メチル、エチル、プロビル、イソブロビル、
ブチル等の低級アルキル基;ビニル、アリル、ブテニル
、シクロブテニル等のアルケニル基:フエニル、トリル
、キシレニル、2、4、6−トリメチルフェニル等のア
リール基;ベンジル、フェニルエチル、フエニルブロビ
ル等のアラルキル基等が挙げられる.ハロゲン原子が少
なくとも2個の炭素原子を介して置換したハロ炭化水素
基としては、例えば、2−クロロエチル、2−プロモエ
チル、2−フルオロエチル、2.2−ジクロロエチル、
2一又は3−プロモブロビル、2.2−ジフル才ロー3
−ヨードプロビル、2−.3−,4一又は5−フルオロ
アミル、2−クロロビニル、クロロエチルフェニル、エ
チルクロロフエニル、フル才ロキシリル、クロロナフチ
ル、プロモベンジル等が挙げられる。また、炭化水素オ
キシ基としては、例えば、メトキシ、エトキシ、ブロボ
キシ,ブトキシ,フエノキシ、エチルフェノキシ、ナフ
トキシ、メチルナフトキシ、ベンジル才キシ、フエニル
エトキシ、トリルエトキシ等が挙げられる。ハロゲン原
子を少なくとも2個の炭素原子を介して置換したハロ炭
化水素オキシ基としては、例えば、2−クロロエトキシ
、2−プロモエトキシ、2−フル才ロエトキシ、2.2
−ジブロモエトキシ、2一及び3−プロモブロボキシ、
クロロエチルフエノキシ、エチルクロロフエノキシ、ヨ
ードキシロキシ、クロロナフトキシ、プロモベンジルオ
キシ、クロロトリルエトキシ等が挙げられる. 本発明に用いるポリフエニルエーテル樹脂には、2.6
−ジメチルフェノールと2.3.6−トリメチルフェノ
ールの共重合体、2.6−ジメチルフェノールと2.3
,5.6−テトラメチルフェノールの共重合体、2,6
−ジエチルフェノールと2.3.6−1−リメチルフェ
ノールの共重合体等の共重合体ち含む.また、[I]の
ボリフエニレンエーテルに、スチレン系モノマー(例え
ば、スチレン、p−メチルスチレン、α−メチルスチレ
ン等)をグラフト化したもの等、変性されたポリフェニ
レンエーテルを使用してちよい。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a thermoplastic resin composition that has excellent low-temperature impact resistance and dimensional stability, and has a good gloss appearance. (Prior art) Borifinilene ether resin has attracted attention as a useful resin with excellent mechanical properties and heat resistance, and is used in blends with styrene resins, etc. However, it has poor solvent resistance. In order to improve this problem, blends with polyamide (Japanese Patent Publication No. 59-41663, etc.) or blends with polyester (Japanese Patent Publication No. 51-21662, etc.) have been proposed. Furthermore, for the purpose of improving the impact strength of these blends, the combination of polyphenylene ether and polyamide,
A composition comprising a compound containing a polar group such as a carboxyl group, an imide group, an epoxy group, and a rubber substance as an impact modifier has been proposed (Japanese Unexamined Patent Publication No. 59-49753). In recent years, polyphenylene ether resin compositions that have excellent properties such as impact resistance, solvent resistance, heat resistance, moldability, and dimensional stability are being used as automobile exterior panel materials, such as fenders and door panels. However, there is now a need for even greater impact resistance. (Problems to be Solved by the Invention) Conventional polyphenylene ether resin compositions are satisfactory in high-speed impact resistance, but on the other hand, they have the drawback of large decreases in rigidity, heat resistance, and dimensional stability. In particular, in the above-mentioned applications, it is desirable that high-speed impact at low temperatures results in ductile fracture. Therefore, an object of the present invention is to improve the drawbacks of the above-mentioned resin compositions, and to provide a resin composition that has excellent low-temperature impact resistance and improved appearance gloss. (Means for Solving the Problems) As a result of intensive studies to achieve the above object, the present inventors have discovered a polyphenylene ether resin, a polyamide resin, an impact modifier, and a polyphenylene ether resin containing both an unsaturated group and a polar group. A resin composition produced by pre-blending an intermediate composition consisting of a compound and then blending a polyamide resin with it has an excellent balance of physical properties between low-temperature and high-speed impact resistance and rigidity, and has a good gloss appearance. The present invention has been achieved based on the discovery that polyphenylene ether resin (a)
70-99% by weight, polyamide resin (b) 0.1-19
.. 9% by weight, impact resistance modifier (c) 0.1-35% by weight
and a compound (d) having both an unsaturated group and a polar group in the same molecule in an amount of 0.01 to 10% by weight to obtain 100% by weight of an intermediate composition (A). ) 10 to 80% by weight of polyamide resin (B) and 20 to 90% by weight of polyamide resin (B) are melt-mixed. The polyphenylene ether resin of component (a) has structural units of the following formula: where n is at least 50
and R1, R2, R3 and R4 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group containing no tertiary α-carbon atom, or a halo substituted with a halogen atom through at least two carbon atoms. Represents a -valent substituent selected from the group consisting of a hydrocarbon group, a hydrocarbon group, and a halohydrocarbon group substituted with a halogen atom through at least two carbon atoms. Examples of the above-mentioned hydrocarbon group not containing a tertiary alpha carbon atom include methyl, ethyl, proyl, isobrobyl,
Lower alkyl groups such as butyl; alkenyl groups such as vinyl, allyl, butenyl, cyclobutenyl; aryl groups such as phenyl, tolyl, xylenyl, 2,4,6-trimethylphenyl; aralkyl groups such as benzyl, phenylethyl, phenylbrobyl, etc. Listed below. Examples of the halohydrocarbon group in which halogen atoms are substituted via at least two carbon atoms include 2-chloroethyl, 2-promoethyl, 2-fluoroethyl, 2,2-dichloroethyl,
21 or 3-promobrovir, 2.2-difur sairo 3
-Iodoprovir, 2-. Examples include 3-, 4- or 5-fluoroamyl, 2-chlorovinyl, chloroethylphenyl, ethylchlorophenyl, chlorooxylyl, chloronaphthyl, promobenzyl and the like. Examples of the hydrocarbon oxy group include methoxy, ethoxy, broboxy, butoxy, phenoxy, ethylphenoxy, naphthoxy, methylnaphthoxy, benzyloxy, phenylethoxy, and tolylethoxy. Examples of the halohydrocarbonoxy group in which a halogen atom is substituted via at least two carbon atoms include 2-chloroethoxy, 2-promoethoxy, 2-chloroethoxy, 2.2
-dibromoethoxy, 2- and 3-bromobroboxy,
Examples include chloroethylphenoxy, ethylchlorophenoxy, iodoxyloxy, chloronaphthoxy, promobenzyloxy, chlorotolylethoxy, and the like. The polyphenyl ether resin used in the present invention contains 2.6
- Copolymer of dimethylphenol and 2.3.6-trimethylphenol, 2.6-dimethylphenol and 2.3
, 5.6-tetramethylphenol copolymer, 2,6
-Includes copolymers such as copolymers of diethylphenol and 2.3.6-1-limethylphenol. Further, modified polyphenylene ether such as polyphenylene ether [I] grafted with a styrene monomer (eg, styrene, p-methylstyrene, α-methylstyrene, etc.) may be used.

上記に相当するポリフェニレンエーテルの製造方法は公
知であり、例えば、米国特許第3306874号、第3
306875号、第3257357号及び第32573
58号各明細書ならびに特公昭52−1 7880号公
報及び特開昭50−5 1 1 97号公報に開示され
ている。
Methods for producing polyphenylene ether corresponding to the above are known, for example, U.S. Pat.
No. 306875, No. 3257357 and No. 32573
No. 58, as well as Japanese Patent Publication No. 52-17880 and Japanese Patent Application Laid-Open No. 50-511197.

本発明の目的のために好ましいポリフェニレンエーテル
樹脂は、エーテル酸素原子に対する2つのオルソ位にア
ルキル置換基を有するもの及び2.6−ジアルキルフェ
ノールと2.3.6−トリアルキルフェノールの共重合
体である.本発明で使用されるポリフェニレンエーテル
樹脂(a)は、固有粘度が0.35〜0.70Lif!
/g(30’C、クロロホルム中で測定)であるのが好
ましい。
Preferred polyphenylene ether resins for the purposes of the present invention are those with alkyl substituents in two positions ortho to the ether oxygen atom and copolymers of 2,6-dialkylphenol and 2,3,6-trialkylphenol. .. The polyphenylene ether resin (a) used in the present invention has an intrinsic viscosity of 0.35 to 0.70 Lif!
/g (measured at 30'C in chloroform).

次に、成分(b)のポリアミド樹脂は、ボリマー主鎖に
ーCo−NH一結合を有し、加熱溶融できるものである
.その代表的なものとしては、ナイロン−4、ナイロン
−6、ナイロン−6.6、ナイロン−4.6、ナイロン
−12、ナイロン−6.10等が挙げられ、その他、公
知の芳香族ジアミン、芳香族ジカルボン酸等のモノマー
成分を含む低結晶性又は非品性のポリアミド及び透明ナ
イロン等も用いることができる. 好ましいポリアミド樹脂(b)は、ナイロンー6.6、
ナイロン−6及び非品性ポリアミドであり、中でも非品
性ポリアミドが特に好ましい.本発明で使用されるポリ
アミド樹脂(b)は、相対粘度が2.0〜8.0 (2
5℃、98%濃硫酸中で測定)であるのが好ましい. 次に、成分(c)の耐衝撃改良材としては、例えばアル
ケニル芳香族化合物一共役ジエン共重合体、ポリオレフ
ィン系共重合体などのエラストマーを挙げることができ
る. また、これらのエラストマーにマレイン酸、マレイン酸
モノメチルエステル、無水マレイン酸、イクコン酸、イ
タコン酸モノメチルエステル、無水イタコン酸、フマー
ル酸等のα.β一不飽和ジカルボン酸、又はエンドービ
シクロ[2.2.1]−5−へブテン−2.3−カルボ
ン酸若しくはこれらの誘導体等の脂環式カルボン酸をパ
ーオキサイド、電離放射線、紫外線等を利用して、グラ
フト化したものを使用してちよい。
Next, the polyamide resin of component (b) has one -Co-NH bond in the main chain of the polymer and can be melted by heating. Typical examples thereof include nylon-4, nylon-6, nylon-6.6, nylon-4.6, nylon-12, nylon-6.10, etc. In addition, known aromatic diamines, Low crystallinity or non-quality polyamides containing monomer components such as aromatic dicarboxylic acids, transparent nylon, etc. can also be used. Preferred polyamide resins (b) are nylon-6.6,
Nylon-6 and non-grade polyamides, among which non-grade polyamides are particularly preferred. The polyamide resin (b) used in the present invention has a relative viscosity of 2.0 to 8.0 (2
(measured in 98% concentrated sulfuric acid at 5°C) is preferable. Next, examples of the impact modifier of component (c) include elastomers such as alkenyl aromatic compound-conjugated diene copolymers and polyolefin copolymers. In addition, these elastomers may contain α. Alicyclic carboxylic acids such as β-unsaturated dicarboxylic acid or endobicyclo[2.2.1]-5-hebutene-2.3-carboxylic acid or derivatives thereof are treated with peroxide, ionizing radiation, ultraviolet rays, etc. You can make use of it and use it as a graft.

これらのエラストマーの引張弾性率が高すぎると、耐衝
撃改良材としては不十分となるので、エラストマーの引
張弾性率は5000 kg/ cm”(ASTM  D
−882)以下であるものが好ましい。
If the tensile modulus of these elastomers is too high, they are insufficient as impact modifiers;
-882) or less is preferred.

次に、成分(d)の同一分子内に不飽和基と極性基とを
併せ持つ化合物は、不飽和基すなわち炭素一炭素二重結
合又は炭素一炭素三重結合と、極性基すなわちポリアミ
ド樹脂中に含まれるアミド結合、連鎖末端に存在するカ
ルボキシル基、アミン基と親和性又は化学反応性を示す
官能基とを、同一分子内に併せ持つ化合物である.かが
る官能基としては、カルボン酸のカルボキシル基、カル
ボン酸より誘導される基、すなわちカルボキシル基の水
素原子又は水酸基が置換した各種の塩、エステル、酸ア
ミド、酸無水物、イミド、酸アジド、酸ハロゲン化物、
あるいは才キサゾリン、ニトリル、エポキシ基、アミン
基、水酸基又はイソシアン酸エステル等が挙げられる。
Next, a compound having both an unsaturated group and a polar group in the same molecule of component (d) has an unsaturated group, that is, a carbon-carbon double bond or a carbon-carbon triple bond, and a polar group, that is, contained in the polyamide resin. It is a compound that has an amide bond at the end of the chain, a carboxyl group at the end of the chain, and a functional group that has affinity or chemical reactivity with the amine group in the same molecule. Examples of functional groups that can be darkened include the carboxyl group of carboxylic acid, groups derived from carboxylic acid, that is, various salts substituted with the hydrogen atom or hydroxyl group of the carboxyl group, esters, acid amides, acid anhydrides, imides, and acid azides. , acid halide,
Alternatively, examples thereof include xazoline, nitrile, epoxy group, amine group, hydroxyl group, and isocyanate ester.

不飽和基と極性基を併せ持つ化合物としては、不飽和カ
ルボン酸、不飽和カルボン酸誘導体、不飽和エボキシ化
合物、不飽和アルコール、不飽和アミン、不飽和イソシ
アン酸エステル等が主に用いられる.具体的には、無水
マレイン酸、マレイン酸、フマール酸、マレインイミド
、マレイン酸ヒドラジド、無水マレイン酸とジアミンと
の反応物、例えば、次式: (式中、Rは脂肪族基又は芳香族基を表す)で示される
構造を有するもの、無水メチルナジック酸、無水ジクロ
ロマレイン酸、マレイン酸アミド、イタコン酸、無水イ
タコン酸などの不飽和ジカルボン酸及びその誘導体二大
豆油、キリ油、ヒマシ油、アマニ油、麻実油、綿実油、
ゴマ油、菜種油、落花生油、椿油、オリーブ油、ヤシ油
、イワシ油などの天然油脂類;エボキシ化大豆油等のエ
ボキシ化天然油脂類:アクリル酸、ブテン酸、クロトン
酸、ビニル酢酸、メタクリル酸、ベンテン酸、アンゲリ
カ酸、チブリン酸、2−ペンテン酸、3−ベンテン酸、
α一エチルアクリル酸、β−メチルクロトン酸、4−ベ
ンテン酸、2−ヘキセン酸、2−メチル−2−ベンテン
酸、3−メチル−2−ベンテン酸、α一エチルクロトン
酸、2.2−ジメチル−3−プテン酸、2−ヘブテン酸
、2−オクテン酸、4−デセン酸、9−ウンデセン酸、
10−ウンデセン酸、4−ドデセン酸、5−ドデセン酸
、4−テトラデセン酸、9−テトラデセン酸、9−へキ
サデセン酸、2−オクタデセン酸、9一才クタデセン酸
、アイコセン酸、ドコセン酸、エルカ酸、テトラコセン
酸、マイコリベン酸、2.4−ペンタジエン酸、2.4
−へキサジエン酸、ジアリル酢酸、ゲラニウム酸、2.
4−デカジエン酸、2.4−ドデカジェン酸、9.12
−ヘキサデカジエン酸、9.12−オクタデカジエン酸
、ヘキサデカトリエン酸、リノール酸、リノレン酸、才
クタデ力トリエン酸、アイコサジエン酸、アイコサトリ
エン酸、アイコサテトラエン酸、リシノール酸、エレオ
ステアリン酸、オレイン酸、アイコサベンタエン酸、エ
ルシン酸、ドコサジエン酸、ドコサトリエン酸、ドコサ
テトラエン酸、ドコサベンタエン酸、テトラコセン酸、
ヘキサコセン酸、ヘキサコジェン酸、オクタコセン酸、
トラアコンテン酸等の不飽和カルボン酸:あるいはこれ
らの不飽和カルボン酸のエステル、酸アミド、無水物:
あるいはアリルアルコール、クロチルアルコール,メチ
ルビニルカルビノール、アリルカルビノール、メチルプ
ロペニルカルビノール、4−ペンテン−1−オール、1
0−ウンデセン−1−オール、プロパルギルアルコール
、1.4−ペンタジェン−3一オール、1.4−へキサ
ジエン−3−オール、3.5−へキサジエン−2一オー
ル、2.4一へキサジエンーl−オール、C nH g
l,−so H、c nH!n−?OH.c ,,Hz
n−eOH (ただし、nは正の整数)で示されるアル
コール、3−ブテンー1.2−ジオール、2.5−ジメ
チル−3−ヘキセンー2.5−ジオール、1.5−ヘキ
サジェン−3.4−ジオール、2.6−オクタジェンー
4.5−ジ才一ル等の不飽和アルコール:あるいはこの
ような不飽和アルコールのOH基が、NH.基で置き換
えられた不飽和アミン;あるいはブタジエン、イソブレ
ン等の低重合(例えば平均分子量が500から10,0
00ぐらいのもの);あるいは高分子量体(例えば平均
分子量がio.ooo以上のもの)に無水マレイン酸、
フェノール類を付加したもの又はアミノ基、カルボキシ
ル基、水酸基、エボキシ基等を導入したちの;イソシア
ン酸アリル等が挙げられる。
As compounds having both an unsaturated group and a polar group, unsaturated carboxylic acids, unsaturated carboxylic acid derivatives, unsaturated epoxy compounds, unsaturated alcohols, unsaturated amines, unsaturated isocyanate esters, etc. are mainly used. Specifically, maleic anhydride, maleic acid, fumaric acid, maleimide, maleic acid hydrazide, a reaction product of maleic anhydride and diamine, for example, the following formula: (wherein R is an aliphatic group or an aromatic group unsaturated dicarboxylic acids and their derivatives such as methylnadic anhydride, dichloromaleic anhydride, maleic acid amide, itaconic acid, itaconic anhydride, soybean oil, tung oil, castor oil, Linseed oil, hempseed oil, cottonseed oil,
Natural oils and fats such as sesame oil, rapeseed oil, peanut oil, camellia oil, olive oil, coconut oil, and sardine oil; Eboxidized natural oils and fats such as eboxidized soybean oil: acrylic acid, butenoic acid, crotonic acid, vinyl acetic acid, methacrylic acid, bentene acids, angelic acid, tibric acid, 2-pentenoic acid, 3-bentenoic acid,
α-ethylacrylic acid, β-methylcrotonic acid, 4-bentenoic acid, 2-hexenoic acid, 2-methyl-2-bentenoic acid, 3-methyl-2-bentenoic acid, α-ethylcrotonic acid, 2.2- Dimethyl-3-butenoic acid, 2-hebutenoic acid, 2-octenoic acid, 4-decenoic acid, 9-undecenoic acid,
10-undecenoic acid, 4-dodecenoic acid, 5-dodecenoic acid, 4-tetradecenoic acid, 9-tetradecenoic acid, 9-hexadenoic acid, 2-octadecenoic acid, 91-year-old tadecenoic acid, icosenoic acid, docosenoic acid, erucic acid , tetracosenoic acid, mycolibenic acid, 2.4-pentadienoic acid, 2.4
-Hexadienoic acid, diallylacetic acid, geranic acid, 2.
4-decadienoic acid, 2.4-dodecadienoic acid, 9.12
-Hexadecadienoic acid, 9.12-octadecadienoic acid, hexadecatrienoic acid, linoleic acid, linolenic acid, ricinoleic acid, icosadienoic acid, icosatrienoic acid, icosatetraenoic acid, ricinoleic acid, Rheostearic acid, oleic acid, icosabentaenoic acid, erucic acid, docosadienoic acid, docosatrienoic acid, docosatetraenoic acid, docosabentaenoic acid, tetracosenoic acid,
Hexacosenoic acid, hexacogenic acid, octacosenoic acid,
Unsaturated carboxylic acids such as traaconic acid: or esters, acid amides, and anhydrides of these unsaturated carboxylic acids:
Or allyl alcohol, crotyl alcohol, methylvinylcarbinol, allylcarbinol, methylpropenylcarbinol, 4-penten-1-ol, 1
0-undecen-1-ol, propargyl alcohol, 1,4-pentadien-3-ol, 1,4-hexadien-3-ol, 3.5-hexadien-2-ol, 2.4-hexadien-1 -ol, C nH g
l,-so H,c nH! n-? OH. c,,Hz
Alcohol represented by n-eOH (where n is a positive integer), 3-butene-1.2-diol, 2.5-dimethyl-3-hexene-2.5-diol, 1.5-hexadiene-3.4 NH. unsaturated amines substituted with groups; or low polymers such as butadiene, isobrene, etc. (e.g., with an average molecular weight of 500 to 10,0
00); or high molecular weight substances (for example, those with an average molecular weight of io.ooo or more), maleic anhydride,
Examples include allyl isocyanate, which has phenols added thereto, or has an amino group, carboxyl group, hydroxyl group, epoxy group, etc. introduced therein.

また、不飽和基と極性基を併せ持つ化合物の定義には、
不飽和基を2冊以上、極性基を2(l!!1以上(同種
又は異fl)含んだ化合物ち含まれることはいうまでも
なく、また、成分(d)として2種以上の化合物を用い
ることも可能である.これらのうちでより好ましくは、
無水マレイン酸、マレイン酸、無水イタコン酸、イタコ
ン酸等の不飽和ジカルボン酸及びその無水物、オレイン
アルコール等の不飽和アルコール、エボキシ化天然油脂
類であり、さらに好ましくは無水マレイン酸、マレイン
酸、才レイルアルコール、エボキシ化大豆油、エボキシ
化アマニ油であり、とりわけ好ましくは無水マレイン酸
及び無水マレイン酸とマレイン酸との混合物である. 上記した成分(a).(b).(c)及び(d)は中間
組成物(A)100重量%について次のような割合で配
合される. すなわち、各成分の配合比は、成分(a)が70〜99
重量%、好ましくは74〜97重量%、特に好ましくは
78〜96重量%であり、成分(b)が0.1〜19.
9重量%、好ましくは0.5〜19重量%、特に好まし
くは1.5〜17重量%であり、成分(c)が0.1〜
35重量%、好ましくは0.5〜25重量%、特に好ま
しくはl−15重量%であり、成分(d)が0.01〜
10重量%、好ましくは0.05〜5重量%、特に好ま
しくは0.2〜2重量%である. 成分(a)が70重量%未満では最終組成物の耐熱剛性
及び低温高速衝撃強度が不満足であり、99重量%を超
過すると最終組成物の低温高速衝撃強度が不満足となる
.また、成分(b)が0.1重量%未満では最終組成物
の低温高速衝撃強度が不満足であり、一方19.9重量
%を超過すると最終組成物の耐熱剛性及び低温高速衝撃
強度が不満足となる.さらに成分(C)がO.1重量%
未満では最終組成物の低温高速衝撃強度が不満足となり
、35重量%を超過すると最終組成物の耐熱剛性が不満
足となる.そして成分(d)が0.01重量%未満では
最終組成物の低温高速衝撃強度が不足し、10重量%を
超過すると最終組成物の成形品の外観に難点が生じる. 中間組成物(A)には、上記した必須成分(a).(b
).(c)及び(d)の他に、各種安定剤、流動性調整
剤、耐衝撃改良フィラー(例えば1P以下の粒状無機フ
ィラー)、耐熱剛性改良フィラー(例えばアスペクト比
5以上の針状もしくは繊維状フィラー)等の任意成分を
、本発明の効果を著しく損なわない範囲で添加して用い
ることができる. 中間組成物(A)は、所定の割合に配合した上記の成分
を溶融混線して得られる. まず、各成分を全て、ヘンシエルミキサースーパーミキ
サー、リボンブレンダー、■ブレンダー等により混合し
、次いで、この混合物をL/D=10〜30の1軸また
は2軸型押出機を使用して、溶融混練する. このときの溶融混線温度は、通常200〜350℃の範
囲である. 中間組成物(A)は、溶融状態のままもしくはペレット
化したもの、又はさらにそれを粉砕してパウダー化し乾
燥したものを最終組成物の製造に用いることができる。
In addition, the definition of a compound that has both an unsaturated group and a polar group is as follows:
Needless to say, compounds containing two or more unsaturated groups and two or more polar groups (l!!1 or more (same type or different fl)) are included, and two or more types of compounds as component (d) are also included. It is also possible to use. Among these, more preferably,
Unsaturated dicarboxylic acids and their anhydrides such as maleic anhydride, maleic acid, itaconic anhydride, itaconic acid, unsaturated alcohols such as oleic alcohol, and eboxidized natural oils and fats, more preferably maleic anhydride, maleic acid, Among them, oleyl alcohol, eboxidized soybean oil, eboxidized linseed oil, and particularly preferred are maleic anhydride and a mixture of maleic anhydride and maleic acid. Ingredient (a) above. (b). (c) and (d) are blended in the following proportions based on 100% by weight of the intermediate composition (A). That is, the blending ratio of each component is 70 to 99% for component (a).
% by weight, preferably 74 to 97% by weight, particularly preferably 78 to 96% by weight, and component (b) is 0.1 to 19% by weight.
9% by weight, preferably 0.5 to 19% by weight, particularly preferably 1.5 to 17% by weight, and component (c) is 0.1 to 19% by weight.
35% by weight, preferably 0.5 to 25% by weight, particularly preferably 1-15% by weight, and component (d) is 0.01 to 25% by weight.
10% by weight, preferably 0.05-5% by weight, particularly preferably 0.2-2% by weight. If component (a) is less than 70% by weight, the final composition will have unsatisfactory heat-resistant stiffness and low-temperature high-speed impact strength, and if it exceeds 99% by weight, the final composition will have unsatisfactory low-temperature high-speed impact strength. Furthermore, if component (b) is less than 0.1% by weight, the low-temperature high-speed impact strength of the final composition will be unsatisfactory, while if it exceeds 19.9% by weight, the final composition will have unsatisfactory heat-resistant stiffness and low-temperature high-speed impact strength. Become. Furthermore, component (C) is O. 1% by weight
If it is less than 35% by weight, the low-temperature, high-speed impact strength of the final composition will be unsatisfactory, and if it exceeds 35% by weight, the heat-resistant rigidity of the final composition will be unsatisfactory. If component (d) is less than 0.01% by weight, the final composition will lack low-temperature, high-speed impact strength, and if it exceeds 10% by weight, the final composition will have poor appearance. The intermediate composition (A) contains the above-mentioned essential components (a). (b
). In addition to (c) and (d), various stabilizers, fluidity modifiers, impact-improving fillers (for example, granular inorganic fillers of 1P or less), heat-resistant and rigidity-improving fillers (for example, acicular or fibrous fillers with an aspect ratio of 5 or more) Optional components such as fillers) may be added to the extent that they do not significantly impair the effects of the present invention. The intermediate composition (A) is obtained by melt mixing the above components blended in a predetermined ratio. First, all the components are mixed using a Henschel mixer super mixer, a ribbon blender, a blender, etc., and then this mixture is melted using a single or twin screw extruder with L/D = 10 to 30. Knead. The melting crosstalk temperature at this time is usually in the range of 200 to 350°C. The intermediate composition (A) can be used in the production of the final composition as it is in a molten state or in the form of pellets, or it can be ground into powder and dried.

第二工程における成分(B)のポリアミド樹脂は、前述
した中間組成物(A)の成分(b)として挙げたポリア
ミドを用いることができる。
As the polyamide resin of component (B) in the second step, the polyamide listed as component (b) of the intermediate composition (A) described above can be used.

第二工程では、上記した中間組成物(A)及びポリアミ
ド(B)の他に、耐衝撃改良材及び例えば酸化チタン、
カオリンクレー、硫酸バリウム、炭酸カルシウムなどの
粒状フィラー;ウ才ラスト、ティスモなどの計状フィラ
ー;ガラス繊維、カーボン繊維などの繊維状フィラー等
のフィラー、ならびに各種安定剤、滑剤、着色剤、流動
性調整剤、核剤、防カビ剤等の任意成分を、本発明の効
果を著しく損なわない範囲で添加して用いることができ
る. 中間組成物(A)及びポリアミド(B)は以下の割合で
配合される. すなわち、最終樹脂組成物に対し、中間組成物(A)は
10〜80重量%、好ましくは15〜75重量%、特に
好ましくは20〜65重量%であり、(B)は20〜9
0重量%、好ましくは25〜85重量%、特に好ましく
は35〜80重量%である. 中間組成物(A)が10重量%未満では耐熱剛性が不足
であり、80重量%を超過すると耐有機溶剤性および耐
低温高速衝撃性が不足する。また、成分(B)が20重
量%未満では耐有機溶剤性及び耐低温高速衝撃性が不満
足であり、一方90重量%を超過すると耐熱剛性が不満
足となる. 本発明の最終樹脂組成物を製造するには、例えば以下の
各方法を用いて溶融混練し製造することができる. 1)ペレット状若しくはパウダー状の中間組成物(A)
及び成分(B)を上述した中間組成物(A)の製造と同
様の手段により混合物とした後、L/D=10〜30の
l軸又は2軸型押出機を使用して溶融混練し、最終組成
物を製造する方法. 2)溶融状態の中間組成物(A)に成分(B)を加え、
L/D=lO〜30の1軸又は2軸型押出機を使用して
溶融混練し、最終組成物を製造する方法. 3)L/D=30〜60の1軸又は2軸型押出機を使用
して、第一ホッパーから中間組成物(A)の成分を溶融
混線前の混合物の状態で導入し、同時に同じ押出機の中
間ホッパーから、成分(B)を固体又は溶融状態で導入
して、全体を溶融混線し、最終組成物を製造する方法. 4)成分(B)をL/D=1 0〜30の1軸又は2軸
型押出機にて溶融混練しておき、これと中間組成物(A
)とをペレット状若しくはベレットを粉砕したパウダー
状、又は溶融状態で、L/D=10〜30の1軸又は2
軸型押出機を使用してこれらを同時に溶融混練し、最終
組成物を製造する方法. 上記の方法において、溶融混線温度は、通常200〜3
50℃の範囲である. かくして得られた樹脂組成物は、溶融混線後に押出し、
ベレット状とすることができる.本発明の樹脂組成物は
、熱可塑性樹脂に通常適用される成形法、すなわち射出
成形法、押出し成形法、中空成形法等により、容易に成
形することができる.なかでも、射出成形法を用いて成
形するのが好ましい. 本発明の方法により製造された樹脂組成物は、機械的物
性が良好であることから、自動車の内外装部品、電気機
器外装部品等、ならびにオフィス才一トメーション機器
等の部品用途に適している。
In the second step, in addition to the above-described intermediate composition (A) and polyamide (B), an impact modifier and, for example, titanium oxide,
Granular fillers such as kaolin clay, barium sulfate, and calcium carbonate; meter-shaped fillers such as Uzai Last and Tismo; fillers such as fibrous fillers such as glass fiber and carbon fiber, as well as various stabilizers, lubricants, colorants, and fluidity. Optional ingredients such as regulators, nucleating agents, antifungal agents, etc. can be added to the extent that they do not significantly impair the effects of the present invention. Intermediate composition (A) and polyamide (B) are blended in the following proportions. That is, based on the final resin composition, the intermediate composition (A) accounts for 10 to 80% by weight, preferably 15 to 75% by weight, particularly preferably 20 to 65% by weight, and (B) accounts for 20 to 9% by weight.
0% by weight, preferably 25-85% by weight, particularly preferably 35-80% by weight. If the intermediate composition (A) is less than 10% by weight, heat-resistant rigidity is insufficient, and if it exceeds 80% by weight, organic solvent resistance and low-temperature high-speed impact resistance are insufficient. Furthermore, if component (B) is less than 20% by weight, the organic solvent resistance and low-temperature high-speed impact resistance will be unsatisfactory, while if it exceeds 90% by weight, the heat-resistant rigidity will be unsatisfactory. The final resin composition of the present invention can be produced by melt-kneading, for example, using the following methods. 1) Pellet or powder intermediate composition (A)
and component (B) are mixed by the same means as for producing the intermediate composition (A) described above, and then melt-kneaded using a l-screw or twin-screw extruder with L/D = 10 to 30, Method of manufacturing the final composition. 2) Adding component (B) to intermediate composition (A) in a molten state,
A method of producing a final composition by melt-kneading using a single-screw or twin-screw extruder with L/D=lO~30. 3) Using a single-screw or twin-screw extruder with L/D = 30 to 60, the components of intermediate composition (A) are introduced from the first hopper in the state of a mixture before melt mixing, and at the same time the same extrusion is carried out. A method of producing a final composition by introducing component (B) in a solid or molten state from an intermediate hopper of a machine and melting and mixing the whole. 4) Component (B) is melt-kneaded in a single-screw or twin-screw extruder with L/D=10 to 30, and mixed with intermediate composition (A).
) in pellet form, powder form obtained by crushing pellets, or molten state, L/D = 10 to 30, uniaxial or biaxial
A method of melting and kneading these simultaneously using a shaft type extruder to produce a final composition. In the above method, the melting crosstalk temperature is usually 200 to 3
The temperature range is 50℃. The resin composition thus obtained is extruded after melt mixing,
It can be made into a pellet shape. The resin composition of the present invention can be easily molded by molding methods commonly applied to thermoplastic resins, such as injection molding, extrusion molding, and blow molding. Among these, it is preferable to use injection molding. Since the resin composition produced by the method of the present invention has good mechanical properties, it is suitable for use in parts such as interior and exterior parts of automobiles, exterior parts of electrical equipment, and office automation equipment.

(実施例) 以下、本発明を実施例によって説明するが、本発明はこ
れによりその範囲を限定されるものではない. 実施例1 ル且  A の′゛告 (a)ポリフェニレンエーテル樹脂: 固有粘度0.51d1/g (30℃クロロホルム中)
のポリ(2.6−ジメチル−1.4−フエニレン)エー
テルを使用した. (b)ポリアミド樹脂; 非品性ナイロン(ノバミッドX21,三菱化成工業■製
、ガラス転移温度125℃、JIS  K6810準拠
による相対粘度2.1dl/G)を使用した. (c)耐衝撃改良材: 市販の無水マレイン酸変性エチレンーブロビレンゴム(
T7741P、日本合成ゴム■製、無水マレイン酸含有
量0.5〜l重量%)及び市販の水素化スチレンープタ
ジエンブロツク共重合体(クレートンGl 65 1.
シェル社製、スチレン含有量33重量%)を用いた。
(Examples) The present invention will be explained below with reference to Examples, but the scope of the present invention is not limited thereby. Example 1 (a) Polyphenylene ether resin: Intrinsic viscosity 0.51 d1/g (in chloroform at 30°C)
Poly(2,6-dimethyl-1,4-phenylene) ether was used. (b) Polyamide resin: Non-grade nylon (Novamid (c) Impact modifier: Commercially available maleic anhydride modified ethylene-brobylene rubber (
T7741P, manufactured by Nippon Gosei Rubber (maleic anhydride content: 0.5 to 1% by weight) and a commercially available hydrogenated styrene-butadiene block copolymer (Kraton Gl 65 1.
(Styrene content: 33% by weight) manufactured by Shell Co., Ltd.) was used.

(d)同一分子内に不飽和基と極性基とを併せ持つ化合
物; 市販の無水マレイン酸(試薬グレード)を使用した. 上記した成分(a),(b) .(c)及び(d)を表
1に示した配合比でスーパーミキサーにて十分混合した
. 次に、この混合物を、■日本製鋼所製TEX2軸型押出
機(L/D=30)を用い、設定温度260℃、スクリ
ュー回転数4 0 O rpmで溶融混練し、組成物と
した後、ストランド状に押出し、カッターにてペレット
とした。こ、れを105℃で8時間熱風乾燥機にて乾燥
した。かくして中間組成物を得た. 胤脂しし■1ユ梨A (A)中間組成物; 上記のようにして製造した中間組成物を用いた. (B)ポリアミド樹脂: ナイロン6(ウルトラミッドB−5、バーディッシェア
ニリンウントソーダアクチェンゲゼルシャフト社(西独
国)製、射出成形グレード)を用いた. 表1に示した配合比で上記の各成分をスーパーミキサー
にて十分混合した.次いでこれを味日本製鋼所製TEX
2軸型押出機を用いて、設定温度240℃、スクリュー
回転数4 0 O rpmで溶融混線した後、ベレット
化した. 批比及ヱ且鳳基基 上記の樹脂組成物のペレットから、インラインスクリュ
ー式射出成形機(東芝機械製作所製IS−90B型)を
用い、シリンダー温度280℃、金型冷却温度70℃に
て射出成形を行い、試験片を作成した. なお、射出成形に際しては、その直前まで減圧乾燥器を
用い、0.1mmHg、80℃の条件で48時間乾燥を
行った.また、射出成形された試験片は、成形直後にデ
シケー夕に入れ、23℃にて4日間〜6日間放置した後
評価試験を行い結果を表2に示した. なお、各物性値と諸特性は、下記の方法により測定した
. (1)高速衝撃試験 支持台(穴径2インチ)上に設定した試験片( 1 2
 0mmX 8 0n++n、厚さ2n+m)に、荷重
センサーであるダート(径5/8インチ)を11m/s
ecの速度で衝突させ、試験片の衝撃荷重における変形
破壊挙動を測定し、得られた衝撃パターンにおける亀裂
発生点までにおいて吸収された衝撃エネルギーを算出し
、材料の衝撃強度とした.また、破壊した試験片の破損
状態は5回測定して、5回全部が延性破壊を0、4〜3
回延性破壊を○、2〜1回延性破壊を△、全部脆性破壊
を×で示した. なお、測定雰囲気温度は、−20’C及び−30℃であ
った. (2)アイゾット衝撃強度 ISO  R180−1969  (JIS  K71
10)(ノッチ付アイゾット衝撃強度)に準じ、東洋精
機製作所製アイゾット衝撃試験機を用いて測定した. なお、測定雰囲気温度は、−20℃及び−30℃であっ
た. (3)曲げ弾性率 ISO  R178−1974  Procedure
 12(JIS  K7203)に準じ、インストロン
試験機を用いて測定した. なお、測定温度は、23℃であった. (4)表面光沢度 JIS  D8741に準じ、日本電色工業四の光沢計
を用いて測定した. 実施例2〜5 実施例lにおいて中間組成物の製造に際して配合した耐
衝撃性改良材の一部を、最終組成物の製造時に配合した
以外は実施例1と同じ配合成分を用い、同様に二工程で
製造した。その組成比及び評価結果はそれぞれ表1及び
表2に示す。
(d) Compound having both an unsaturated group and a polar group in the same molecule; Commercially available maleic anhydride (reagent grade) was used. The above-mentioned components (a) and (b). (c) and (d) were thoroughly mixed in a super mixer at the blending ratio shown in Table 1. Next, this mixture was melt-kneaded using a TEX twin-screw extruder (L/D=30) manufactured by Japan Steel Works, Ltd. at a set temperature of 260°C and a screw rotation speed of 40 rpm to form a composition. It was extruded into strands and made into pellets using a cutter. This was dried in a hot air dryer at 105° C. for 8 hours. An intermediate composition was thus obtained. Seed fat shishi ■1 Yuri pear A (A) Intermediate composition; The intermediate composition produced as described above was used. (B) Polyamide resin: Nylon 6 (Ultramid B-5, manufactured by Badische Anilin und Soda Akchengesellschaft (West Germany), injection molding grade) was used. The above components were thoroughly mixed in a super mixer at the blending ratio shown in Table 1. Next, taste this using TEX manufactured by Nippon Steel Works.
Using a twin-screw extruder, the mixture was melted and mixed at a set temperature of 240°C and a screw rotation speed of 400 rpm, and then formed into pellets. The pellets of the above resin composition were injected using an in-line screw injection molding machine (Model IS-90B manufactured by Toshiba Machinery Works) at a cylinder temperature of 280°C and a mold cooling temperature of 70°C. Molding was performed and test pieces were created. In addition, just before injection molding, drying was performed for 48 hours at 0.1 mmHg and 80°C using a vacuum dryer. In addition, the injection molded test pieces were placed in a desiccator immediately after molding, and left at 23° C. for 4 to 6 days, after which an evaluation test was conducted and the results are shown in Table 2. In addition, each physical property value and various characteristics were measured by the following method. (1) Test piece (1 2
0mm x 80n++n, thickness 2n+m), load sensor dart (diameter 5/8 inch) at 11m/s
The specimen was collided at a speed of EC, the deformation and fracture behavior under the impact load was measured, and the impact energy absorbed up to the point of crack initiation in the resulting impact pattern was calculated and taken as the impact strength of the material. In addition, the fracture state of the fractured test piece was measured five times, and all five measurements showed ductile fracture of 0, 4 to 3.
Diffuse fracture is indicated by ○, 2- to 1-time ductile fracture is indicated by △, and all brittle fracture is indicated by ×. Note that the measurement ambient temperatures were -20'C and -30°C. (2) Izod impact strength ISO R180-1969 (JIS K71
10) (Izod impact strength with notch) It was measured using an Izod impact tester manufactured by Toyo Seiki Seisakusho. The measurement atmosphere temperatures were -20°C and -30°C. (3) Flexural modulus ISO R178-1974 Procedure
12 (JIS K7203) using an Instron testing machine. The measurement temperature was 23°C. (4) Surface glossiness Measured using a Nippon Denshoku Kogyo 4 gloss meter according to JIS D8741. Examples 2 to 5 The same formulation components as in Example 1 were used, except that a part of the impact modifier blended in the production of the intermediate composition in Example 1 was blended in the production of the final composition. Manufactured in a process. The composition ratio and evaluation results are shown in Table 1 and Table 2, respectively.

比較例1〜5 実施例と同じ配合成分を用い、表1のとおりの組成比で
また製造工程を変えて樹脂組成物を製造した.すなわち
、比較例1では、中間組成物の製造工程を省き、ボリフ
エニレンエーテル樹脂のみ最終組成物の製造時に配合し
た.比較例2〜5は、中間体組成比が本発明の中間体組
成比と異なるものを用いた以外は実施例と同様に二工程
で製造され、比較例1では非品性ナイロン(b)及び耐
衝撃性改良材を含まない中間組成物を用い、比較例3で
は耐衝撃性改良材を中間体組成物中に含まないものを用
い、比較例4では非品性ナイロンを中間体組成物中に含
まないものを用い、比較例5では非品性ナイロンの中間
体組成物中における配合比が本発明の範囲を超えるもの
を用いた。評価結果は表2に示す。
Comparative Examples 1 to 5 Resin compositions were manufactured using the same ingredients as in the examples, with the composition ratios shown in Table 1, and by changing the manufacturing process. That is, in Comparative Example 1, the manufacturing process of the intermediate composition was omitted, and only the polyphenylene ether resin was blended during the manufacturing of the final composition. Comparative Examples 2 to 5 were produced in two steps in the same manner as in the example except that an intermediate composition ratio different from that of the present invention was used, and in Comparative Example 1, non-quality nylon (b) and In Comparative Example 3, an intermediate composition containing no impact modifier was used, and in Comparative Example 4, non-grade nylon was used in the intermediate composition. In Comparative Example 5, a non-quality nylon whose compounding ratio in the intermediate composition exceeded the range of the present invention was used. The evaluation results are shown in Table 2.

(発明の効果) 上記評価試験の結果からあらかじめポリフェニレンエー
テル樹脂を主体とする中間組成物を製造し、次にこの中
間組成物にポリアミド樹脂等を配合溶融して製造した本
発明の樹脂組成物は、低温における衝撃強度及び高速衝
撃強度が著しく向上しており、破損状態は脆性破壊から
延性破壊となっており、また、外観光沢ら優れているこ
とがわかる。
(Effects of the Invention) The resin composition of the present invention was produced by first producing an intermediate composition mainly composed of polyphenylene ether resin based on the results of the above evaluation test, and then blending and melting polyamide resin etc. into this intermediate composition. It can be seen that the low-temperature impact strength and high-speed impact strength are significantly improved, the state of failure changes from brittle fracture to ductile fracture, and the appearance is excellent in gloss.

したがって、本発明によれば、低温における耐高速衝撃
性及び剛性がバランスよく改良され、外観光沢も良好な
樹脂組成物が得られ、その用途は広く、工業的に有用な
材料となりうるちのである.
Therefore, according to the present invention, a resin composition can be obtained in which the high-speed impact resistance and rigidity at low temperatures are improved in a well-balanced manner, and the appearance gloss is also good, and the resin composition has a wide range of uses and can be an industrially useful material. ..

Claims (1)

【特許請求の範囲】 ポリフェニレンエーテル樹脂(a)70〜99重量%、
ポリアミド樹脂(b)0.1〜19.9重量%、耐衝撃
性改良材(c)0.1〜35重量%及び同一分子内に不
飽和基と極性基とを併せ持つ化合物(d)0.01〜1
0重量%を溶融混練して中間組成物(A)100重量%
を得、 次いでこの中間組成物(A)10〜80重量%と、ポリ
アミド樹脂(B)20〜90重量%とを溶融混練するこ
とを特徴とする耐衝撃熱可塑性樹脂組成物の製造方法。
[Claims] Polyphenylene ether resin (a) 70 to 99% by weight,
Polyamide resin (b) 0.1 to 19.9% by weight, impact modifier (c) 0.1 to 35% by weight, and compound having both an unsaturated group and a polar group in the same molecule (d) 0. 01-1
0% by weight and melt-kneaded to obtain 100% by weight of intermediate composition (A).
A method for producing an impact-resistant thermoplastic resin composition, which comprises: obtaining 10 to 80% by weight of this intermediate composition (A) and then melt-kneading 20 to 90% by weight of polyamide resin (B).
JP14834389A 1989-06-13 1989-06-13 Manufacture of impact-resistant thermoplastic resin composition Pending JPH0314867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14834389A JPH0314867A (en) 1989-06-13 1989-06-13 Manufacture of impact-resistant thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14834389A JPH0314867A (en) 1989-06-13 1989-06-13 Manufacture of impact-resistant thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPH0314867A true JPH0314867A (en) 1991-01-23

Family

ID=15450646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14834389A Pending JPH0314867A (en) 1989-06-13 1989-06-13 Manufacture of impact-resistant thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPH0314867A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081473A1 (en) * 2000-04-26 2001-11-01 Asahi Kasei Kabushiki Kaisha Conductive resin composition and process for producing the same
US6348257B1 (en) 1996-10-15 2002-02-19 Sanyo Chemical Industries, Ltd. Antibacterial water absorbing composition and method of manufacture
US6894100B2 (en) 2000-04-26 2005-05-17 Asahi Kasei Kabushiki Kaisha Electrically conductive resin composition and production process thereof
US6919394B2 (en) 2000-04-26 2005-07-19 Asahi Kasei Kabushiki Kaisha Electrically conductive resin composition and production process thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348257B1 (en) 1996-10-15 2002-02-19 Sanyo Chemical Industries, Ltd. Antibacterial water absorbing composition and method of manufacture
WO2001081473A1 (en) * 2000-04-26 2001-11-01 Asahi Kasei Kabushiki Kaisha Conductive resin composition and process for producing the same
US6894100B2 (en) 2000-04-26 2005-05-17 Asahi Kasei Kabushiki Kaisha Electrically conductive resin composition and production process thereof
US6919394B2 (en) 2000-04-26 2005-07-19 Asahi Kasei Kabushiki Kaisha Electrically conductive resin composition and production process thereof
US7220795B2 (en) 2000-04-26 2007-05-22 Asahi Kasei Kabushiki Kaisha Conductive resin composition and process for producing the same

Similar Documents

Publication Publication Date Title
JP2842536B2 (en) Resin composition
JP2885317B2 (en) Method for producing impact-resistant thermoplastic resin composition
JPS62127339A (en) Resin composition
JP2798722B2 (en) Resin composition
JPH02209960A (en) Thermoplastic resin composition
NL8400038A (en) POLYMER MIXTURE, CONTAINING A POLYPHENYLENE ETHER AND A POLYAMIDE.
JPH02276860A (en) Resin composition
JPH03199258A (en) Thermoplastic resin composition
JP3223792B2 (en) Thermoplastic resin composition
JPS63108059A (en) Modified polyphenylene ether resin improved in processability and oxidation stability
JPH0314867A (en) Manufacture of impact-resistant thermoplastic resin composition
JPS62270654A (en) Polyphenylene ether/polyamide composition and its production
JPH07116354B2 (en) Method for producing resin composition
JP2798706B2 (en) Method for producing impact-resistant thermoplastic resin composition
JP2648786B2 (en) Composition containing polyphenylene ether resin and polyamide resin showing improved properties
JPS63108060A (en) Resin composition
JPS62257957A (en) Thermoplastic resin composition
JPH03103467A (en) Production of thermoplastic resin composition
JPS63113071A (en) Resin composition
JP2990814B2 (en) Resin composition
JPS62250050A (en) Resin composition
JPH0726133A (en) Thermally stable blend of polyphenylene ether and diene base rubber
JPH0314868A (en) Manufacture of impact-resistant thermoplastic resin composition
JP3110089B2 (en) Resin composition
JPS63241063A (en) Resin composition