JPH03148627A - Reflection type liquid crystal electrooptic device - Google Patents

Reflection type liquid crystal electrooptic device

Info

Publication number
JPH03148627A
JPH03148627A JP1288403A JP28840389A JPH03148627A JP H03148627 A JPH03148627 A JP H03148627A JP 1288403 A JP1288403 A JP 1288403A JP 28840389 A JP28840389 A JP 28840389A JP H03148627 A JPH03148627 A JP H03148627A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
switching element
element array
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1288403A
Other languages
Japanese (ja)
Other versions
JP2955617B2 (en
Inventor
Tomio Sonehara
富雄 曽根原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP28840389A priority Critical patent/JP2955617B2/en
Publication of JPH03148627A publication Critical patent/JPH03148627A/en
Application granted granted Critical
Publication of JP2955617B2 publication Critical patent/JP2955617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To realize the reflection type electrooptic device which eliminates the need for a light shield mask by installing an insulating reflection body on the liquid crystal side of a switching element array substrate provided with a switching element array between two substrates where liquid crystal is sandwiched. CONSTITUTION:A liquid crystal layer 104 is sandwiched between the two opposite substrates 102 and 103 and the insulating reflection body 101 is provided on the switching element array substrate 103 on the side of the liquid crystal layer 104. This liquid crystal layer 104 is a twisted nematic liquid crystal layer which converts linear polarized incident light into nearly elliptic polarized light by its reflecting surface and rotates the plane of polarization of the incident light after the reflection by 90 deg. into linear polarized light on its projection surface. When no electric field is applied, a nontransmission state (black) is entered, so the peripheral part of each picture element is shielded automatically from light and the switching element array is shielded from light almost completely, so the need for a light shield mask is eliminated and mask positioning is therefore unnecessary.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスイッチング素子アレイを配された反射型液晶
電気光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reflective liquid crystal electro-optical device provided with a switching element array.

[従来の技術〕 従来のスイッチング素子アレイを配された反射型液晶電
気光学装置は日経エレクトロニクス19B1、2/16
号P、164に記載のように対向電極には透明基板、ス
イッチング素子アレイ基板は反射電極を設置された基板
を用いるものであった。
[Prior art] A reflective liquid crystal electro-optical device equipped with a conventional switching element array is disclosed in Nikkei Electronics 19B1, 2/16.
As described in No. P, 164, a transparent substrate was used as the counter electrode, and a substrate provided with reflective electrodes was used as the switching element array substrate.

[発明が解決しようとする課II] しかし従来の反射型液晶電気光学装置には、スイッチン
グ素子アレイを配された基板の画素部分を反射体とする
必要があり、製作工数の瑠加や、透明電極で確立された
工程の変更を必要とした。
[Problem II to be Solved by the Invention] However, in conventional reflective liquid crystal electro-optical devices, it is necessary to use the pixel portion of the substrate on which the switching element array is arranged as a reflector, which increases the number of manufacturing steps and the need for transparent electrodes. required changes to established processes.

さらに、対向基板上の画素周辺を覆う遮光マスクと、ス
イッチング素子アレイの位置合わせを行なわなければな
らない課題があった。そこで本発明では、従来のスイッ
チング素子アレイをそのままで用いることができ、さら
に遮光マスクとの位置合わせが要らない反射型電気光学
装置を提供することを目的とするものである。
Furthermore, there is a problem in that the light-shielding mask covering the periphery of the pixels on the counter substrate must be aligned with the switching element array. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a reflective electro-optical device in which a conventional switching element array can be used as is, and alignment with a light-shielding mask is not required.

[課題を解決するための手段] 本発明の反射型液晶電気光学装置は、対向する二枚の基
板間に液晶を挾持し、一方の基板にスイッチング素子ア
レイを設置した反射型液晶電気光学装置において、スイ
ッチング素子アレイ基板の液晶側に絶縁性反射体を有す
ることを特徴とする特vらに液晶層は、直線偏光した入
射光が、反射面では円偏光となり、反射後出射面では入
射光と90度偏光面が回転した直線偏光となるツイスト
したネマチック液晶層であることを特徴とする特vたツ
イストしたネマチック液晶の入射面の分子軸に平行、ま
たは垂直に直線偏光した入射光が入り、反射後出射面で
は入射光と90度偏光面が回転した直線偏光となるツイ
ストしたネマチック液晶層を挾持したことを特徴とする
特 vらに、スイッチング素子アレイは、各画素に配置され
た薄膜トランジスタアレイであることを特徴とする特 *実施例] 実施例1゜ 第1図は本発明の反射型電気光学装置の断面図である。
[Means for Solving the Problems] A reflective liquid crystal electro-optical device of the present invention is a reflective liquid crystal electro-optical device in which a liquid crystal is sandwiched between two opposing substrates, and a switching element array is installed on one substrate. In particular, the liquid crystal layer is characterized by having an insulating reflector on the liquid crystal side of the switching element array substrate. A twisted nematic liquid crystal layer is characterized in that the plane of polarization is rotated by 90 degrees, resulting in linearly polarized light.The incident light is linearly polarized parallel to or perpendicular to the molecular axis of the incident surface of the twisted nematic liquid crystal. The switching element array is characterized by sandwiching a twisted nematic liquid crystal layer which becomes linearly polarized light with the plane of polarization rotated by 90 degrees from the incident light at the output surface after reflection. [Special Embodiment] Example 1 FIG. 1 is a sectional view of a reflective electro-optical device of the present invention.

スイツチング索子アレイ基板103上に絶縁製反射体1
01が設置され、対向基板102との間に液晶104が
はさまれた基本構造をとっている。ここでは液晶層にツ
イストしたネマチック液晶(以下TNと称する)を用い
た。105は画素電極、106は偏光板、107はスイ
ッチング素子である。電界印加のためのもう一方の電極
108は、透明電極で形成されている。さらに入出射面
、透明電極面には減反射コーティングが施され、不要な
光線反射を抑制している。
An insulating reflector 1 is placed on the switching cable array substrate 103.
01 is installed, and a liquid crystal 104 is sandwiched between the counter substrate 102 and the basic structure. Here, twisted nematic liquid crystal (hereinafter referred to as TN) was used for the liquid crystal layer. 105 is a pixel electrode, 106 is a polarizing plate, and 107 is a switching element. The other electrode 108 for applying an electric field is formed of a transparent electrode. Additionally, anti-reflection coatings are applied to the input/output surfaces and transparent electrode surfaces to suppress unnecessary light reflections.

次に本実施例で用いた反射型の液晶表示モードについて
説明する。一般的な電界効果複屈折型の表示モード(以
下ECBと称する)の使用は可能であるが本実施例では
ツイストしたネマチック液晶を用いたECBモードを用
いた。
Next, the reflective liquid crystal display mode used in this example will be explained. Although it is possible to use a general field effect birefringence type display mode (hereinafter referred to as ECB), in this example, the ECB mode using twisted nematic liquid crystal was used.

本実施例ではスイッチング素子基板に第1表に示すTP
Tアクティブマトリックス方式、液晶層に上述したTl
i−ECBモードを用いている。詳細な駆動法及び構成
は、日経エレクトロニクスNo、351 (1981)
 p、211.  Sより”83  DIGEST  
p−156(1983)、SID″85D工G E S
 T p、278 (1985)、Japan Dis
play89 p、192に記載のものに準じている。
In this example, the switching element substrate is made of TP shown in Table 1.
T active matrix method, the above-mentioned Tl is used in the liquid crystal layer.
i-ECB mode is used. Detailed driving method and configuration can be found in Nikkei Electronics No. 351 (1981)
p, 211. From S”83 DIGEST
p-156 (1983), SID″85D Engineering G.E.S.
T p, 278 (1985), Japan Dis
It is based on that described in play89 p. 192.

第1表 駆動方法    TPTアクティブマトリクス画素数 
     480x 440 表示有効面積  96x88  am 表示モード   Tト):CB(電界効果複屈折)液晶
層厚    2.4μm Δn d      0−2 ツイスト角   63゜ 反射体     SiSIOzM電膜多層ミラー(スイ
ッチング素子基板上) 第2図は第1図の装置のビデオ印加電圧と反射率(55
0nm)の特性である。初めに電圧が零の時を説明する
。直線偏光302が入射すると、第3図に示すように楕
円偏光の軌跡が回転する。反射体面ではほぼ円偏光30
1となり、位相が180度回転し反射される。再び液晶
層を透過し、出射面ではほぼ90度偏光面が回転した直
線偏光303となり出射する。このため偏光素子で阻止
され、反射率が低下する(オフ状態)、次に電圧が印加
された場合を説明する。液晶分子は誘電車の異方性のた
めに、電界方向に再配列する。これにより入射光に対す
る複屈折の異方性が消失し、入射した直線偏光がそのま
ま維持されて反射し、出射する。従って反射率の低下は
ない(オン状態)。
Table 1 Driving method TPT active matrix pixel number
480x 440 Display effective area 96x88 am Display mode T): CB (field effect birefringence) liquid crystal layer thickness 2.4 μm Δnd 0-2 Twist angle 63° Reflector SiSIOzM electric film multilayer mirror (on switching element substrate) 2nd The figure shows the video applied voltage and reflectance (55
0 nm). First, we will explain when the voltage is zero. When the linearly polarized light 302 is incident, the locus of the elliptically polarized light rotates as shown in FIG. Almost circularly polarized light 30 on the reflector surface
1, the phase is rotated by 180 degrees, and it is reflected. The light passes through the liquid crystal layer again, and at the exit surface becomes linearly polarized light 303 whose polarization plane has been rotated by approximately 90 degrees and is emitted. For this reason, the light is blocked by the polarizing element and the reflectance decreases (off state). Next, a case where a voltage is applied will be explained. The liquid crystal molecules rearrange in the direction of the electric field due to the anisotropy of the dielectric field. As a result, the anisotropy of birefringence with respect to the incident light disappears, and the incident linearly polarized light is maintained as it is, reflected, and emitted. Therefore, there is no decrease in reflectance (on state).

このような偏光の変化を生ずるのは限られた条件のもと
であり、この条件を鋭意検討した結果本発明にいたった
。液晶層に求められる光学的な特性は、直線偏光の入射
に対し透過後円偏光となること、反射層で位相が180
度シフトし、液晶層を逆に透過したときに90度偏光面
が回転していることのふたつである。
Such a change in polarization occurs under limited conditions, and as a result of intensive study of these conditions, we have arrived at the present invention. The optical properties required for the liquid crystal layer are that when linearly polarized light is incident, it becomes circularly polarized light after passing through it, and that the phase of the reflective layer is 180°.
There are two reasons: the polarization plane is rotated by 90 degrees when the light is transmitted through the liquid crystal layer in the opposite direction.

第4図(a) 、(b)はΔndとオフ時の反射率を示
すグラフである。なおパラメーターに液晶層のツイスト
角をとり、入射光の偏光面は入射面の液晶分子のダイレ
クタ−に合わせた。オン時の反射率は、偏光素子の透過
率によって決まり、はぼ一定である。これによると、約
60度のツイスト角、Δn d = OJ2の時に反射
率がほぼ零となることが分かった。更に詳細に調べた結
果、63度のツイスト角が最適であることが分かった。
FIGS. 4(a) and 4(b) are graphs showing Δnd and reflectance in the off state. The twist angle of the liquid crystal layer was taken as a parameter, and the polarization plane of the incident light was matched to the director of the liquid crystal molecules on the incident surface. The reflectance when on is determined by the transmittance of the polarizing element and is approximately constant. According to this, it was found that the reflectance becomes almost zero when the twist angle is about 60 degrees and Δnd=OJ2. As a result of further detailed investigation, it was found that a twist angle of 63 degrees is optimal.

この時の楕円偏光の軌跡をみると、第3図に示すように
、反射面では円偏光となり、出射面では入射時と90度
回転した直線偏光となる。これを174λ板の場合と比
べると、液晶のダイレクタ−に沿って偏光が入射するた
め、複屈折を感受しにくく、同じ位相の変化を受けるた
めには大きなΔndを必要とすること、Δndに対する
周期性が少ないことが特徴である。これは液晶層の厚み
を比較的大きく設定でき、製造におけるマージンを確保
するものである。
Looking at the trajectory of the elliptically polarized light at this time, as shown in FIG. 3, it becomes circularly polarized light on the reflecting surface, and linearly polarized light that is rotated by 90 degrees from the time of incidence on the exit surface. Comparing this with the case of a 174λ plate, it is difficult to detect birefringence because the polarized light is incident along the director of the liquid crystal, and a large Δnd is required to receive the same phase change, and the period with respect to Δnd. It is characterized by a lack of sexuality. This allows the thickness of the liquid crystal layer to be set relatively large, ensuring margins in manufacturing.

また、Δnの効果は液晶のダイレクタ−に対し直線偏光
が垂直に入射した場合も全く同様に働く。
Furthermore, the effect of Δn works in exactly the same way when linearly polarized light is perpendicularly incident on the director of the liquid crystal.

これはΔnには正負が無いためである。This is because Δn has no sign or negative.

第5図(a)、(b)はパラメーターに偏光素子の液晶
のダイレクタ−に対する配置角をとり、Δndと反射率
の関係を示すものである。これによると偏光素子の方向
が+30度の時にも反射率が零の条件がある。この場合
の楕円偏光の軌跡を見ると第4図と同じように反射面で
古傷光になっている。
FIGS. 5(a) and 5(b) show the relationship between Δnd and reflectance, using the angle of arrangement of the polarizing element with respect to the director of the liquid crystal as a parameter. According to this, there is a condition in which the reflectance is zero even when the direction of the polarizing element is +30 degrees. Looking at the locus of the elliptically polarized light in this case, as in Figure 4, it becomes old damage light on the reflective surface.

パラメーターを振ることによってこの様な条件を他にも
見つけることができる。しかし、波長による反射率変動
を低く抑えるためには最小のΔndに設定する必要があ
り、さらに極端に小さなΔndでは液晶厚が小さくなり
すぎるため、この間で選択する必要がある。光学長が2
倍になる反射型では、透過型の液晶素子では許容される
液晶厚が製作上の問題となる。そこでΔndが少しでも
大きいことが求められる。これは素子製作のマージンを
大きくするためである。前述のΔnd=0.2の条件で
みると、Δnが小さな液晶の典型的な値、Δn=o−0
8では、dが2.5μmとなる。
Other conditions like this can be found by changing the parameters. However, in order to suppress reflectance fluctuations due to wavelength, it is necessary to set Δnd to the minimum value, and since an extremely small Δnd results in too small a liquid crystal thickness, it is necessary to select a value between these values. Optical length is 2
In the case of a reflective type device, which is twice as large as that of a transmissive type liquid crystal element, the permissible liquid crystal thickness becomes a manufacturing problem. Therefore, it is required that Δnd be as large as possible. This is to increase the margin for device manufacturing. Considering the condition of Δnd=0.2 mentioned above, Δn is a typical value for a small liquid crystal, Δn=o−0
8, d is 2.5 μm.

これシこ対し、従来例で述べた45度ツイストしたタイ
プでは、最適な液晶厚が2μmを下まわり、素子の均一
性や歩留まりを低下させる要因になっている。
On the other hand, in the 45-degree twisted type described in the conventional example, the optimum liquid crystal thickness is less than 2 μm, which is a factor that reduces device uniformity and yield.

また、このような液晶モードは無電界時に非透過状態(
黒)と設定できることから、画素電極のない部分の遮光
マスクが不要となる。
In addition, such a liquid crystal mode is in a non-transparent state (
Since the pixel electrode can be set to black), there is no need for a light-shielding mask for the area where there is no pixel electrode.

実施例2 第6図は偏光素子に偏光ビームスプリッタ−(以下、P
BSと称する)を用いた反射型液晶電気光学装置の構成
図である。
Example 2 Figure 6 shows a polarizing beam splitter (hereinafter referred to as P
1 is a configuration diagram of a reflective liquid crystal electro-optical device using a liquid crystal display (referred to as BS).

601がPBSであり、光源光603を直線偏光し液晶
パネル602に入射させる。液晶パネルの構成、出射ま
でのプロセスは実施例1と同様である。出射光を検光す
る手段がPBSでは入射時と90度ずれている。このた
め反射出力光604は無電界時に小さくなり、印加電圧
と反射率の特性は、実施例1の第3図と縦軸に対し対称
なものとなる。
A PBS 601 linearly polarizes the light source light 603 and makes it enter the liquid crystal panel 602 . The configuration of the liquid crystal panel and the process up to emission are the same as in Example 1. In PBS, the means for analyzing the emitted light is shifted by 90 degrees from the time of incidence. Therefore, the reflected output light 604 becomes small in the absence of an electric field, and the characteristics of applied voltage and reflectance become symmetrical with respect to the vertical axis as in FIG. 3 of Example 1.

実施例3゜ 本発明はここでダイオード等をアレイ化したアクティブ
マトリクスにも適用することができる。
Embodiment 3 The present invention can also be applied to an active matrix in which diodes and the like are arranged in an array.

第7図はダイオード素子に金属−絶縁体−金属素子(以
下M工Mと称する)を用いたMIX液晶電気光学装置の
断面図である。基本構造は絶縁性反射体701が設置さ
れたMIX基板702と対向基板703の間に液晶70
4がはさまれたものである。7o5は電界を液晶層に印
加するための対向基板上の透明電極であり、画素サイズ
に対応したストライプ電極である。本実施例では絶縁性
反射体として誘電体多層膜によるミラーを用いた。この
誘電体多層膜によるミラーはMIX素子の上下を問わず
設置が可能である。基板706上にライン状の信号伝送
配線707、その一部に作られた薄い絶縁体からなるM
工M素子708、それに電気的に接続された画素電極7
12からなっている。なお画素電極はMIXを構成する
もう一方の金属薄膜と電気光学素子の反射性膜を兼ねて
いる。71Oは減反対コーティング、711は偏光素子
である。
FIG. 7 is a sectional view of a MIX liquid crystal electro-optical device using a metal-insulator-metal element (hereinafter referred to as M) as a diode element. The basic structure is that a liquid crystal 70 is placed between a MIX substrate 702 on which an insulating reflector 701 is installed and a counter substrate 703.
4 is sandwiched between them. 7o5 is a transparent electrode on the counter substrate for applying an electric field to the liquid crystal layer, and is a stripe electrode corresponding to the pixel size. In this example, a mirror made of a dielectric multilayer film was used as the insulating reflector. A mirror made of this dielectric multilayer film can be placed above or below the MIX element. Line-shaped signal transmission wiring 707 on board 706, M made of thin insulator made in part of it
M element 708 and pixel electrode 7 electrically connected to it
It consists of 12. Note that the pixel electrode also serves as the other metal thin film constituting the MIX and the reflective film of the electro-optical element. 71O is an anti-reducing coating, and 711 is a polarizing element.

より具体的な構成を第2表に示す。More specific configurations are shown in Table 2.

第2表 画素数        220x 320画素ピッチ 
     80X90μmM工M基板 MIM素子      丁a−Ta20s−CrTaa
Os 500人 酸化方法       湿式陽極酸化 信号伝送配線     Ta 画素電極       Cr反射膜 反射体        誘電体多層膜 表示モード       TN−ECB(電界効果複屈
折)液晶層厚       2.4μm Δn d         0.2 ツイスト角      63@ 以上実施例を述べたが、本発明は以上の実施倒のみなら
ず、広く反射型の光制御装置に応用が可能である。
Table 2 Number of pixels 220x 320 pixel pitch
80X90μm M substrate MIM element Dinga-Ta20s-CrTaa
Os 500 person oxidation method Wet anodization signal transmission wiring Ta Pixel electrode Cr reflective film reflector Dielectric multilayer film display mode TN-ECB (field effect birefringence) liquid crystal layer thickness 2.4μm Δn d 0.2 Twist angle 63@ or more Although the embodiments have been described, the present invention can be applied not only to the above embodiments but also to a wide range of reflective light control devices.

[発明の効果] 以上述べたように本発明によれば、 スイッチング素子アレイ基板に反射体を設置するだけで
簡単に反射型ライトバルブが構成できる。
[Effects of the Invention] As described above, according to the present invention, a reflective light valve can be easily constructed by simply installing a reflector on a switching element array substrate.

また、無電界時に非透過状態(黒)と設定できることか
ら画素周辺部は自動的に遮光できる。いわばセルファラ
イン型の遮光マスクとすることができる。
Furthermore, since it can be set to a non-transmissive state (black) when there is no electric field, the peripheral area of the pixel can be automatically shielded from light. It can be used as a so-called self-line type light-shielding mask.

さらにスイッチング素子アレイは常にほぼ完全に遮光さ
れているので、遮光マスクが不要、さらにそのためのマ
スク位置合わせも不要となる。特に入射光によってリー
ク電流が生じ、off時の抵抗の上昇が問題になるTF
T型のスイッチング素子には、特に有効である。
Furthermore, since the switching element array is always almost completely shielded from light, there is no need for a light-shielding mask, and furthermore, there is no need for mask alignment. In particular, TFs where leakage current occurs due to incident light and an increase in resistance when turned off is a problem.
This is particularly effective for T-type switching elements.

また、絶縁性の反射体が液晶層と電気的に直列に接続さ
れるため、液晶層にとって極めて有害な直流成分の除去
ができる効果もある。
Furthermore, since the insulating reflector is electrically connected in series with the liquid crystal layer, there is an effect that direct current components that are extremely harmful to the liquid crystal layer can be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の反射型電気光学装置の断面図である、
 − 第2図紘第1rI!Jの装置の印加電圧と反射率(55
0nm)の特性図である。 第3図は第2図の楕円偏光の軌道を示す図である。 第4図(a)、(b)はΔndと反射率の関係を   
示すグラフである。 第5(1(a)、(b)番よパラメーターに偏光素子の
液晶のダイレクタ−に対する配置角をとり、Δndと反
射率の関係を示すものである 第6図は偏光素子にPBSを用いた反射型液晶電気光学
装置の構成図である。 第7図はMIMダイオードによってアドレスされた反射
型電気光学装置の断面図である。 101・・・絶縁性反射体 102−−・ 対向基板 103−・−スイッチング素子アレイ基板104・・・
液晶層 301−・・反射面での円偏光 601・・−PBS 701−・・絶縁性反射体 702−M I M基板 703−・・ 対向基板 704−・・液晶 705−・−対向電極 70ロー・一基板 70フー・・信号伝送配線 708−M工M素子 以上 出願人 セイコーエプソン株式会社 代理人 弁理士鈴木喜三郎(他1名) /−一一、 100 <    、、                  
      、、    51/す 10%;”、−一〜〜             、i
トI03 ##         、。 第1図 反射率j 第2図 1 \\ j        { 1 \″/              1[XX′I
/I1 逼l 5 凶 (b〕  6″2 ”6017 第6図 第一7M
FIG. 1 is a cross-sectional view of a reflective electro-optical device of the present invention.
- Figure 2 Hiro 1st rI! Applied voltage and reflectance of the device of J (55
0 nm). FIG. 3 is a diagram showing the trajectory of the elliptically polarized light in FIG. 2. Figures 4(a) and (b) show the relationship between Δnd and reflectance.
This is a graph showing. The angle of arrangement of the polarizing element with respect to the liquid crystal director is taken as the fifth (1(a) and (b) parameters), and the relationship between Δnd and reflectance is shown in Figure 6. FIG. 7 is a configuration diagram of a reflective liquid crystal electro-optical device. FIG. 7 is a cross-sectional view of the reflective electro-optical device addressed by MIM diodes. 101...Insulating reflector 102--Counter substrate 103-- - Switching element array substrate 104...
Liquid crystal layer 301--Circularly polarized light 601 on reflective surface 601--PBS 701--Insulating reflector 702-MIM substrate 703--Counter substrate 704--Liquid crystal 705--Counter electrode 70 row・One board 70 hoo... Signal transmission wiring 708-M engineering M element or above Applicant Seiko Epson Co., Ltd. Agent Patent attorney Kisaburo Suzuki (1 other person) /-11, 100 < ,,
,, 51/su10%;", -1~~,i
I03 ##,. Figure 1 Reflectance j Figure 2 1 \\ j { 1 \''/ 1[XX'I
/I1 〼l 5 ふ (b) 6″2 ″6017 Figure 6 17M

Claims (1)

【特許請求の範囲】 1)対向する二枚の基板間に液晶を挾持し、一方の基板
にスイッチング素子アレイを設置した反射型液晶電気光
学装置において、スイッチング素子アレイ基板の液晶側
に絶縁性反射体を有することを特徴とする反射型液晶電
気光学装置。 2)前記液晶層は、直線偏光した入射光が、反射面では
円偏光となり、反射後出射面では入射光と90度偏光面
が回転した直線偏光となるツイストしたネマチック液晶
層であることを特徴とする請求項1記載の反射型液晶電
気光学装置。 3)前記ツイストしたネマチック液晶の入射面の分子軸
に平行、または垂直に直線偏光した入射光が入り、反射
後出射面では入射光と90度偏光面が回転した直線偏光
となるツイストしたネマチック液晶層を挾持したことを
特徴とする請求項2記載の反射型液晶電気光学装置。 4)前記スイッチング素子アレイは、各画素に配置され
た薄膜トランジスタアレイであることを特徴とする請求
項1記載の反射型液晶電気光学装置。
[Claims] 1) In a reflective liquid crystal electro-optical device in which a liquid crystal is sandwiched between two opposing substrates and a switching element array is installed on one substrate, an insulating reflective layer is provided on the liquid crystal side of the switching element array substrate. A reflective liquid crystal electro-optical device characterized by having a body. 2) The liquid crystal layer is a twisted nematic liquid crystal layer in which linearly polarized incident light becomes circularly polarized light on the reflecting surface, and after reflection becomes linearly polarized light with the plane of polarization rotated by 90 degrees from the incident light on the exit surface. 2. A reflective liquid crystal electro-optical device according to claim 1. 3) A twisted nematic liquid crystal that receives linearly polarized incident light parallel to or perpendicular to the molecular axis of the incident surface of the twisted nematic liquid crystal, and after reflection becomes linearly polarized light with the polarization plane rotated by 90 degrees from the incident light at the exit surface. 3. A reflective liquid crystal electro-optical device according to claim 2, characterized in that the layers are sandwiched. 4) The reflective liquid crystal electro-optical device according to claim 1, wherein the switching element array is a thin film transistor array arranged in each pixel.
JP28840389A 1989-11-06 1989-11-06 Reflective liquid crystal electro-optical device Expired - Lifetime JP2955617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28840389A JP2955617B2 (en) 1989-11-06 1989-11-06 Reflective liquid crystal electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28840389A JP2955617B2 (en) 1989-11-06 1989-11-06 Reflective liquid crystal electro-optical device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11068508A Division JP3127915B2 (en) 1999-03-15 1999-03-15 Electro-optical device

Publications (2)

Publication Number Publication Date
JPH03148627A true JPH03148627A (en) 1991-06-25
JP2955617B2 JP2955617B2 (en) 1999-10-04

Family

ID=17729757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28840389A Expired - Lifetime JP2955617B2 (en) 1989-11-06 1989-11-06 Reflective liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JP2955617B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139050A (en) * 2004-11-12 2006-06-01 Shin Etsu Handotai Co Ltd Multilayer substrate, and reflective liquid crystal display element using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139050A (en) * 2004-11-12 2006-06-01 Shin Etsu Handotai Co Ltd Multilayer substrate, and reflective liquid crystal display element using the same

Also Published As

Publication number Publication date
JP2955617B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
KR100327613B1 (en) Liquid crystal display device
US6657689B2 (en) Transflective liquid crystal display with adjusted dual-thickness liquid crystal layer and method of fabricating the same
US6266118B1 (en) Liquid crystal display of high aperture ratio and high transmittance having multi-domain having transparent conductive pixel and counter electrodes on the same substrate
JP4831721B2 (en) Liquid crystal display
US6650385B1 (en) Scattering fringe field optical-compensated reflective and transflective liquid crystal display
USRE43217E1 (en) Homeotropic alignment type liquid crystal display device
US8405806B2 (en) Liquid crystal display device that includes both a transmissive portion and a reflective portion
KR100439354B1 (en) Transflective LCD
US20100208176A1 (en) Wide Viewing Angle Transflective Liquid Crystal Displays
JPH0215238A (en) Anisotropic compensation homeotropic liquid crystal display device
US7728929B2 (en) Transflective liquid crystal display device
US6741311B1 (en) Reflective type-fringe switching mode LCD having liquid crystal retardation (2n+1)λ/4
KR100866942B1 (en) Liquid crystal display device
US20060114381A1 (en) Liquid crystal display device with dual modes
JPH11212073A (en) Liquid crystal display device
JPH0769537B2 (en) Anisotropic compensation twisted nematic liquid crystal display
US7589805B2 (en) Transflective liquid crystal display and method of fabricating the same
US7692742B2 (en) Transflective liquid crystal display
JPH03148627A (en) Reflection type liquid crystal electrooptic device
US20050140901A1 (en) Fringe field switching liquid crystal display
JP3022477B2 (en) Reflective liquid crystal display
KR101277548B1 (en) Polarizing plate and display device having the same
JP2946563B2 (en) Reflective liquid crystal electro-optical device
JP3127915B2 (en) Electro-optical device
EP3872560B1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11