JPH03148526A - Underfloor heat storage type energy saving heating system - Google Patents

Underfloor heat storage type energy saving heating system

Info

Publication number
JPH03148526A
JPH03148526A JP28312789A JP28312789A JPH03148526A JP H03148526 A JPH03148526 A JP H03148526A JP 28312789 A JP28312789 A JP 28312789A JP 28312789 A JP28312789 A JP 28312789A JP H03148526 A JPH03148526 A JP H03148526A
Authority
JP
Japan
Prior art keywords
heat
stored
heat storage
air
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28312789A
Other languages
Japanese (ja)
Inventor
Hatsuo Haba
初雄 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP28312789A priority Critical patent/JPH03148526A/en
Publication of JPH03148526A publication Critical patent/JPH03148526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)

Abstract

PURPOSE:To provide an inexpensive utilization of thermal energy and effective utilization thereof by a method wherein a heat storage material is arranged within a wide range of a spacing between a first floor surface of a building and a ground and heat is stored using a solar heat, a surplus electrical power at night, a discharged heat and a direct heating or the like. CONSTITUTION:A wall surface 3 and a roof surface 4 receiving a sun shining 2 from the sun 1 show an increased temperature and its heat may heat air within hollow portions 5 and 6. Hot air heated by the wall surface and the roof surface is guided to a beat storage material 10 stored below at floor by an air blower 8 installed in an air tunnel 7 and then the heat is stored as a heat energy. The stored heat energy continues to heat gradually dwelling spacing 51 and 52 placed above the device through natural heat radiation. If the sun shining volume is reduced and the stored heat is substantially decreased, the heat storage material us heated by a heater facility 33 through a control device 32 with a surplus electric power at night together with an inexpensive auxiliary heating source.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自然太陽熱エネルギーや夜間余剰電力・排熱
等の熱エネルギーを格安にかつ有効に利用しようとする
省エネルギーを目指す建築物に備える。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is provided for buildings aiming at energy conservation in which thermal energy such as natural solar thermal energy, nighttime surplus electricity, waste heat, etc. is used cheaply and effectively.

〔従来の技術〕[Conventional technology]

二重壁・二重屋根を持つ高断熱高機密を施された建築物
で、その中空部の空気の対流熱エネルギーにより室内空
気をコントロールし、居住空間を快適にしようとするパ
ッシブエアーサイクルシステムにおいて、夏季には太陽
熱により熱せられた空気を二重壁・二重屋根の中空部分
から最上階の天井裏に集め屋外に放出し、冬季にはその
中空部分の暖かい空気を高断熱の建物内に自然対流力に
より循環させ自然太陽熱にて暖房効果を得ようとするも
の。
This is a passive air cycle system that aims to make the living space comfortable by controlling indoor air using convection thermal energy of the air in the hollow parts of highly insulated and highly secret buildings with double walls and double roofs. In the summer, air heated by the sun is collected in the ceiling of the top floor from the hollow part of the double wall/double roof and released outdoors, and in the winter, the warm air in the hollow part is pumped into the highly insulated building. This system attempts to achieve a heating effect using natural solar heat, which is circulated by natural convection power.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

住宅を含む一般小規模建築物においては、1階床面を地
盤より30から60cm上に設定するのが通例でありそ
の間の部分は建物構造体を除けば、換気通風空間として
利用するほかは用を成さない部分として埋め土による地
理等をされていた。
In general small-scale buildings, including houses, it is customary for the first floor to be set 30 to 60 cm above the ground, and the area in between is not used for anything other than the building structure and is used as a ventilation space. Geography was done using fill-in soil as a part of the area that did not form part of the area.

従ってこの部分を目的をもって使用するには居住空間に
影響を与える事なく特に重量物で体積が大きく形や見栄
がかりにこだわらないものを収給するには最適なスペー
スとして容易に確保出来得る部分である事に着目した。
Therefore, in order to use this area for a purpose, it is an area that can easily be secured as an optimal space for storing items that are particularly heavy, large in volume, and have no particular shape or appearance, without affecting the living space. I noticed something.

省資源・省エネルギー・自然破壊の防止・自然エネルギ
ーの活用等の観点から、太陽エネルギーを安価に且つ有
効に利用したいとの思想に基づくものである。
It is based on the idea of using solar energy cheaply and effectively from the viewpoints of resource conservation, energy conservation, prevention of natural destruction, and utilization of natural energy.

電力事業者においては、昼間と夜間の供給電力の差が大
きくその平準化に電力料金に差を持たせるなど相当な努
力を払っているところである。
Electric power companies are making considerable efforts to equalize the large difference in power supply between daytime and nighttime, including creating a difference in power rates.

産業排熱・設備排熱・機器排熱等の排熱は住空間におい
ては暖房エネルギーとして直接使用するには充分であり
、資源エネルギーの有効活用になる。
Exhaust heat such as industrial exhaust heat, equipment exhaust heat, equipment exhaust heat, etc. is sufficient to be used directly as heating energy in living spaces, and is an effective use of resource energy.

本発明は以上のような課題に対して大きく貢献するもの
と考える。
We believe that the present invention will greatly contribute to solving the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題に対し、住空間においてそれらを複合的に組
み合わせ目的を達成させたのが下記のシステムである。
In response to the above issues, the following system is a system that combines them in a living space to achieve the objectives.

太陽↓ネルギーを簡易に使用出来るのは第一は暖熱エネ
ルギーである。建築物の外壁や屋根面では太陽光線を受
は大量の暖熱エネルギーを享受している。冬季において
も例外ではなく、そのエネルギーを安価且つ有効に取り
込むために暖房の4要な時期に日射をよく受ける部分に
表面は熱吸収が良くその裏側へ熱を伝導し易い建築材料
(3)(4)にて中空部分(5)(6)を形成し暖熱空
気の流通スペースとし、またその室内側は高断熱を施し
日射量に応じ熱エネルギーを連続的に暖空気として捕捉
する事が出来るようにする。
The first thing that can easily use solar energy is heating energy. The outer walls and roofs of buildings receive sunlight and receive a large amount of heating energy. Winter is no exception, and in order to capture that energy cheaply and effectively, we use building materials that have a surface that absorbs heat well and easily conducts heat to the back side (3) ( Hollow parts (5) and (6) are formed in 4) to serve as a circulation space for warm air, and the indoor side is highly insulated so that thermal energy can be continuously captured as warm air according to the amount of solar radiation. Do it like this.

捕捉した大量の熱エネルギーを居住空間に導く−だけで
はその環境によっては相当量余ってしまう。余ったエネ
ルギーを安価に且つ有効に使用する方法を考えねばなら
ない。それに最適なのが床下蓄熱方式である。以前にお
いては大建築物を除いては有効に使用されていなかった
床下に安価に蓄熱部を形成しようとするもので建築物の
基本計画に殆ど影響を与える事なく厚み20かも30c
mで床下一面に施設することが出来る。そのためにその
蓄熱エネルギーの取り出し使用は蓄熱部上部表面からの
輻射・伝熱放熱・暖熱空気上昇対流Jこよる自然放散で
よく、その部分の特質から蓄熱材は無害なものであれば
一般的に体積比熱の大きい重量物は何でも使用する事が
出来るという利点が有り永久性・保守性・作業性・価格
性等の観点から自然石・砂・コンクリート等が使用され
材質により蓄熱と放熱を容易にするよう施設方法が使い
分けされる。
Simply guiding the captured large amount of thermal energy into the living space can result in a considerable amount of excess energy depending on the environment. We need to think of ways to use surplus energy cheaply and effectively. The most suitable method for this purpose is the underfloor heat storage method. This is an attempt to form a heat storage area at a low cost under the floor, which had not been used effectively in the past except in large buildings, and it has a thickness of 20 to 30cm without having almost any effect on the basic plan of the building.
It is possible to install the facility all over the floor under the m. Therefore, the heat storage energy can be taken out and used by natural dissipation through radiation, heat transfer, and upward convection of warm air from the upper surface of the heat storage part. It has the advantage of being able to use any heavy object with a large volumetric specific heat, and natural stone, sand, concrete, etc. are used from the viewpoint of permanence, maintainability, workability, cost efficiency, etc., and heat storage and heat dissipation are easy depending on the material. Facility methods are used accordingly.

大容量の蓄熱部を装備したことにより2から3日間日照
を受けない日が続いても羊の効力は持続し、さらにこの
自然熱源とは別に人工補助熱源にて蓄熱制御することに
よりさらに安定した熱放散による暖房効果を得ることが
出来る。
Equipped with a large-capacity heat storage unit, the effectiveness of the sheep continues even if there are no sunlight for 2 to 3 days, and it is further stabilized by controlling heat storage with an artificial auxiliary heat source in addition to this natural heat source. A heating effect can be obtained through heat dissipation.

蓄熱が可能なために補助熱源は、時間的にも種類的にも
制約を受けることが少なく直接加熱はもとより夜間余剰
電力・排熱等のいわゆる余剰エネルギーを自由に使うこ
とが出来る。
Because it is possible to store heat, the auxiliary heat source is less restricted in terms of time and type, and can freely use not only direct heating but also so-called surplus energy such as surplus electricity and waste heat at night.

以上の事柄をシステム化すると、自然熱源としては外壁
面・屋根面より得た暖熱空気を機械送風の風洞にて床下
蓄熱部に導き蓄熱材に熱を吸収させ、熱交換後の空気は
元の中空壁に戻し循環させる。 補助熱源用として電気
ヒータ一線・流体用ヒータ一管等を蓄熱材の中に敷設し
熱エネルギー管理を電気回路にて総合的に行い省エネル
ギー暖房設備とする。夏季の暖房の不要な時期には中空
壁・中空屋根の熱せられた空気を直接屋外へ放出するよ
うに切り替え可能なダンパーを上下に設ける。
Systematizing the above matters, as a natural heat source, warm air obtained from the external wall surface and roof surface is guided to the underfloor heat storage area in a mechanical ventilation wind tunnel, and the heat is absorbed by the heat storage material, and the air after heat exchange is returned to the original. Circulate it back into the hollow wall of the chamber. As an auxiliary heat source, an electric heater line, a fluid heater tube, etc. are laid inside the heat storage material, and thermal energy is managed comprehensively using electric circuits, resulting in an energy-saving heating facility. Switchable dampers are installed at the top and bottom to release the heated air from the hollow walls and hollow roof directly outdoors during the summer months when heating is not required.

〔作用〕[Effect]

図面を参照して説明すると、第1図において太陽(1)
による日射(2)を受けた壁面(3)・屋根面(4)は
温度が上昇しその熱は内側の中空ffi(5)(6)の
空気を加熱する。加熱された暖空気は風洞(7)に施設
された送風機(8)により床下に備えられた蓄熱材(l
O)へ導かれそれを加熱し熱エネルギーとして蓄積され
る。蓄積された熱エネルギーは自然放熱により上部に有
る居住空間(51)(52)を穏やかに暖め続ける。
To explain with reference to the drawings, in Fig. 1 the sun (1)
The temperature of the wall surface (3) and roof surface (4) that receives solar radiation (2) increases, and that heat heats the air in the inner hollow ffi (5) (6). The heated warm air is passed through a heat storage material (l) provided under the floor by a blower (8) installed in a wind tunnel (7).
O), which heats it and is stored as thermal energy. The accumulated thermal energy continues to gently warm the upper living space (51) (52) by natural heat radiation.

日射が少なく蓄積熱が大きく減少するようであれば夜間
余剰電力等(31)により制御装置(32)を介しヒー
ター設備(33)により、安価な補助熱源にて蓄熱材を
加温する事でその機能を持続させることが出来る。
If there is little sunlight and the accumulated heat decreases significantly, the heat storage material can be heated with an inexpensive auxiliary heat source using the heater equipment (33) via the control device (32) using surplus electricity at night (31). Function can be maintained.

第2図において、暖房が必要な時期で日射を受けない時
には建物内部の暖められた空気を逃がさないように下部
ダンパー(12)並びに上部ダンパー(13)の開閉切
り替えを行う。
In FIG. 2, when heating is required and the building does not receive solar radiation, the lower damper (12) and upper damper (13) are switched open and closed to prevent the warm air inside the building from escaping.

第3図において、夏季には熱せられた中空部分(5)(
6)の空気は自然上昇気流となって排出され、また床下
換気0(14)軒天換気口(15)を通し建物内部の換
気も行われる。
In Figure 3, the hollow part (5) (
The air in 6) is discharged as a natural upward draft, and the inside of the building is also ventilated through the underfloor ventilation (14) and the roof ventilation opening (15).

〔実施例〕〔Example〕

実施例について図面を参照して説明すると第1図から第
3図は全体′的な構成を示しであるので実施例について
は木造建築物の壁の一例である第4図から第7図の部分
詳細図により説明する。
The embodiment will be explained with reference to the drawings. Since Figures 1 to 3 show the overall configuration, the parts of Figures 4 to 7, which are examples of the walls of a wooden building, will be explained. This will be explained using detailed drawings.

第4図は第1図のA−Aの中空壁と一般壁部断面図で柱
・間柱の外側を高断熱材(I l)にて覆い、その外側
の中空部(5)に面する部分は防水と耐久性を備えた熱
吸収の良い黒色カラー鉄板等(17)を張る。次に中空
部(5)を形成するための間材(18)を打ち付けその
外側に外観意匠を十分考慮した太陽熱を良く吸収し内側
に熱を伝達する暗色系の加工力ラー鉄板等(3)により
仕上げる。
Figure 4 is a cross-sectional view of the hollow wall and general wall part of A-A in Figure 1, where the outside of the pillars and studs is covered with a highly insulating material (Il), and the part facing the hollow part (5) on the outside The area is covered with black colored iron plates (17) that are waterproof, durable, and have good heat absorption. Next, an intermediary material (18) is attached to form the hollow part (5), and on the outside thereof, a dark-colored hard-processed iron plate, etc. (3) that absorbs solar heat well and transfers heat to the inside, with sufficient consideration given to the external design. Finish by.

第5図は第1図のB−Bの中空屋根部断面図で垂木を高
断熱材(11)にて覆いその上に厚みlOmm程度の合
板などの屋根板(16)を打ち付け、次に防水と耐久性
を備えた熱吸収の良い黒色カラー鉄板等(17)を張る
。次に中空部(6)を形成するための間材(18)を荷
重を考慮し小間隔で打ち付けそのうえに外観意匠を十分
考慮した太陽熱を良く吸収し内側に熱を伝達する暗色系
の屋根用加工力ラー鉄板等(4)により仕上げる第6図
は床下蓄熱部とそこを通過し熱−交換を終えた空気の外
壁中空部への戻しダクトの接!部分の縦断面詳細図で、
地業を施し地盤(19)に防水シート(20)を張り高
断熱材(11)を敷き詰めその上に捨てコンクリート(
21)を打設−し。次にヒータ一線又は管(33)を施
設しそれを傷つはないように蓄熱用の直径lOから20
cmの玉石(lO)を20から30cmの厚さに空気の
流通スペース(9)を確保するように敷き詰めその上を
亜鉛鉄板等の薄板(22)で空気が逃げないように覆う
。戻しダクトと外壁中空部(5)との接続点には切り替
えダンパー(12)を設ける。
Figure 5 is a cross-sectional view of the hollow roof taken along line B-B in Figure 1. The rafters are covered with a highly insulating material (11) and a roof plate (16) made of plywood or the like with a thickness of about 10 mm is attached on top of it. and a durable, heat-absorbing black iron plate (17). Next, the intermediate materials (18) to form the hollow part (6) are nailed down at small intervals taking into account the load, and the roof is finished in a dark color that absorbs solar heat well and transfers heat to the inside, taking into consideration the exterior design. Figure 6 shows the connection between the underfloor heat storage section and the return duct for the air that has passed through it and completed the heat exchange to the hollow section of the outer wall. Detailed longitudinal section of the part.
A waterproof sheet (20) is placed on the ground (19), a high insulation material (11) is spread over it, and concrete is poured on top of it.
21). Next, install the heater line or tube (33) and carefully wrap it with a diameter of 10 to 20 mm for heat storage without damaging it.
Cobblestones (lO) with a thickness of 20 to 30 cm are spread so as to ensure air circulation space (9), and then covered with a thin plate (22) such as a galvanized iron plate to prevent air from escaping. A switching damper (12) is provided at the connection point between the return duct and the outer wall hollow (5).

第7図は床下蓄熱部をコンクリート等にて構成した場合
の詳細図で、空気の流通スペース(9)になる直径5か
らlOcmの多ひだ管を30から50cmの間隔に敷設
し上端くらいまで蓄熱用コンクリート(10)を打設す
る。その上にヒータ一線又は管(33)を敷設しさらに
蓄熱用コンクリー)(10)をlOから20cm打設す
る。コンクリートの代わりに固形化する産業廃棄物等も
使用出来、固形化しない砂状の物でもその上部を薄板に
て覆うことにより同様に使用出来る。
Figure 7 is a detailed diagram of the underfloor heat storage section made of concrete, etc. Multi-pleated pipes with a diameter of 5 to 10 cm are laid at intervals of 30 to 50 cm to form the air circulation space (9), and heat is stored up to the upper end. Concrete (10) is poured. A heater line or pipe (33) is laid on top of it, and heat storage concrete (10) is poured 20 cm from the lO. Industrial waste that solidifies can be used instead of concrete, and sand-like materials that do not solidify can also be used in the same way by covering the top with a thin plate.

第1yAに戻り、頂部より床下への風洞(7)は暖房が
必要な建物内を暖空気が通過するだはなので簡易な保温
で良い。送風機(8)は暖空気を循環させるために重要
な役割をし頂部捕捉温度が床下蓄熱材の温度より高く且
つ床下温度が異常に高くならない範囲にて運転する。以
前より施設されていた床下換気口(14)並びに軒天換
気口(15)は外気温が高い時期に建物内の湿気を換気
するため仁必要で、内部を暖房する時期にはシャッター
にて閉鎖する。
Returning to 1yA, the wind tunnel (7) from the top to the bottom of the floor is where warm air passes through a building that requires heating, so simple heat insulation is sufficient. The blower (8) plays an important role in circulating warm air and is operated within a range where the top capture temperature is higher than the temperature of the underfloor heat storage material and the underfloor temperature does not become abnormally high. The underfloor ventilation vents (14) and roof ventilation vents (15) that were previously installed are necessary to ventilate moisture inside the building during periods of high outside temperature, and are closed with shutters when the interior is heated. do.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

延べ面積150m”程度の一般住宅において長時間日射
を受ける面のみに窓などの開口部を除き    熱エネ
ルギーを捕捉するための手段をこう構するとしてその面
積は50から150mj確保出来、暖房の必要な時期6
カ月間の日射による総捕捉熱量は400万から1200
万キロカロリー程度と試算され、−般自灯油換算で40
0から1200リットル分に相当する。これは資源保護
・省資源・省エネルギー・環境破壊防止の、観点から極
めて有効である。
If we set up a means to capture thermal energy by excluding openings such as windows on only the surfaces that receive sunlight for long periods of time in a general house with a total area of about 150m, the area can be secured from 50 to 150mJ, and the area that requires heating can be secured. Period 6
The total amount of heat captured by solar radiation per month is 4 million to 12 million.
It is estimated to be about 10,000 kilocalories, -40 in terms of general kerosene.
Equivalent to 0 to 1200 liters. This is extremely effective from the viewpoint of resource protection, resource conservation, energy conservation, and prevention of environmental destruction.

また、暖房方式の良しあしを論ずれば、運転環境に対し
ては、頭寒足熱・局部高温無し・熱風無し・夜間の安眠
妨害の機械音作動音−切無しと、いう最良の方式である
。施工性と設備費用の点からは、外部仕上げ材に色彩材
質的制約はあるが、外観形状には殆ど影響を与えず、通
風経路に密閉のためのシーリング工事を必要とするが、
太陽熱自然温風を循環させるだはなので完全でなくても
良く、建築費用の5からIOパーセント程度の施設費に
てシステムアップが可能である。
In addition, when discussing the merits and benefits of heating systems, it is the best system for the operating environment, with no head cold, no heat in the feet, no local high temperatures, no hot air, and no mechanical noise that disturbs sleep at night. From the viewpoint of workability and equipment cost, there are color and material restrictions for the exterior finishing materials, but this has little effect on the exterior shape and requires sealing work to seal the ventilation routes.
It does not need to be perfect because it circulates solar hot natural air, and it is possible to upgrade the system at a facility cost of about 5 to IO percent of the construction cost.

補助熱源として、夜間余剰電力いわゆる深夜電力を利用
した場合も作動音は殆ど無く、電気料金の割引が期待さ
れ、各種排熱を利用した場合も運転音が出るような物は
昼間に限り使用するなどその特徴に適合した用法により
システム効果が倍加される。
Even when nighttime surplus electricity, so-called late-night electricity, is used as an auxiliary heat source, there is almost no operating noise, and a discount on electricity charges can be expected; even when using various types of waste heat, devices that make operating noise should be used only during the day. The effectiveness of the system can be doubled by using it in a way that suits its characteristics.

この暖房方式は冬季における日照時間が長い地域には、
特に省エネルギー効果が大きく期特出来る。
This heating method is suitable for areas with long sunshine hours in winter.
In particular, the energy saving effect is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は床下蓄熱部に太陽熱を蓄熱中の建物縦断面図、
第2図は補助熱源にて床下蓄熱部に熱を供給中の建物縦
断面図、第3図は夏季における壁・屋根の中空部に発生
した熱風を排出中の建物縦断面図、第4図は第1図A−
A断面詳細図、第5図は第1図A−A断面詳細図、第6
図は床下蓄熱部の一例と壁中空部への接続部分縦断面詳
細図、第7図は蓄熱材を固有の形を持たない物質で構成
した場合のその部分のみの断面詳細図である。 l・・・太陽、2・・・日射、3・・・外壁面、4・・
・屋根面5・・・外壁中空部、6・・・屋根中空部、7
・・−風洞、8・・・送風機、9−・・蓄熱部中の空気
の流通スペース、lO・・・蓄熱材、11・・・高断熱
材、12・・・下部ダンパー、13・・・上部ダンパー
、14−・・床下換気口、15−・−粁天換気口、1口
−屋根板、17・・・吸熱板、18・・・間材、19・
・・地盤、20・・・防水シート、21−・−土間捨コ
ンクリート22−・−薄板、  31−・夜間余剰電力
引き込み又は外部供給熱エネルギー、32・・・制御装
置33・・−ヒーター線又はヒータ一管、51−・・1
階居住空間、52−2階居住空間、
Figure 1 is a vertical cross-sectional view of a building in which solar heat is being stored in the underfloor heat storage area.
Figure 2 is a vertical cross-sectional view of a building in which heat is being supplied to the underfloor heat storage section by an auxiliary heat source, Figure 3 is a vertical cross-sectional view of a building in which hot air generated in the hollow parts of walls and roofs is being discharged in the summer, and Figure 4 is Figure 1A-
Detailed view of A-A cross section, Fig. 5 is a detailed view of A-A cross section of Fig. 1, Fig. 6
The figure is a detailed vertical cross-sectional view of an example of the underfloor heat storage part and the connection part to the wall hollow part, and FIG. 7 is a detailed cross-sectional view of only that part when the heat storage material is made of a material that does not have a specific shape. l...Sun, 2...Solar radiation, 3...Outer wall surface, 4...
・Roof surface 5...Outer wall hollow part, 6...Roof hollow part, 7
...-Wind tunnel, 8... Air blower, 9-... Air circulation space in the heat storage section, lO... Heat storage material, 11... High insulation material, 12... Lower damper, 13... Upper damper, 14--underfloor ventilation, 15--air vent, 1-roof plate, 17--heat absorption plate, 18--intermediate material, 19-
...Ground, 20...Waterproof sheet, 21--Earth floor concrete 22--Thin plate, 31--Night surplus power drawing or externally supplied thermal energy, 32--Control device 33...-Heater wire or One heater tube, 51-...1
Floor living space, 52-2nd floor living space,

Claims (1)

【特許請求の範囲】[Claims] 1、建築物の一階床面と地盤との間に蓄熱材(10)を
広範囲に備え、太陽熱並びに夜間余剰電力・排熱・直接
加熱等で蓄熱する複合エネルギー利用の、自然放散熱に
よる省エネルギー暖房システム
1. Energy saving through natural heat dissipation through the use of composite energy by installing heat storage material (10) over a wide area between the first floor floor of the building and the ground, storing heat from solar heat, surplus electricity at night, waste heat, direct heating, etc. heating system
JP28312789A 1989-11-01 1989-11-01 Underfloor heat storage type energy saving heating system Pending JPH03148526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28312789A JPH03148526A (en) 1989-11-01 1989-11-01 Underfloor heat storage type energy saving heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28312789A JPH03148526A (en) 1989-11-01 1989-11-01 Underfloor heat storage type energy saving heating system

Publications (1)

Publication Number Publication Date
JPH03148526A true JPH03148526A (en) 1991-06-25

Family

ID=17661580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28312789A Pending JPH03148526A (en) 1989-11-01 1989-11-01 Underfloor heat storage type energy saving heating system

Country Status (1)

Country Link
JP (1) JPH03148526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104626A (en) * 2011-11-15 2013-05-30 Masaaki Horiai Composite system of solar heat high-efficiency recovery apparatus and central heating apparatus
JP2014167369A (en) * 2013-02-28 2014-09-11 Panahome Corp Building structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130243A (en) * 1974-03-27 1975-10-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130243A (en) * 1974-03-27 1975-10-15

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104626A (en) * 2011-11-15 2013-05-30 Masaaki Horiai Composite system of solar heat high-efficiency recovery apparatus and central heating apparatus
JP2014167369A (en) * 2013-02-28 2014-09-11 Panahome Corp Building structure

Similar Documents

Publication Publication Date Title
Khedari et al. Experimental study of a roof solar collector towards the natural ventilation of new houses
US4295415A (en) Environmentally heated and cooled pre-fabricated insulated concrete building
US8152608B1 (en) Solar energy intercept and waste heat recovery system
US3910490A (en) Solar energy heat and cooling system
PL183921B1 (en) Power supply equipment for buildings
JP2009127921A (en) Cold taking-in system
JPH0348299B2 (en)
Nikolic et al. Basic principles of passive solar heating
JP3106422B2 (en) Residential insulation wall structure
JPH03148526A (en) Underfloor heat storage type energy saving heating system
JP2954872B2 (en) House
JP3848652B2 (en) Solar system house
JP3192748B2 (en) Residential wind ventilation
JP2014015711A (en) Radiant heat heating and cooling system of building utilizing in-wall-body vent layer
JP3278455B2 (en) Basement air conditioning system
JPH05296514A (en) Ventilation mechanism of dwelling equipped with cellar
JPS5849499Y2 (en) Solar heat collection/storage/radiation/dissipation equipment for buildings
Chaturvedi Energy efficiency and sustainability in buildings
JP3255959B2 (en) Residential temperature control mechanism
JP3187925B2 (en) House air-conditioning mechanism by air circulation
Waingankar et al. Passive Solar Heating
JPH1068178A (en) House
JPS61272538A (en) Building utilizing solar heat
JPH07189352A (en) House
JPH0742265A (en) Solar system house