JPH03146832A - Surface scanning type two-dimensional image spectrographic device - Google Patents

Surface scanning type two-dimensional image spectrographic device

Info

Publication number
JPH03146832A
JPH03146832A JP28300589A JP28300589A JPH03146832A JP H03146832 A JPH03146832 A JP H03146832A JP 28300589 A JP28300589 A JP 28300589A JP 28300589 A JP28300589 A JP 28300589A JP H03146832 A JPH03146832 A JP H03146832A
Authority
JP
Japan
Prior art keywords
light
spectrometer
dimensional
scanning
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28300589A
Other languages
Japanese (ja)
Inventor
Katsu Inoue
井上 克
Yasuhisa Suzuki
靖久 鈴木
Shizuka Yamaguchi
静 山口
Yoshiyuki Kojima
慶享 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28300589A priority Critical patent/JPH03146832A/en
Publication of JPH03146832A publication Critical patent/JPH03146832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To measure a wide space area without impairing space sharing and to obtain a precise two-dimensional image by correcting the change of an operating distance with a material by combining a turning plane mirror for optical scan with a surface measuring optical system with constant angle of view. CONSTITUTION:A beam 2 of light from a light source is fetched with the turning plane mirror 10, and is turned to a plane beam reduced with objective lenses 20, 25, and a beam 5 of light passing an incident slit 30 image-forms a light source image on a diffraction grating 60 with a collimator mirror 40. In such a case, strict image- forming is not required, but it can be performed in the neighborhood of the 0-order light reflecting plane of a diffraction grating 60. Diffracted light 6 corresponding to wavelength advances a camera mirror 45, and passes an emission slit 80, then, is turned to light with narrow wavelength width. The light is turned to parallel beams 7 of light advancing a collimator mirror 50 with a plane mirror 75, and is made incident on a diffraction grating 65 at the same angle of refraction as that of the diffraction grating 65, then, is parallelized with a camera mirror 55. At this time, a dispersed component by the diffraction grating 60 is negated completely with the diffraction grating 65, thereby, an image without generating bleeding can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2次元像分光装置に係り、特に広画角の空間を
観測するに好適な面走査形2次元像分光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a two-dimensional image spectrometer, and more particularly to a surface scanning two-dimensional image spectrometer suitable for observing a space with a wide angle of view.

〔従来の技術〕[Conventional technology]

従来の装置は、アナル・サム5フ巻(1985年)20
4−9頁から2055頁(Anal、Chem、 57
(1985)、PP204−9−2055について論じ
られており、米国特許第4,705,396(1987
年11月10日特許)に詳しく記載されている。
The conventional device is Anal Sam 5th volume (1985) 20
pages 4-9 to 2055 (Anal, Chem, 57
(1985), PP 204-9-2055, and U.S. Patent No. 4,705,396 (1987).
It is described in detail in the November 10, 2013 patent).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、測定できる対象空間の視野に関する配
慮がされておらず、比較的短作動距離における広面積、
即ち広画角の観測は困難であった。
The above conventional technology does not take into consideration the field of view of the target space that can be measured, and has a relatively short working distance and a wide area.
In other words, observation with a wide angle of view was difficult.

また、連続スペクトルを発光する光源の像には、波長分
散による像のぼけが含まれていた。
Furthermore, the image of the light source emitting a continuous spectrum included image blur due to wavelength dispersion.

本発明の目的は、かかる従来技術の欠点を補い容易に広
画角の観測を可能とする、2次元像分光装置の提供にあ
る。
An object of the present invention is to provide a two-dimensional image spectroscopy device that compensates for the drawbacks of the prior art and easily enables observation with a wide angle of view.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、従来の2次元像分光装置に
よる一定画角の面観測手段に、光走査手段を組合せたも
のである。
In order to achieve the above object, a light scanning means is combined with a surface observation means having a fixed angle of view using a conventional two-dimensional image spectrometer.

また、零分散形の2次元像分光装置により一定画角の面
観測手段に、光走査手段を組合せたものである。
Furthermore, a light scanning means is combined with a surface observation means having a constant angle of view using a zero-dispersion type two-dimensional image spectrometer.

さらに、これ等の光走査手段として、その反射面内の軸
を中心として一定角度内を階段状に往復回動する平面鏡
を用いたものである。
Further, as these optical scanning means, a plane mirror is used which rotates back and forth in a stepwise manner within a certain angle around an axis within its reflecting surface.

さらに別の、光走査手段として、その反射面に平行で且
つ面外の軸を中心として回転する多角形回転鏡を用いた
ものである。
Still another optical scanning means uses a polygonal rotating mirror that rotates around an axis that is parallel to the reflecting surface and out of the plane.

さらに別の、光走査手段として、回転軸に直角でない角
度で取付けられた回転平面鏡を用いたものである。
Still another optical scanning means uses a rotating plane mirror mounted at an angle that is not perpendicular to the rotation axis.

さらに別の、2次元の光走査手段として、上記の光走査
手段の任意の2個を直角に組合せたものである。
Still another two-dimensional optical scanning means is a combination of any two of the above optical scanning means at right angles.

さらにまた、光走査に伴い対象空間の仮想平面と、導入
光学系との間の作動距離の変化に対処する合焦手段を設
けたものである。
Furthermore, focusing means is provided to deal with changes in the working distance between the virtual plane of the target space and the introducing optical system due to optical scanning.

さらにまた、光走査に伴い生ずる観測空間の歪を、画像
処理手段において自動的に補正するものである。
Furthermore, the image processing means automatically corrects distortions in the observation space that occur due to optical scanning.

〔作用〕[Effect]

光走査手段は、従来の点を2次元走査して面情報を得る
いわゆるポイン1−・ツウ・ポイントとは異なり、一定
画角の面を1次元又は2次元に走査して、一定画角の整
数倍の広大な視野を得るものである。そこでこの手段を
、従来の点走査方式と区別するため、面走査形と呼ぶ。
Unlike the conventional point-to-point method that scans a point two-dimensionally to obtain surface information, the optical scanning means scans a surface of a fixed angle of view one-dimensionally or two-dimensionally to obtain surface information of a fixed angle of view. This provides a field of view as wide as an integer. Therefore, this method is called a surface scanning method to distinguish it from the conventional point scanning method.

面走査においては、走査角を連続的に可変する4− 必要は無く、2次元像分光装置の回折格子面積とコリジ
ー1〜鏡の焦点距離で決る立体角に対応する一定画角分
だけ2階段状に走査すればよい。
In surface scanning, there is no need to continuously vary the scanning angle; instead, two steps are performed for a fixed angle of view corresponding to the solid angle determined by the area of the diffraction grating of the two-dimensional image spectrometer and the focal length of the mirror. All you have to do is scan in the same way.

また、連続走査手段と電子シャッタ機能を組み合せて、
取込画角が階段状に隣接するようにしてもよい。
In addition, by combining continuous scanning means and electronic shutter function,
The capture angles of view may be arranged adjacent to each other in a stepwise manner.

今、水平方向M画面、垂直方向N画面を面走査すると、
合計MXN個の画面をMXN回に分割して取込むことに
なる。画面取込み時間ta、光走査時間tsとすると、
合計時間tは t=M−N(t a+t s)となり、光走査を行わぬ
場合に比してMXNXN上の時間を要する。
Now, if you scan M screens in the horizontal direction and N screens in the vertical direction,
A total of MXN screens will be divided into MXN times and captured. Let screen capture time ta and optical scanning time ts be,
The total time t is t=M-N (ta+ts), and it takes MXNXN more time than when optical scanning is not performed.

例えば、M=5.N=1の1次元光走査を考えると、水
平方向の5画面を順次取込むことになる。
For example, M=5. Considering one-dimensional optical scanning with N=1, five screens in the horizontal direction are sequentially captured.

第2図において中央の視野83と、視野82又は84と
の(視野中心)間の角度を01とすると、視野8工又は
85との間の角度02は20xより小さくなる。取込み
偏角を階段状に走査する場合は、視野番号に対応して、
偏角の値を最適としてやる必要がある。当然隣接する視
野にはある程度の重なり部分があって良い。
In FIG. 2, if the angle between the central field of view 83 and the field of view 82 or 84 (the center of the field of view) is 01, then the angle 02 between the field of view 8 or 85 is smaller than 20x. When scanning the acquisition declination in a stepwise manner, corresponding to the field of view number,
It is necessary to optimize the value of the declination angle. Naturally, adjacent fields of view may overlap to some extent.

一定画角の基本画面の大きさを10X10an、走査手
段の基準点89からの距離Qoを800とすると、第1
偏角θ1は7.13”、画面中心迄の距離Q1は80.
6(1)となる。一方第2偏角θ2は14.04’ 、
距離Qzは82.5anと増加する。
If the size of the basic screen with a constant angle of view is 10×10an, and the distance Qo from the reference point 89 of the scanning means is 800, then the first
The declination angle θ1 is 7.13", and the distance Q1 to the center of the screen is 80.
6(1). On the other hand, the second declination angle θ2 is 14.04',
The distance Qz increases to 82.5an.

この様子は第2図に示されるが、半画角αは基本画面の
一辺の1/2に対応してα=3.58° となる。また
、走査の両端で距離aが増加する結果、当該部での像が
縮小し視野拡大となり、画面間の重なりが生ずる。
This situation is shown in FIG. 2, where the half angle of view α corresponds to 1/2 of one side of the basic screen, and is α=3.58°. Furthermore, as a result of the distance a increasing at both ends of the scan, the image at the relevant portion is reduced and the field of view is expanded, resulting in overlap between the screens.

この様に、光走査を行う際には補角により、作動距離党
が変化するから、検出された画像の拡大縮小又は像歪の
補正を行う必要がある。
In this way, when optical scanning is performed, the working distance changes due to the supplementary angle, so it is necessary to enlarge or reduce the detected image or correct image distortion.

第3図は、第2図の仮想面86上の観測面81〜85が
、光走査手段を介して取込まれた場合の相対視野91〜
95を示す。水平軸96上の視野中心間距離Sは同じで
ある。仮想平面86(第2図)に対する偏角中心89か
らの距離の差により、仮想面86上の物体の画像は像歪
を受る事が分る。
FIG. 3 shows the relative fields of view 91 to 85 when the observation surfaces 81 to 85 on the virtual plane 86 in FIG. 2 are taken in through the optical scanning means.
95 is shown. The distance S between the visual field centers on the horizontal axis 96 is the same. It can be seen that the image of the object on the virtual plane 86 is subjected to image distortion due to the difference in distance from the center of declination 89 to the virtual plane 86 (FIG. 2).

第3図はやや誇張して示しであるが、光走査の端部では
作動距離Qの増加に伴う視野拡大が生じ、それも視野の
左右で異なって来る。99は視野の重なり部である。拡
大された視野の物体は相対的に縮小されて観測されるか
ら、第3図の視野の囲み91の垂直方向(97)の長さ
に比例する像拡大を行えば、歪の無い画像を再生するこ
とが出来る。
Although the illustration in FIG. 3 is slightly exaggerated, at the end of the optical scan, the field of view expands as the working distance Q increases, and this also differs between the left and right sides of the field of view. 99 is an overlapping part of the visual field. Since objects in the enlarged field of view are observed in a relatively reduced size, if the image is enlarged in proportion to the vertical length (97) of the box 91 of the field of view in Figure 3, a distortion-free image can be reproduced. You can.

もつとも、例えば偏角0が5°以下であり、水平走査画
面数Mが3の場合は、最大の像歪が1%程度以下で、通
常、補正を行う必要は無い。
However, for example, when the deviation angle 0 is 5 degrees or less and the number M of horizontal scanning screens is 3, the maximum image distortion is about 1% or less, and there is usually no need to perform correction.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。水平
走査数M=3の一次元面走査であって、走査用の回動平
面鏡10は、偏心カム12に接して水平面内を緩動する
レバー15を取付けた回転台18に垂直に固定されてい
る。対物レンズ20゜25は、回動平面鏡10からの光
4を、分光器100の入射スリット30に平行光束とし
て入射する。分光器100は2枚のコリメート鏡40゜
50.2枚のカメラ鏡45.55と、一体として回動す
る平面回折格子60.65と、偏光平面鏡35.70,
75,9oと、出射スリット80とからなり、さらに結
像用球面鏡105を備えている。光増幅用のイメージ・
インテンシファイヤ(IIと略す)110と、半導体電
荷結合素子による2次元アレイカメラ(CCDカメラと
略す)115、画像処理装置1209画像モニタ130
を備えている。
An embodiment of the present invention will be described below with reference to FIG. One-dimensional surface scanning is performed with the number of horizontal scans M=3, and the rotating plane mirror 10 for scanning is fixed vertically to a rotary table 18 on which a lever 15 that is in contact with an eccentric cam 12 and slowly moves in a horizontal plane is attached. There is. The objective lens 20° 25 causes the light 4 from the rotating plane mirror 10 to enter the entrance slit 30 of the spectrometer 100 as a parallel beam. The spectrometer 100 includes two collimating mirrors 40.50, two camera mirrors 45.55, a plane diffraction grating 60.65 that rotates as a unit, a polarizing plane mirror 35.70,
75, 9o, and an exit slit 80, and further includes an imaging spherical mirror 105. Image for optical amplification
An intensifier (abbreviated as II) 110, a two-dimensional array camera (abbreviated as CCD camera) 115 using a semiconductor charge-coupled device, an image processing device 1209 and an image monitor 130
It is equipped with

今、光源からの光線2が回動平面鏡10により取込まれ
、対物レンズ20.25により縮小した平面光束となり
、入射スリット30を通過した光線5はコリメート鏡4
0で、回折格子60に光源像を結像する。この場合厳密
に結像するのではなく1回折格子のO次光反射平面の近
傍に結像すればよい。波長に対応した回折光線6はカメ
ラ鏡45に向い出射スリット80を通過して狭い波長幅
の光だけとなる。これは平面鏡75でコリメート鏡50
に向う平行光線7となり1回折格子65に、回折格子6
0の回折角と同じ角度で入射し。
Now, the light ray 2 from the light source is taken in by the rotating plane mirror 10, becomes a reduced plane light beam by the objective lens 20.25, and the light ray 5 passing through the entrance slit 30 is transmitted to the collimating mirror 4.
0, a light source image is formed on the diffraction grating 60. In this case, the image should not be formed strictly, but rather in the vicinity of the O-order light reflection plane of the first diffraction grating. The diffracted light beam 6 corresponding to the wavelength is directed toward the camera mirror 45 and passes through the output slit 80 to become only light having a narrow wavelength width. This is a plane mirror 75 and a collimating mirror 50
The parallel light rays 7 are directed toward the 1st diffraction grating 65, and the diffraction grating 6
It is incident at the same angle as the diffraction angle of 0.

カメラ鏡55で平行化される。この時回折格子60によ
る分散成分は、回折格子65で完全に打消され、にじみ
の無い画像を得ることができる。
The camera mirror 55 parallelizes the images. At this time, the dispersion component caused by the diffraction grating 60 is completely canceled by the diffraction grating 65, and an image without blur can be obtained.

従って、この2段分光器は零分散形である。Therefore, this two-stage spectrometer is of zero dispersion type.

平面鏡90.球面鏡105で縮小像をIIIIOの光電
面に入射する。■工110ではスリット等の光学要素で
弱められた光量を回復し、CCDカメラ115に入射こ
こでビデオ信号116に変換されて、画像処理装置12
0に取込まれる。取込まれた3枚の画像は、画像モニタ
130の3個のイメージ131〜133として、光強度
に対応して擬似カラーなどで表示される。
Plane mirror 90. A reduced image is made incident on the photocathode of IIIO by a spherical mirror 105. In step 110, the light quantity weakened by an optical element such as a slit is recovered and incident on a CCD camera 115, where it is converted into a video signal 116 and sent to an image processing device 12.
Incorporated into 0. The three captured images are displayed as three images 131 to 133 on the image monitor 130 in pseudo color or the like in accordance with the light intensity.

偏心カム12の回転や、IIIIO,CCDカメラ11
5の駆動制御に関しては図示を省略する。
Rotation of eccentric cam 12, IIIO, CCD camera 11
The illustration of the drive control No. 5 is omitted.

第4図は回動平面鏡10を揺動させる別の機構であって
、揺動レバー15は回転カム16に接し引きばね19で
引かれている。回転カム■6は偏角θに対応したカム半
径r+でステップ状に形成されているから、回転軸13
の回りに連続的に回転させれば、回動平面鏡10は一定
期間静止するステップ状の光走査を行う事ができる。こ
れは偏心カムを間欠的に回転させる必要があるのと対照
的である。
FIG. 4 shows another mechanism for swinging the rotary plane mirror 10, in which a swing lever 15 is in contact with a rotating cam 16 and pulled by a tension spring 19. Since the rotating cam 6 is formed in a step shape with a cam radius r+ corresponding to the deflection angle θ, the rotating shaft 13
When continuously rotated around the rotating plane mirror 10, the rotating plane mirror 10 can perform step-like optical scanning in which it remains stationary for a certain period of time. This is in contrast to the need to rotate an eccentric cam intermittently.

第5図は2次元面走査の例であって、回動平面鏡210
は軸211を中心として揺動217し、回動平面鏡31
0は軸311を中心として揺動317する。この時、軸
217と317は直角を威しており、垂直方向の走査2
03と水平方向の走査202を夫々行うことができる。
FIG. 5 is an example of two-dimensional surface scanning, in which a rotating plane mirror 210
The rotating plane mirror 31 swings 217 around the axis 211.
0 swings 317 around an axis 311. At this time, the axes 217 and 317 are at right angles, and the vertical scanning 2
03 and horizontal scanning 202, respectively.

第6図は回転多角形鏡(ポリゴンミラー)220を用い
た光走査機構であって、回転軸221を中心とする回転
227により、反射鏡面225が向きを変え、水平方向
の走査202を行うことができる。
FIG. 6 shows an optical scanning mechanism using a rotating polygon mirror 220, in which a reflecting mirror surface 225 changes direction by rotation 227 about a rotation axis 221 to perform horizontal scanning 202. Can be done.

入射光線201は同一の出射方向204に取出される。The incident light rays 201 are extracted in the same exit direction 204.

第7図は、別の光走査機構であり、回転平面鏡230が
回転軸231に偏椅角Oで取付けられてる。この回転2
37により、例えば半回転後には同図(b)の様になる
。この結果、第8図に示す1− 視野86〜89を、中心の軌線97に沿う回転走査を行
う事ができる。
FIG. 7 shows another optical scanning mechanism, in which a rotating plane mirror 230 is attached to a rotating shaft 231 at an eccentric angle O. This rotation 2
37, the result will be as shown in FIG. 3(b) after, for example, half a rotation. As a result, the first field of view 86 to 89 shown in FIG. 8 can be rotated and scanned along the central trajectory 97.

第9図は、自動合焦機構の説明図であって、観測面82
〜84からの光線lは、回動平面鏡10の揺動により選
択されて可動レンズ20を通過し、平行光線4となって
分光器100の入射スリン1−30に入射する。レンズ
駆動台29.走査機構19、分光器100は記憶演算装
置250に接続したインタフェース回路240に接続し
ている。
FIG. 9 is an explanatory diagram of the automatic focusing mechanism, and shows the observation surface 82.
The light rays l from ~84 are selected by the swinging of the rotating plane mirror 10, pass through the movable lens 20, become parallel light rays 4, and enter the input line 1-30 of the spectrometer 100. Lens drive stand 29. The scanning mechanism 19 and spectrometer 100 are connected to an interface circuit 240 connected to a storage/arithmetic device 250 .

分光器100内の波長走査は駆動信号241で行われ、
波長によるレンズ材料の屈接率変化を補正するためレン
ズ20の位置を補正するが、これはレンズ駆動信号29
により制御される。一方回動平面鏡10は光走査信号2
43により偏角を行うが、これは記憶演算装置250で
管理されているため、インタフェース回路240への指
令251、状態読取り252により、分光器の波長、作
動距離の変化に伴う最適レンズ位置を計算し指定するこ
とができる。
Wavelength scanning within the spectrometer 100 is performed using a drive signal 241,
The position of the lens 20 is corrected to correct the change in the refractive index of the lens material due to wavelength, but this is done using the lens drive signal 29.
controlled by On the other hand, the rotating plane mirror 10 receives the optical scanning signal 2.
43, but since this is managed by the storage/arithmetic unit 250, the optimal lens position is calculated according to changes in the wavelength and working distance of the spectrometer by commands 251 to the interface circuit 240 and status reading 252. can be specified.

第10図は、像歪を自動的に補正する例であって、イン
タフェース回路240からの取込み指令信号244を受
けたCCDカメラ115は、ビデオ信号を画像処理装置
120に送る。一方記憶演算装置250は、光走査のた
めの回動平面鏡10を制御し、その偏角状態を記憶して
いるから、データ245として画像処理装置120に与
える。
FIG. 10 shows an example of automatically correcting image distortion, in which the CCD camera 115 receives a capture command signal 244 from the interface circuit 240 and sends a video signal to the image processing device 120. On the other hand, the storage/arithmetic device 250 controls the rotary plane mirror 10 for optical scanning and stores its declination state, so it provides the data 245 to the image processing device 120 .

この結果画像メモリに於ける座標処理を行い、画像モニ
タ130における歪像134を補正像135に変換して
表示することとなる。
As a result, coordinate processing is performed in the image memory, and the distorted image 134 on the image monitor 130 is converted into a corrected image 135 and displayed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、同一空間分解能のI I 、 CCD
カメラなどを用いて、空間分解を損うことなく、広大な
空間領域を測定することができる。しかも、それに要す
る面を走査手段は、従来からの光走査技術で可能である
According to the invention, I I , CCD with the same spatial resolution
Using cameras and the like, vast spatial regions can be measured without compromising spatial resolution. Moreover, the means for scanning the surface required for this can be achieved using conventional optical scanning technology.

更に、面走査に伴う物体との作動距離の変化を補正して
、正確な2次元像を得ることができる。
Furthermore, it is possible to obtain an accurate two-dimensional image by correcting changes in the working distance to the object due to surface scanning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の斜視図、第2図。 第3図は面走査の原理説明図、第4図は工次元面走査機
構例を示す図、第5図は2次元走査の原理説明図、第6
図、第7図は別の光走査例を示す図、第8図は視野説明
図、第9図は、自動的合焦機構の説明図、第10図は自
動的像歪補正機能の説明図である。
FIG. 1 is a perspective view of an embodiment of the present invention, and FIG. 2 is a perspective view of an embodiment of the present invention. Fig. 3 is an explanatory diagram of the principle of surface scanning, Fig. 4 is a diagram showing an example of a mechanical surface scanning mechanism, Fig. 5 is an explanatory diagram of the principle of two-dimensional scanning, and Fig. 6 is a diagram illustrating the principle of two-dimensional scanning.
Fig. 7 is a diagram showing another example of optical scanning, Fig. 8 is an explanatory diagram of the field of view, Fig. 9 is an explanatory diagram of the automatic focusing mechanism, and Fig. 10 is an explanatory diagram of the automatic image distortion correction function. It is.

Claims (1)

【特許請求の範囲】 1、光を単色化する分光器と、該分光器の入射スリット
に平行光を入射せしめる導入光学系と、同分光器の出射
スリットを通過した平行光を結像する結像光学系と、該
結像面に設置された2次元半導体カメラ又は2次元光増
幅器及び2次元半導体カメラの組よりなる2次元像分光
装置において、前記導入光学系に1次元又は2次元の光
走査手段を備えたことを特徴とする面走査形2次元像分
光装置。 2、第1項記載の装置において、光を単色化する分光器
は分散素子として平面回折格子を用いたツエルニ・ター
ナ形分光光学系が2個よりなる零分散形であることを特
徴とする面走査形2次元像分光装置。 3、第1項または第2項記載の装置において、光走査手
段としてその反射面内に含まれる回転軸を中心として一
定角度内を階段状に往復回動する平面鏡を1個、又は互
に直角に組合せた2個を用いたことを特徴とする面走査
形2次元像分光装置。 4、第1項または第2項記載の装置において、光走査手
段としてその反射面に平行な回転軸の囲りに形成された
多角形回転鏡を1個、又は互に直角に組合せた2個を用
いたことを特徴とする面走査形2次元分光装置。 5、第1項または第2項記載の装置において、光走査手
段として、走査鏡の最大偏角が、回転軸の垂直面からの
偏角に等しい回転平面鏡を用いたことを特徴とする面走
査形2次元像分光装置。 6、第1項または第2項記載の装置において、2次元の
光走査手段として、第3項ないし第5項記載の光走査手
段の任意の2個を組合せてなることを特徴とする面走査
形2次元像分光装置。 7、第1項ないし第6項記載の装置において、光走査手
段と、導入光学系の合焦手段とを連動させ、対象空間の
仮想平面上に常に、画面中心の焦点を維持できる様にし
たことを特徴とする面走査形2次元像分光装置。 8、第1項ないし第7項記載の装置において、光走査手
段の偏角に対応して、画像の座標に依存する拡大縮小の
処理を1画面毎に自動的におこない、視野歪が補正され
ることを特徴とする面走査形2次元像分光装置。
[Claims] 1. A spectroscope that monochromates light, an introduction optical system that allows parallel light to enter an input slit of the spectrometer, and a system that forms an image of the parallel light that has passed through an output slit of the spectrometer. In a two-dimensional image spectrometer comprising an imaging optical system and a two-dimensional semiconductor camera or a two-dimensional optical amplifier and a two-dimensional semiconductor camera installed on the imaging plane, one-dimensional or two-dimensional light is introduced into the introduction optical system. A surface scanning two-dimensional image spectrometer comprising a scanning means. 2. In the apparatus described in item 1, the spectrometer for monochromating light is a zero-dispersion type consisting of two Czerny-Turner type spectroscopic optical systems using a plane diffraction grating as a dispersive element. Scanning two-dimensional image spectrometer. 3. In the apparatus described in item 1 or 2, the optical scanning means includes one plane mirror that reciprocates in a stepwise manner within a certain angle around a rotation axis included in its reflection surface, or at right angles to each other. A surface scanning two-dimensional image spectrometer characterized in that a two-dimensional image spectrometer is used in combination. 4. In the apparatus described in item 1 or 2, one polygonal rotating mirror formed around a rotating axis parallel to the reflecting surface of the optical scanning means, or two mirrors combined at right angles to each other. A surface scanning two-dimensional spectrometer characterized by using. 5. Surface scanning in the apparatus according to item 1 or 2, characterized in that a rotating plane mirror is used as the optical scanning means, the maximum deviation angle of the scanning mirror being equal to the deviation angle from the vertical plane of the rotation axis. Two-dimensional image spectrometer. 6. Surface scanning in the apparatus described in item 1 or 2, characterized in that the two-dimensional optical scanning means is a combination of any two of the optical scanning means described in items 3 to 5. Two-dimensional image spectrometer. 7. In the apparatus described in Items 1 to 6, the optical scanning means and the focusing means of the introduced optical system are linked so that the focus at the center of the screen can always be maintained on the virtual plane of the target space. A surface scanning two-dimensional image spectrometer characterized by the following. 8. In the apparatus described in Items 1 to 7, the visual field distortion is corrected by automatically performing enlargement/reduction processing depending on the coordinates of the image for each screen in accordance with the declination angle of the optical scanning means. A surface scanning two-dimensional image spectrometer characterized by:
JP28300589A 1989-11-01 1989-11-01 Surface scanning type two-dimensional image spectrographic device Pending JPH03146832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28300589A JPH03146832A (en) 1989-11-01 1989-11-01 Surface scanning type two-dimensional image spectrographic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28300589A JPH03146832A (en) 1989-11-01 1989-11-01 Surface scanning type two-dimensional image spectrographic device

Publications (1)

Publication Number Publication Date
JPH03146832A true JPH03146832A (en) 1991-06-21

Family

ID=17659992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28300589A Pending JPH03146832A (en) 1989-11-01 1989-11-01 Surface scanning type two-dimensional image spectrographic device

Country Status (1)

Country Link
JP (1) JPH03146832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523764A (en) * 2001-03-27 2004-08-05 コミツサリア タ レネルジー アトミーク Integrated spectrometer with high spectral resolution, especially for high-speed communication and high-speed measurement, and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523764A (en) * 2001-03-27 2004-08-05 コミツサリア タ レネルジー アトミーク Integrated spectrometer with high spectral resolution, especially for high-speed communication and high-speed measurement, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6075235A (en) High-resolution polarization-sensitive imaging sensors
US4984888A (en) Two-dimensional spectrometer
AU2005252809B2 (en) Echelle spectrometer with improved use of the detector by means of two spectrometer arrangements
US9217687B2 (en) Image analysis system and methods for IR optics
US7189984B2 (en) Object data input apparatus and object reconstruction apparatus
US5504336A (en) Spectrofluorometric apparatus for obtaining spectral image information
KR20010081570A (en) Inspection system and method for radiation
WO2015047864A2 (en) Hyperspectral detector systems and methods using context-image fusion
CN110132412A (en) Two waveband spectrum imaging system and implementation method based on Digital Micromirror Device
JP5424108B2 (en) Raman imaging equipment
JP2019533833A (en) Optical array, multi-spot scanning microscope and method for operating a microscope
US10067058B1 (en) Auto-focus system
JP2013546000A (en) Image map spectroscopic polarization
CN107949776A (en) Static type Fourier transform spectrometer
Arablouei et al. Fast and robust pushbroom hyperspectral imaging via DMD-based scanning
US4690559A (en) Optical system for spectral analysis devices
JPS6286819A (en) Position detection method
JP2558864B2 (en) Spectroscopic analyzer
US6738189B1 (en) Microscope for measuring an object from a plurality of angular positions
CN112067128A (en) High-speed static dispersion imaging spectrum device and using method thereof
JPH03146832A (en) Surface scanning type two-dimensional image spectrographic device
Abdo et al. Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation
JP3324367B2 (en) 3D input camera
JP6763893B2 (en) Imaging device and operating method
JPH10260359A (en) Image rotating device