JPH03146754A - Fiber laminate - Google Patents

Fiber laminate

Info

Publication number
JPH03146754A
JPH03146754A JP28080689A JP28080689A JPH03146754A JP H03146754 A JPH03146754 A JP H03146754A JP 28080689 A JP28080689 A JP 28080689A JP 28080689 A JP28080689 A JP 28080689A JP H03146754 A JPH03146754 A JP H03146754A
Authority
JP
Japan
Prior art keywords
polyester
fiber
fibers
temperature
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28080689A
Other languages
Japanese (ja)
Other versions
JP2795487B2 (en
Inventor
Nobuhiro Matsunaga
伸洋 松永
Katsuyoshi Niikura
勝良 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17630235&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03146754(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP28080689A priority Critical patent/JP2795487B2/en
Publication of JPH03146754A publication Critical patent/JPH03146754A/en
Application granted granted Critical
Publication of JP2795487B2 publication Critical patent/JP2795487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To obtain the title laminate useful as disposal diaper, having high bond strength, excellent handle and water absorption properties, decomposable in natural world, comprising cellulose fibers and specific low-melting crystalline polyester-based binder fibers. CONSTITUTION:The objective laminate comprising cellulose fibers and low- melting crystalline polyester-based binder fibers containing >=4C linear chain aliphatic component, having 60-220 deg.C melting point of crystal and a ratio (b/a) of height (b) of temperature dropping crystal peak measured by DSC and half width value (a) of >=0.2. The binder fibers are preferably composed of a polyester polymer having a linear chain aliphatic ester bond.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高接着強力、柔らかな風合及び優れた吸水性
を有し、自然界に置かれたとき生分解をする不織布又は
固綿を得ることができる繊維積層物に関するものである
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a nonwoven fabric or solid cotton fabric that has high adhesion strength, soft texture, and excellent water absorption properties, and biodegrades when placed in the natural environment. The present invention relates to a fiber laminate that can be obtained.

(従来の技術) 従来から、使い捨ておむつや生理用品等の衛生材料用の
吸収体、液体吸収性ベツドシーツ、医療用吸収パッド等
の素材として、パルプ、木綿又はレーヨン等のセルロー
ス系繊維とバインダ繊維とを混合した繊維積層物を熱処
理して得られる不織布や固綿が使用されている。そして
、これらの用途においては、バインダ繊維に柔軟性が要
求され。
(Prior Art) Conventionally, cellulose fibers such as pulp, cotton or rayon and binder fibers have been used as materials for sanitary materials such as disposable diapers and sanitary products, liquid-absorbent bed sheets, and medical absorbent pads. Non-woven fabrics and hard cotton obtained by heat-treating a fiber laminate mixed with these are used. In these applications, the binder fiber is required to have flexibility.

通常、ポリオレフィン系バインダ繊維が使用されている
。(例えば、特開昭58−180614号公報、特開昭
58−191215号公報) しかしながら、前記用途の不織布又は固綿の構成成分で
あるバインダ繊維として、ポリオレフィン系バインダ繊
維を使用すると、柔らかな風合を得ることはできるが、
接着強力が低くなり、不織布としたときの強度が不十分
であり、また、使い捨てをしたとき前記バインダ繊維が
分解されずに長く自然界に残るという問題があった。
Usually, polyolefin binder fibers are used. (For example, JP-A-58-180614, JP-A-58-191215) However, when polyolefin binder fiber is used as the binder fiber that is a component of the nonwoven fabric or hard cotton for the above-mentioned use, Although it is possible to obtain a
There were problems in that the adhesive strength was low, the strength when made into a non-woven fabric was insufficient, and when disposable, the binder fibers remained in nature for a long time without being decomposed.

(発明が解決しようとする課題) 本発明は、前記のような問題を解決しようとするもので
あり、セルロース系繊維と良好に接着し。
(Problems to be Solved by the Invention) The present invention aims to solve the above-mentioned problems.

高接着強力、柔らかな風合及び優れた吸水性を有し、自
然界に置かれたとき生分解をする不織布又は固綿を得る
ことができるセルロース系繊維とポリエステル系バイン
ダ繊維とからなる繊維積層物を提供しようとするもので
ある。
A fiber laminate consisting of cellulose fibers and polyester binder fibers that has high adhesion strength, soft texture, and excellent water absorption, and can yield nonwoven fabric or solid cotton that biodegrades when placed in nature. This is what we are trying to provide.

(課題を解決するための手段) 本発明者らは、前記問題を解決すべく鋭意検討の結果1
本発明に到達した。すなわち9本発明は。
(Means for Solving the Problems) As a result of intensive studies to solve the above problems, the inventors have found
We have arrived at the present invention. In other words, the present invention is as follows.

セルロース系繊維と、炭素数4以上の直鎖脂肪族成分を
含み、結晶融点が60℃以上220℃以下で。
Contains cellulose fibers and a linear aliphatic component having 4 or more carbon atoms, and has a crystalline melting point of 60°C or higher and 220°C or lower.

かつDSCにより測定される降温結晶化ピークの高さ(
b)とDSCにより測定される降温結晶化ピークの半価
幅(a)との比(b/a)が0.2以上である低融点結
晶性ポリエステル系バインダ繊維とからなる繊維積層物
を要旨とするものである。
and the height of the temperature-falling crystallization peak measured by DSC (
b) and a low melting point crystalline polyester binder fiber whose ratio (b/a) to the half width (a) of the temperature-falling crystallization peak measured by DSC is 0.2 or more. That is.

以下1本発明の詳細な説明する。Hereinafter, one aspect of the present invention will be explained in detail.

まず9本発明の繊維積層物の構成成分であるポリエステ
ル系バインダ繊維とは、炭素数4以上の直鎖脂肪族成分
を含むポリエステル重合体からなるものであり、脂肪族
成分としては、■、4−ブタンジオール、■、8−オク
タンジオール、1.9−ノナンジオール、  1.10
−デカンジオール等の脂肪族ジオール、また、アジピン
酸、セパチン酸、テトラデカン−1,14−ジカルボン
酸、オクタデカン−1,18−ジカルボン酸、エイコサ
ン−1,20−ジカルボン酸等の脂肪族ジカルボン酸が
挙げられる。
First of all, the polyester binder fiber which is a constituent component of the fiber laminate of the present invention is made of a polyester polymer containing a linear aliphatic component having 4 or more carbon atoms, and the aliphatic component includes -butanediol, ■, 8-octanediol, 1.9-nonanediol, 1.10
- Aliphatic diols such as decanediol, and aliphatic dicarboxylic acids such as adipic acid, sepathic acid, tetradecane-1,14-dicarboxylic acid, octadecane-1,18-dicarboxylic acid, and eicosane-1,20-dicarboxylic acid. Can be mentioned.

次に1本発明の繊維積層物の構成成分である前記ポリエ
ステル系バインダ繊維は、結晶融点が60℃以上220
℃以下の低融点ポリエステル重合体からなるものであり
、前記結晶融点が60℃未満であると、セルロース系繊
維を接着させるとき接着力が不十分となったり、被接着
体からポリエステル成分が浸み出したりするという問題
が生じるので好ましくない。一方、結晶融点が220t
’を超えると、セルロース系繊維を接着させるための熱
処理時にセルロース系繊維が変色又は分解したりすると
いう問題が生じるので好ましくない。
Next, the polyester binder fiber which is a constituent component of the fiber laminate of the present invention has a crystal melting point of 60°C or higher and 220°C or higher.
It is made of a polyester polymer with a low melting point of less than 60°C, and if the crystal melting point is less than 60°C, the adhesive force may be insufficient when bonding cellulose fibers, or the polyester component may seep from the object to be adhered. This is not desirable as it may cause problems such as leakage. On the other hand, the crystal melting point is 220t
If it exceeds ', there will be a problem that the cellulose fibers will change color or decompose during heat treatment for adhering the cellulose fibers, which is not preferable.

また、前記ポリエステル系バインダ繊維は、DSCによ
り測定される降温結晶化ピークの高さ(b)とDSCに
より測定される降温結晶化ピークの半価幅(a)との比
(b/a)が0.2以上、好ましくは0.5以上、特に
好ましくは1.0以上の結晶性ポリエステル重合体から
なるものであり、前記比(b/ a )が0.2未満で
あると耐熱性が劣り、熱処理時に軟化したり、不織布と
したときの強力が低下したり、固綿としたときへタリが
生じたりするという問題が生じるので好ましくない。
Further, the polyester binder fiber has a ratio (b/a) of the height (b) of the temperature-falling crystallization peak measured by DSC to the half-width (a) of the temperature-falling crystallization peak measured by DSC. It is made of a crystalline polyester polymer with a ratio of 0.2 or more, preferably 0.5 or more, particularly preferably 1.0 or more, and if the ratio (b/a) is less than 0.2, the heat resistance will be poor. This is not preferable because it causes problems such as softening during heat treatment, reduced strength when made into a nonwoven fabric, and sagging when made into a hard cotton.

本発明にいう低融点結晶性ポリエステル重合体の具体例
としては1次の第1表に示したようなものが挙げられる
Specific examples of the low melting point crystalline polyester polymer according to the present invention include those shown in Table 1 below.

これらの低融点結晶性ポリエステル重合体の内。Among these low melting point crystalline polyester polymers.

経済性を考えると、テレフタル酸、エチレングリコール
、1,4−ブタンジオール、■、6−ヘキサンジオール
、ネオペンチルグリコールを構成成分とするものが好ま
しい。また、生分解性を考えると、直鎖脂肪族エステル
結合を多く含有するものが好ましい。
Considering economical efficiency, those containing terephthalic acid, ethylene glycol, 1,4-butanediol, 1,6-hexanediol, and neopentyl glycol as constituent components are preferred. Furthermore, in consideration of biodegradability, it is preferable to use a material containing a large number of linear aliphatic ester bonds.

本発明の低融点結晶性ポリエステル重合体には。The low melting point crystalline polyester polymer of the present invention includes:

本発明の効果を損なわない範囲で他の成分を共重合して
もよく、また、艶消剤、安定剤1着色剤等の添加剤を加
えてもよい。
Other components may be copolymerized within a range that does not impair the effects of the present invention, and additives such as a matting agent, stabilizer 1 coloring agent, etc. may be added.

なお2本発明のポリエステル系バインダ繊維は。In addition, the polyester binder fiber of the present invention is as follows.

前記低融点結晶性ポリエステル重合体を接着成分とする
ものであり、このポリエステル重合体のみからなる単成
分繊維及びこのポリエステル重合体が単繊維表面の全部
又は一部を形成している芯鞘型、サイドバイサイド型、
海島型1割繊型等の複合繊維を含むものである。
A core-sheath type fiber in which the low melting point crystalline polyester polymer is used as an adhesive component, and a monocomponent fiber made only of this polyester polymer, and a core-sheath type in which this polyester polymer forms all or a part of the surface of the single fiber; side-by-side type,
It includes composite fibers such as sea-island type and split-fiber type.

本発明の繊維積層物は、以下の方法によって製造するこ
とができる。
The fiber laminate of the present invention can be manufactured by the following method.

まず、ポリエステル系バインダ繊維は、常法により製造
することができる。すなわち、ジカルボン酸成分とグリ
コール成分又はこれらのエステル形成性誘導体をエステ
ル化又はエステル交換反応した後1重縮合反応を行って
ポリエステル重合体とし、得られたポリエステル重合体
を溶融紡糸して、又は必要に応じて紡糸後延伸・熱処理
をして繊維とする。この繊維の混合比(重量比)は必要
に応じて適宜窓められるが1通常、全繊維の重量に対し
5重量%以上70重量%以下とするとよい。
First, polyester binder fibers can be manufactured by a conventional method. That is, after esterifying or transesterifying a dicarboxylic acid component and a glycol component or their ester-forming derivatives, a single polycondensation reaction is performed to obtain a polyester polymer, and the resulting polyester polymer is melt-spun or After spinning, the fibers are stretched and heat treated according to the requirements. The mixing ratio (weight ratio) of the fibers may be adjusted as necessary, but it is usually 5% by weight or more and 70% by weight or less based on the total weight of the fibers.

次に、繊維積層物は、セルロース系繊維とポリエステル
系バインダvji維とを1通常のカード法。
Next, the fiber laminate is made by combining cellulose fibers and polyester binder VJI fibers using a conventional carding method.

エアレイ法、湿式抄紙法等により接着することにより製
造することができ、接着方法は目的に応じて適宜選択す
るとよい。
It can be manufactured by adhering by air lay method, wet paper making method, etc., and the adhesion method may be selected as appropriate depending on the purpose.

不織布又は固綿は、得られた繊維積層物を、前記ポリエ
ステル系バインダ繊維の融点以上の温度で熱風ドライヤ
、サクションドラムドライヤ、ヤンキードライヤ等のド
ライヤやフラットカレンダーロール、エンボスロール等
のヒートロール等の熱処理装置を使用して熱処理するこ
とにより製造することができる。
For nonwoven fabrics or hard cotton, the obtained fiber laminate is dried using a dryer such as a hot air dryer, a suction drum dryer, or a Yankee dryer, or a heat roll such as a flat calendar roll or an embossing roll at a temperature higher than the melting point of the polyester binder fiber. It can be manufactured by heat treatment using a heat treatment device.

(作用) 本発明の繊維積層物の構成成分であるポリエステル系バ
インダ繊維は、セルロース系繊維に対して良好な接着力
を有するが、これはこのバインダm維が比較的極性の高
いポリエステル重合体から構成されるためである。また
、生分解性を有するのは、直鎖脂肪族成分又は直鎖脂肪
族エステル結合を有するためである。
(Function) The polyester binder fiber, which is a component of the fiber laminate of the present invention, has good adhesion to cellulose fibers, but this is because the binder fibers are made of a relatively highly polar polyester polymer. This is because it is configured. Moreover, it has biodegradability because it has a linear aliphatic component or a linear aliphatic ester bond.

(実施例) 次に、実施例に基づいて本発明を具体的に説明する。な
お、実施例における各種特性値は次の方法により測定し
たものである。
(Example) Next, the present invention will be specifically described based on Examples. In addition, various characteristic values in Examples were measured by the following method.

相対粘度:フェノールと四塩化エタンの等重量混合物を
溶媒とし、試料濃度0.5g/a、温度20℃で測定し
た。
Relative viscosity: Measured using an equal weight mixture of phenol and tetrachloroethane as a solvent at a sample concentration of 0.5 g/a and a temperature of 20°C.

結晶融点:パーキンエルマ社製示差走査熱量計DSC−
2C型を使用し、昇温速度20℃/分で測定した。
Crystal melting point: PerkinElmer differential scanning calorimeter DSC-
The measurement was carried out using a 2C type at a heating rate of 20° C./min.

DSCにより測定される降温結晶化ピークの高さ(ロ)
とDSCにより測定される降温結晶化ピークの半価幅(
a)との比(b/a):パーキンエルマ社製示差走査熱
量計DSC−2C型を使用し、試料量10mg、昇温速
度20℃/分で測定試料の(融点子30)℃まで昇温後
、降温速度20℃/分で降温したときの降温結晶化ピー
クより求めた。第1図はDSCにより測定される降温結
晶化ピークを示す模式図であり、縦軸は熱量(mcal
/秒)、横軸は温度(t’)を示す。降温結晶化ピーク
の高さ(b)とは基線に対する極大点の高さ(mcal
/秒)であり、降温結晶化ピークの半価幅(a)とは降
温結晶化ピークの高され)の半分の高さでのピーク幅(
t’)である。
Height of temperature-falling crystallization peak measured by DSC (b)
and the half-width of the temperature-falling crystallization peak measured by DSC (
Ratio to a) (b/a): Using a differential scanning calorimeter DSC-2C manufactured by Perkin Elma, the sample amount was 10 mg and the temperature was raised to (melting point 30) °C at a heating rate of 20 °C/min. After heating, the temperature was determined from the crystallization peak when the temperature was lowered at a cooling rate of 20° C./min. Figure 1 is a schematic diagram showing the temperature-falling crystallization peak measured by DSC, and the vertical axis is the amount of heat (mcal).
/second), and the horizontal axis shows temperature (t'). The height (b) of the temperature-falling crystallization peak is the height of the maximum point with respect to the baseline (mcal
/second), and the half-width (a) of the temperature-cooling crystallization peak is the peak width at half the height of the temperature-cooling crystallization peak (a).
t').

なお、測定に際し、チャート速度を20mm/分とした
Note that during the measurement, the chart speed was 20 mm/min.

強  力:不織布を幅25mmに裁断し、定速伸長型引
張試験機を使用して、試料長100mm、引張速度10
0mm/分で測定した。
Strength: Cut the nonwoven fabric to a width of 25 mm, and use a constant speed extension type tensile tester to test it at a sample length of 100 mm and a tensile speed of 10.
Measurement was made at 0 mm/min.

剛tf  :JISL1096 45度カンチレバ法に
準じて測定した。
Stiffness tf: Measured according to JISL1096 45 degree cantilever method.

風  合:10人のパネラによる官能試験を行い。Wind: A sensory test was conducted by a panel of 10 people.

次の5段階で評価した。1:柔らかい、2:やや柔らか
い、3:普通、4:やや硬い、5:硬い実施例1〜3 モル上ヒが10/13のテトラデカン−1,14−ジカ
ルボン酸/l、4−ブタンジオール及び、テトラデカン
−1゜14−ジカルボン酸1モルに対し3XIO−’モ
ルのテトラブチルチタネートをエステル化1重縮合反応
させ、相対粘度1.57.結晶融点82℃、DSCによ
り測定される降温結晶化ピークの高さ(b)とDSCに
より測定される降温結晶化ピークの半価幅(a)との比
(b/a)o、aaのポリエステル重合体へを得た。
Evaluation was made on the following five levels. 1: Soft, 2: Slightly soft, 3: Normal, 4: Slightly hard, 5: Hard Examples 1 to 3 Tetradecane-1,14-dicarboxylic acid/l with a molar ratio of 10/13, 4-butanediol, and , 1 mol of tetradecane-1°14-dicarboxylic acid was subjected to a single esterification polycondensation reaction of 3XIO-' mol of tetrabutyl titanate, resulting in a relative viscosity of 1.57. Polyester with a crystal melting point of 82° C. and a ratio of the height (b) of the temperature-falling crystallization peak measured by DSC to the half-width (a) of the temperature-falling crystallization peak measured by DSC (b/a) o, aa. obtained into a polymer.

このポリエステル重合体Aのチップと相対粘度1.38
のポリエチレンテレフタレートからなるポリエステル重
合体Bのチップを減圧乾燥した後1通常の複合溶融紡糸
装置を使用して溶融し、ポリエステル重合体Aを鞘、ポ
リエステル重合体Bを芯。
This polyester polymer A chip has a relative viscosity of 1.38.
After drying the chips of polyester polymer B made of polyethylene terephthalate under reduced pressure, they were melted using a conventional composite melt spinning device, and polyester polymer A was used as the sheath and polyester polymer B was used as the core.

複合比(重量比)(A/B)を1/1として紡糸孔数2
65の紡糸口金を通し紡糸温度270℃、!!吐出量3
41g1分で複合溶融紡出した。紡出繊維糸条を冷却し
た後、引取速度1000m /分で引取って未延伸繊維
糸条を得た。得られた糸条を集束し10万デニールのト
ウにして延伸倍率3.l、延伸温度60℃で延伸し、押
込み式クリンパを使用して捲縮を付与した後、長さ51
mmに切断して単糸繊度4デニールの芯鞘型複合ポリエ
ステル系バインダ繊維を得た。
The number of spinning holes is 2 when the composite ratio (weight ratio) (A/B) is 1/1.
Spinning temperature 270℃ through 65 spinnerets! ! Discharge amount 3
41g composite melt spun in 1 minute. After the spun fiber yarn was cooled, it was taken off at a take-off speed of 1000 m 2 /min to obtain an undrawn fiber yarn. The obtained yarn was bundled into a 100,000 denier tow and stretched at a draw ratio of 3. 1. After stretching at a stretching temperature of 60°C and crimping using a push-in crimper, the length is 51
A core-sheath type composite polyester binder fiber having a single yarn fineness of 4 denier was obtained by cutting the fiber into 4 mm pieces.

次いで、このバインダ繊維と単糸繊度2デニル、長さ5
1mmのレーヨン繊維とを第2表に示した割合で混綿し
た後、カードに通して日付け40g/m2のウェブとし
、温度140℃の回転乾燥機を使用し1分間熱処理して
不織布を作製した。
Next, this binder fiber and single yarn fineness of 2 denier and length of 5
After mixing 1 mm of rayon fiber in the ratio shown in Table 2, it was passed through a card to form a web of 40 g/m2, and heat treated for 1 minute using a rotary dryer at a temperature of 140°C to produce a nonwoven fabric. .

得られた不織布の特性値を第2表に示す。Table 2 shows the characteristic values of the obtained nonwoven fabric.

比較例1及び2 バインダ繊維として市販のポリエチレン重合体を鞘、ポ
リプロピレン重合体を芯とした単糸繊度3デニール、長
さ51mmの芯鞘型複合ポリオレフィン系バインダ繊維
を使用した以外は、実施例■と同様にして不織布を作製
した(比較例1)。また。
Comparative Examples 1 and 2 Example ① except that a core-sheath type composite polyolefin binder fiber having a single yarn fineness of 3 denier and a length of 51 mm with a commercially available polyethylene polymer sheath and a polypropylene polymer core was used as the binder fiber. A nonwoven fabric was produced in the same manner as (Comparative Example 1). Also.

低融点芳香族ポリエステル共重合体を鞘、ポリエチレン
テレフタレート重合体を芯とした単糸繊度4デニール、
長さ51mmの芯鞘型複合ポリエステル系バインダ繊維
を使用した以外は、実施例1と同様にして不織布を作製
し゛た(比較例2)。
A single yarn fineness of 4 denier with a low melting point aromatic polyester copolymer sheath and a polyethylene terephthalate polymer core.
A nonwoven fabric was produced in the same manner as in Example 1, except that a core-sheath type composite polyester binder fiber having a length of 51 mm was used (Comparative Example 2).

得られた不織布の特性値を第2表に示す。Table 2 shows the characteristic values of the obtained nonwoven fabric.

第2表 実施例4〜8 第3表に示したような種々のジカルボン酸成分とグリコ
ール成分とを組み合わせてポリエステル重合体を得た。
Table 2 Examples 4 to 8 Polyester polymers were obtained by combining various dicarboxylic acid components and glycol components as shown in Table 3.

バインダ繊維を構成するポリエステル重合体としてこの
重合体を使用し、かつバインダ繊維の混合比(重量比)
を全繊維の重量に対し全て40重量%とした以外は、実
施例1と同様にして不織布を作製した。
This polymer is used as the polyester polymer constituting the binder fiber, and the blending ratio (weight ratio) of the binder fiber is
A nonwoven fabric was produced in the same manner as in Example 1, except that the amounts were all 40% by weight based on the weight of all fibers.

得られた不織布の特性値を第3表に示す。Table 3 shows the characteristic values of the obtained nonwoven fabric.

比較実施例1 1,4−ブタンジオールと1,9−ノナンジオールのモ
ル比を20/ 80とした以外は、実施例7と同様にし
て、相対粘度1.71.結晶融点72℃、DSCにより
測定される降温結晶化ピークの高さ(b)とDSCによ
り測定される降温結晶化ピークの半価幅(a)との比(
b/a)0.15のポリエステル重合体を得た。
Comparative Example 1 A product was prepared in the same manner as in Example 7, except that the molar ratio of 1,4-butanediol and 1,9-nonanediol was 20/80, and the relative viscosity was 1.71. Crystal melting point 72°C, ratio of the height (b) of the temperature-falling crystallization peak measured by DSC to the half-width (a) of the temperature-falling crystallization peak measured by DSC (
A polyester polymer with a b/a) of 0.15 was obtained.

バインダ繊維を構成するポリエステル重合体としてこの
重合体を使用し、延伸温度を55℃とした以外は、実施
例7と同様にして不織布を作製した。
A nonwoven fabric was produced in the same manner as in Example 7, except that this polymer was used as the polyester polymer constituting the binder fibers, and the stretching temperature was 55°C.

得られた不織布は、バインダ繊維を構成するポリエステ
ル重合体の耐熱性が低いため繊維間に著しい融着が観察
され1手触りの硬いものであった。
The resulting nonwoven fabric was hard to the touch with significant fusion observed between the fibers due to the low heat resistance of the polyester polymer constituting the binder fibers.

実施例9 実施例1の相対粘度1.57.結晶融点82℃、 DS
Cにより測定される降温結晶化ピークの高さ(b)とD
SCにより測定される降温結晶化ピークの半価幅(a)
との比(b/a)0.88のポリエステル重合体Aのチ
ップを減圧乾燥した後9通常の溶融紡糸装置を使用して
溶融紡出して未延伸繊維糸条を得。
Example 9 Relative viscosity of Example 1: 1.57. Crystal melting point 82℃, DS
The height of the temperature-falling crystallization peak measured by C (b) and D
Half width (a) of temperature-falling crystallization peak measured by SC
Chips of polyester polymer A having a ratio (b/a) of 0.88 were dried under reduced pressure and then melt-spun using a conventional melt-spinning apparatus to obtain an undrawn fiber thread.

これらを集束しlO万デニールのトウにして延伸倍率3
.1.延伸温度60℃で延伸し、押込み式クリンパを使
用して捲縮を付与した後、長さ10mmに切断して単糸
繊度4デニールの単成分ポリエステル系バインダ繊維を
得た。
These are concentrated into a 10,000 denier tow with a stretching ratio of 3.
.. 1. After stretching at a stretching temperature of 60° C. and crimping using a push-in crimper, the fiber was cut into a length of 10 mm to obtain a single-component polyester binder fiber having a single filament fineness of 4 denier.

次いで、このバインダ繊維と木材パルプとを混合比(重
量比”) 50150で湿式抄紙機に通して目付け20
g/m’で混抄し、温度140℃の回転乾燥機を使用し
1分間熱処理して不織布を作製した。得られた不織布の
強力は1730 gであった。
Next, this binder fiber and wood pulp were passed through a wet paper machine at a mixing ratio (weight ratio) of 50,150 to a basis weight of 20.
g/m' and heat-treated for 1 minute using a rotary dryer at a temperature of 140°C to produce a nonwoven fabric. The strength of the obtained nonwoven fabric was 1730 g.

この不織布を日陰の樹木の脇に10cmの深さで埋め、
2個月経過後に掘り出して土を落とし乾燥した。この不
織布の強力は210g、強力保持率は約12%であった
Bury this non-woven fabric at a depth of 10cm next to a tree in the shade.
After two months, they were dug out, the soil was removed, and they were dried. The tenacity of this nonwoven fabric was 210 g, and the tenacity retention rate was about 12%.

比較例3及び4 バインダ繊維として比較例1のポリオレフィン系バイン
ダ繊維を使用した以外は、実施例9と同様にして不織布
を作製し、また、バインダ繊維として比較例2のポリエ
ステル系バインダ繊維を使用した以外は、実施例9と同
様にして各々不織布を作製し、同様の測定を実施した。
Comparative Examples 3 and 4 A nonwoven fabric was produced in the same manner as in Example 9, except that the polyolefin binder fiber of Comparative Example 1 was used as the binder fiber, and the polyester binder fiber of Comparative Example 2 was used as the binder fiber. Except for this, nonwoven fabrics were produced in the same manner as in Example 9, and the same measurements were carried out.

これらの不織布の強力保持率は、各々約57%。The strength retention rate of each of these nonwoven fabrics is approximately 57%.

52%であった。It was 52%.

(発明の効果) 本発明によれば、セルロース系繊維と良好に接着し、高
接着強力、柔らかな風合及び優れた吸水性を有する不織
布又は固綿を得ることができるセルロース系繊維とポリ
エステル系バインダ繊維とからなる繊維積層を得ること
ができる。そして。
(Effects of the Invention) According to the present invention, cellulose fibers and polyester fibers can be obtained to obtain a nonwoven fabric or firm cotton that adheres well to cellulose fibers, has high adhesive strength, soft texture, and excellent water absorbency. A fiber laminate consisting of binder fibers can be obtained. and.

特に直鎖脂肪族エステル結合を多く含有する単成分ポリ
エステル系バインダ繊維を使用すると、自然界に置かれ
たとき生分解をする□ため、環境を汚したりすることが
ない。
In particular, when a monocomponent polyester binder fiber containing a large amount of linear aliphatic ester bonds is used, it biodegrades when left in the natural world, so it does not pollute the environment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、DSCにより測定される降温結晶化ピークを
示す模式図で1図において、(a)は降温結晶化ピーク
の半価幅(t)、(b)は極大降温結晶化ピークの高さ
(mcal/秒)である。
Figure 1 is a schematic diagram showing a cooling crystallization peak measured by DSC. In Figure 1, (a) is the half width (t) of the cooling crystallization peak, and (b) is the height of the maximum cooling crystallization peak. (mcal/sec).

Claims (3)

【特許請求の範囲】[Claims] (1)セルロース系繊維と,炭素数4以上の直鎖脂肪族
成分を含み,結晶融点が60℃以上220℃以下で,か
つDSCにより測定される降温結晶化ピークの高さ(b
)とDSCにより測定される降温結晶化ピークの半価幅
(a)との比(b/a)が0.2以上である低融点結晶
性ポリエステル系バインダ繊維とからなる繊維積層物。
(1) Contains cellulose fibers and linear aliphatic components with a carbon number of 4 or more, has a crystal melting point of 60°C or more and 220°C or less, and has a temperature-falling crystallization peak height (b) measured by DSC.
) and a low melting point crystalline polyester binder fiber having a ratio (b/a) of the half width (a) of the temperature-falling crystallization peak measured by DSC of 0.2 or more.
(2)ポリエステル系バインダ繊維が,直鎖脂肪族エス
テル結合を含有するポリエステル重合体からなる請求項
1記載の繊維積層物。
(2) The fiber laminate according to claim 1, wherein the polyester binder fibers are made of a polyester polymer containing linear aliphatic ester bonds.
(3)ポリエステル系バインダ繊維が,炭素数14以上
の直鎖脂肪族ジカルボン酸成分と,炭素数4以上の直鎖
アルキレングリコール成分とから構成されるポリエステ
ル重合体からなる請求項1記載の繊維積層物。
(3) The fiber laminate according to claim 1, wherein the polyester binder fiber is made of a polyester polymer composed of a linear aliphatic dicarboxylic acid component having 14 or more carbon atoms and a linear alkylene glycol component having 4 or more carbon atoms. thing.
JP28080689A 1989-10-26 1989-10-26 Fiber laminate Expired - Fee Related JP2795487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28080689A JP2795487B2 (en) 1989-10-26 1989-10-26 Fiber laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28080689A JP2795487B2 (en) 1989-10-26 1989-10-26 Fiber laminate

Publications (2)

Publication Number Publication Date
JPH03146754A true JPH03146754A (en) 1991-06-21
JP2795487B2 JP2795487B2 (en) 1998-09-10

Family

ID=17630235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28080689A Expired - Fee Related JP2795487B2 (en) 1989-10-26 1989-10-26 Fiber laminate

Country Status (1)

Country Link
JP (1) JP2795487B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195407A (en) * 1991-06-13 1993-08-03 Carl Freudenberg:Fa Spun bonded nonwoven fabric consisting of thermoplastic endless filament and preparation thereof
US5958492A (en) * 1995-10-13 1999-09-28 Kraft Foods, Inc. Figure cutter for food slices
JP2009013522A (en) * 2007-07-03 2009-01-22 Nippon Ester Co Ltd Polyester filament nonwoven fabric
JP2009062644A (en) * 2007-09-06 2009-03-26 Nippon Ester Co Ltd Staple fiber nonwoven fabric

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195407A (en) * 1991-06-13 1993-08-03 Carl Freudenberg:Fa Spun bonded nonwoven fabric consisting of thermoplastic endless filament and preparation thereof
US5958492A (en) * 1995-10-13 1999-09-28 Kraft Foods, Inc. Figure cutter for food slices
JP2009013522A (en) * 2007-07-03 2009-01-22 Nippon Ester Co Ltd Polyester filament nonwoven fabric
JP2009062644A (en) * 2007-09-06 2009-03-26 Nippon Ester Co Ltd Staple fiber nonwoven fabric

Also Published As

Publication number Publication date
JP2795487B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
JP4093595B2 (en) Method, product and use of degradable polymer fibers
CA2446092C (en) Fibers comprising starch and biodegradable polymers
AU2002309684B2 (en) Multicomponent fibers comprising starch and polymers
AU2002309682B2 (en) Fibers comprising starch and polymers
EP1397538B2 (en) Multicomponent fibers comprising starch and biodegradable polymers
AU2002259167A1 (en) Multicomponent fibers comprising starch and biodegradable polymers
AU2002309683A1 (en) Fibers comprising starch and biodegradable polymers
AU2002309682A1 (en) Fibers comprising starch and polymers
AU2002309684A1 (en) Multicomponent fibers comprising starch and polymers
JPH05507109A (en) Polyester and its use in compostable products such as disposable diapers
US20140272362A1 (en) Multicomponent aliphatic polyester blend fibers
JPH03146754A (en) Fiber laminate
JP3150218B2 (en) Biodegradable short fiber non-woven fabric
JP2004107860A (en) Thermally adhesive sheath core type conjugated short fiber and non-woven fabric of the same
JPH09310292A (en) Biodegradable wet nonwoven fabric and its production
JP2006112012A (en) Polylactic acid-based conjugate binder fiber
JP2003328234A (en) Polyester-based hot melt hollow conjugate short fiber and nonwoven fabric
JPS61282500A (en) Polyester fiber paper
JP2006104606A (en) Conjugated fiber and nonwoven fabric using conjugated fiber
JPH11279840A (en) Conjugate fiber for wet type non-woven fabric and wet type non-woven fabric using the fiber
JP2009215662A (en) Staple fiber for nonwoven fabric and stape fiber nonwoven fabric
JPH0359113A (en) Heat bonding conjugate fiber
JP2004270045A (en) Nonwoven fabric composed of polyester heat adhesive conjugated fiber
JPH09279465A (en) Laminated nonwoven fabric and its production
JPH08325912A (en) Biodegradable nonwoven fabric and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees