JPH03146534A - Rigid vinyl chloride-based resin composition for expansion and foam therefrom and its production - Google Patents

Rigid vinyl chloride-based resin composition for expansion and foam therefrom and its production

Info

Publication number
JPH03146534A
JPH03146534A JP1286316A JP28631689A JPH03146534A JP H03146534 A JPH03146534 A JP H03146534A JP 1286316 A JP1286316 A JP 1286316A JP 28631689 A JP28631689 A JP 28631689A JP H03146534 A JPH03146534 A JP H03146534A
Authority
JP
Japan
Prior art keywords
vinyl chloride
resin
chloride resin
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1286316A
Other languages
Japanese (ja)
Inventor
Katsuoki Kamimura
上村 勝興
Masahiro Hataue
畑上 雅博
Hirotoshi Asano
浅野 博敏
Shunji Ichikawa
俊二 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Meiji Rubber and Chemical Co Ltd
Original Assignee
Meiji Rubber and Chemical Co Ltd
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Rubber and Chemical Co Ltd, Chisso Corp filed Critical Meiji Rubber and Chemical Co Ltd
Priority to JP1286316A priority Critical patent/JPH03146534A/en
Publication of JPH03146534A publication Critical patent/JPH03146534A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To obtain the title composition developing no skin on the surface of the resultant foam even when expanded, good in adhesivity, excellent in secondary processability, and capable of giving lightweight, large-sized foams by incorporating a rigid vinyl chloride resin of low molecular weight with a plasticizer and foaming agent such as a bicarbonate, etc., at specified proportions. CONSTITUTION:The objective composition can be obtained by incorporating (A) 100 pts.wt. of a vinyl chloride-based resin 300-700 in polymerization degree with (B) 0-20 pts.wt. of a plasticizer and (C) a total of 0.5-3.5 pts.wt. of a bicarbonate and, if needed, 0-0.5 pts.wt. of another foaming agent. The present composition is put to injection molding to obtain the other objective rigid vinyl chloride-based resin foam.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1発泡用硬質塩化ビニル系m脂組成物並びに硬
質塩化ビニル糸捌脂発泡成形体およびその製造方法に関
する。さらに詳しくは、難燃、軽量て、パイプ等との接
着等の二次加工がてきて、圧縮強度が高く且つ耐!I撃
性の高い、例えば、 t+bリパイブ、継手、排水マス
、地下鉄、空港などの椅子等の工業用品、センターピラ
ー、ホーンバット等の自動車内装品、スイッチボックス
、ハウシウング、OAケーブル保護用カバー、電話回線
用ケーブルカバー等の電機製品等の分野に好適に用いる
ことのてきる発泡用硬質塩化ビニル系樹脂組成物並びに
硬質塩化ビニル糸捌脂発泡成形体およびその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hard vinyl chloride resin composition for foaming, a hard vinyl chloride thread-spun resin foam molded article, and a method for producing the same. More specifically, it is flame retardant, lightweight, can be used for secondary processing such as adhesion to pipes, etc., has high compressive strength, and is durable! Highly resistant to I impact, such as industrial products such as T+B repeaters, joints, drainage basins, chairs for subways and airports, automobile interior parts such as center pillars and horn butts, switch boxes, housing covers, OA cable protection covers, and telephones. The present invention relates to a hard vinyl chloride resin composition for foaming that can be suitably used in the field of electrical appliances such as line cable covers, a hard vinyl chloride thread-spun resin foam molded article, and a method for producing the same.

[従来の技術] 発泡樹脂の成形品は、軽量で、断熱性がよく。[Conventional technology] Foamed resin molded products are lightweight and have good insulation properties.

緩衝性に優れ、吸水湿性がなく、吸音遮音の効果が大き
い等の特徴を有し、さらに外観的にも柔らか味かあると
いう特性から、各種成形品に使用されている。これらの
成形品に用いられる発泡用樹脂としては、主として軟質
塩化ビニル樹脂、ポリエチレン、ポリプロピレン、ポリ
カーボネート、変性ポリフェニレンオキサイド等の熱可
塑性樹脂か使用されている。
It is used in various molded products because it has excellent cushioning properties, does not absorb moisture, has great sound absorption and insulation effects, and has a soft appearance. As the foaming resin used for these molded products, thermoplastic resins such as soft vinyl chloride resin, polyethylene, polypropylene, polycarbonate, and modified polyphenylene oxide are mainly used.

硬質塩化ビニル樹脂発泡成形体は、一般に、剪断速度の
小さい成形機によって成形され、主として、押出機また
はプレス機によって成形されている0代表的な例として
は、棒、管、板、額縁などの異形製品等が挙げられ、形
状はきわめて単純なものが多い、異形製品はストレート
な形状では窓枠等のような複雑な製品も製造できるが、
折れ曲がった形状の製品では一挙に製造できない欠点が
ある。製品の形状が三次元で&雑になると、裁断、16
着、加熱曲げ加工等の二次加工が必要になる。
Rigid vinyl chloride resin foam moldings are generally molded using a molding machine with a low shear rate, and are mainly molded using an extruder or press machine. Typical examples include rods, tubes, plates, picture frames, etc. These include irregularly shaped products, and many of them are extremely simple in shape.For irregularly shaped products, it is possible to manufacture complex products such as window frames with straight shapes.
The disadvantage is that products with bent shapes cannot be manufactured all at once. When the shape of the product becomes three-dimensional and rough, cutting, 16
Secondary processing such as bonding and heat bending is required.

一方、射出11!の場合には複雑な形状でも、回の成型
で製品化でき、製品のデザインの自山度が極めて高い利
点がある。これらの特徴を生かして熱可塑性樹脂、特に
、ポリプロピレンは種々の成形品に用いられている0例
えば下水管の途中には廃水、汚水を分配、集合させるた
めの排水マスが用いられるが、このような排水マスは発
泡成形品が軽量で取り扱いやすいという利点から、ポリ
プロピレン製発泡成形品が使用されており、コンクリー
ト製排水マスから代替されつつある。
On the other hand, injection 11! In this case, even complex shapes can be made into products in one molding process, and the product has the advantage of being highly flexible in its design. Taking advantage of these characteristics, thermoplastic resins, especially polypropylene, are used in various molded products. Polypropylene foam molded products are used for drainage masses because foam molded products are lightweight and easy to handle, and are gradually replacing concrete drainage masses.

ところが、硬質塩化ビニル系樹脂による発泡成形、特に
、大型発泡成形品では射出成形が困難であると認識され
ており、硬質塩化ビニル糸捌脂による大型発泡成形品は
未だに開発されていない。
However, it is recognized that injection molding of hard vinyl chloride resin is difficult, especially for large foam molded products, and large foam molded products made of hard vinyl chloride resin have not yet been developed.

[発明か解決しようとする課題] 硬質塩化ビニル系樹脂において射出成形、特に大型成形
品の9.泡成形ができなかった理由は、押出機と射出成
形機とにおける基本的射出4114Rの違いとともに、
硬質塩化ビニル系樹脂の特性によるものであると考えら
れる。
[Problem to be solved by the invention] 9. Injection molding of hard vinyl chloride resin, especially large molded products. The reason why foam molding was not possible was due to the basic difference in injection 4114R between an extruder and an injection molding machine.
This is thought to be due to the characteristics of hard vinyl chloride resin.

即ち、押出成形では樹脂かシリンダー内で連続して押し
出され、滞留がないので熱が均一に9血するのに対して
、射出成形ではシリンダー内での樹脂の流れはIT統的
でftI留が生じ、そのために自己発熱によってラジカ
ル的に分解を促進するからである。
In other words, in extrusion molding, the resin is extruded continuously in the cylinder and there is no stagnation, so the heat is evenly distributed, whereas in injection molding, the flow of resin in the cylinder is IT standard, and the ftI retention is This is because the decomposition is radically promoted by self-heating.

また、硬質塩化ビニル系樹脂は5発泡剤の分解によるラ
ジカルの発生及び分解熱の発生により、加工時に塩化ビ
ニル系樹脂の分解が促進されて加工が困難になる。さら
に、射出成形の場合には、押出機又はプレス機に比較し
て剪断速度が大きく、成形時に剪断発熱するために塩化
ビニル系樹脂の分解かさらに促進されて成形か不rq能
になる。
Further, the hard vinyl chloride resin is difficult to process because the decomposition of the blowing agent generates radicals and heat of decomposition, which accelerates the decomposition of the vinyl chloride resin during processing. Furthermore, in the case of injection molding, the shear rate is higher than that of an extruder or press, and shear heat is generated during molding, which further accelerates the decomposition of the vinyl chloride resin, making molding impossible.

これらの問題を解決するために、加工助剤を添加して加
工性を4良する試みかなされたか、加工助剤の一部か塩
化ビニル系樹脂と相溶しないため、成形品の表面に薄い
皮膜が生成して、他の成形品との接着性1例えば、塩化
ビニル樹脂パイプ等と接着させた場合、前記表皮が剥離
して接着強度が低下する。このため、二次加工が必要に
なるという問題が生じる。
In order to solve these problems, attempts have been made to improve processability by adding processing aids, or some processing aids are not compatible with vinyl chloride resins, so the surface of the molded product is thin. When a film is formed and adhesiveness with other molded products is adhered to, for example, a vinyl chloride resin pipe, the skin peels off and the adhesive strength decreases. Therefore, a problem arises in that secondary processing is required.

また、塩化ビニル系樹脂は熱分解温度が低いために樹崩
温度を低く保つ必要があるが、樹脂温度を低く保つと溶
融粘度か高くなり射出成形するのが困難になる。そこで
、加工性を改良するために、可塑剤を添加し、溶融粘度
を低下させることも試みられているか、可塑剤は成形品
の剛性か不足するほど添加しないと効果かないことと、
可塑剤の添加は耐4ti?性を低下させるという問題か
あった。
Furthermore, since vinyl chloride resin has a low thermal decomposition temperature, it is necessary to keep the dendration temperature low, but if the resin temperature is kept low, the melt viscosity increases, making injection molding difficult. Therefore, in order to improve processability, attempts have been made to add plasticizers to lower the melt viscosity, or plasticizers are not effective unless they are added to the extent that the rigidity of the molded product is insufficient.
Is the addition of plasticizer resistant to 4ti? There was a problem that it decreased sex.

また、溶融粘度を低下させるために、低重合度の塩化ビ
ニル系樹脂を使用すると、やはり、耐衝撃性か低下し1
例えば、成形品を高所から落下させると破損するという
問題があった。耐衝撃性を高くする必要のある成形品の
場合は、耐衝撃剤を添加すると耐衝撃剤によって溶融粘
度が上がり、射出成形か困難になる。
In addition, if a vinyl chloride resin with a low degree of polymerization is used to lower the melt viscosity, the impact resistance will also decrease.
For example, there has been a problem in that molded products break when dropped from a high place. For molded products that require high impact resistance, adding an impact agent will increase the melt viscosity, making injection molding difficult.

また、硬質塩化ビニル系樹脂は熱安定性が悪い。熱安定
性を向上させるためには安定剤の増量か効果的であるか
、経済的に問題であるばかりでなく、効果の程度が必要
十分ではなかった。
Furthermore, hard vinyl chloride resins have poor thermal stability. In order to improve thermal stability, increasing the amount of stabilizer is not only an economic problem, but also the degree of effect is not sufficient.

さらに、硬質塩化ビニル系樹脂は次のような問題を有す
る。LIIIち、■熱安定性か悪いために、通常の射出
成形機の射出速度では焼けか発生してしまう、■成形臥
度と分解温度とが接近しているため樹脂温度を上げるこ
とができず、従って、溶融粘度が高くなって流動性か憇
くなる。■シリンダー内の滞留樹脂か熱分解する。■高
い剪断力での成形では発熱して樹脂が熱分解する。■発
泡剤の分解熱の発生、及びラジカルの発生で樹脂の分解
が史に促進される。
Furthermore, hard vinyl chloride resins have the following problems. LIII. ■Due to poor thermal stability, burning occurs at the injection speed of a normal injection molding machine; ■The resin temperature cannot be raised because the molding temperature and decomposition temperature are close to each other. Therefore, the melt viscosity becomes high and the fluidity becomes poor. ■The resin remaining in the cylinder is thermally decomposed. ■Molding with high shear force generates heat and the resin thermally decomposes. ■The decomposition of the resin is accelerated by the generation of heat of decomposition of the blowing agent and the generation of radicals.

上記のような問題から、一般には硬質塩化ビニル系樹脂
の発泡酸形は困錐であると認識されていた。
Because of the above-mentioned problems, it has been generally recognized that the foaming acid form of hard vinyl chloride resins is difficult to form.

一方、オレフィン系樹脂の場合、発泡剤の添加に伴う樹
脂の分解か硬jt1!l化ビニル系樹脂はどの問題かな
いため、現イE、排水マス等の発泡成形品として使用さ
れている。ところか、オレフィン系樹脂からなる排水マ
スは、11!化ビニル系招脂製パイプと接合するとき、
無極性のオレフィン系樹脂に接着する接着剤かないため
接着不良が発生して排水か漏水し、この漏水による公害
問題か発生し、この問題の解決か求められている。その
ために、発泡ポリプロピレン製排水マスと塩化ビニル系
樹脂製パイプとを連結する場合には、接続を容易にする
ために塩ビパイプを切断したリングをインサート成形し
ている。
On the other hand, in the case of olefin resins, the hardness may be due to decomposition of the resin due to the addition of the blowing agent. Since vinyl chloride resin does not cause any problems, it is currently used as foam molded products such as IE, drainage basins, etc. However, the drainage mass made of olefin resin is 11! When joining with PVC-based resin pipes,
Since there is no adhesive that adheres to non-polar olefin resins, poor adhesion occurs, leading to drainage or water leakage, and this water leakage causes pollution problems, and a solution to this problem is sought. For this reason, when connecting a drainage mass made of foamed polypropylene and a pipe made of vinyl chloride resin, a ring cut from the vinyl chloride pipe is insert-molded to facilitate the connection.

しかしながら、リングをインサート成形するたけでは、
構造的には連結をしやすくすることはできるものの、依
然として接着することはできないから漏れを完全に防止
することはできなかった。
However, if you just insert mold the ring,
Although it is possible to make the connection easier structurally, it still cannot be bonded, so leakage cannot be completely prevented.

さらに、作業性が悲いという問題かある。Furthermore, there is the problem of poor workability.

本発明は前記の点に鑑みてなされたもので、第1に、硬
質塩化ビニル系樹脂の射出発泡成形を可能にして成形品
の軽量化を図ること、第2に、落下させても破損しない
強度を持ち、さらに剛性を損なうことのない大型発泡成
形品を提供すること、第3に、表面に薄い表皮を生成さ
せない発泡成形品の成形を可能にすること、第4に、接
着が可能で二次加工性を改良すること、等を可能とした
発泡用硬質塩化ビニル系樹脂組成物並びに硬質塩化ビニ
ル系発泡成形体及びその製造方法を提供することを目的
とするものである。
The present invention has been made in view of the above points. Firstly, it is possible to make injection foam molding of hard vinyl chloride resin to reduce the weight of the molded product. Secondly, it does not break even if dropped. To provide a large foam molded product that has strength and does not impair rigidity.Thirdly, it is possible to mold a foam molded product that does not generate a thin skin on the surface.Fourth, it is possible to bond. The object of the present invention is to provide a hard vinyl chloride resin composition for foaming, a hard vinyl chloride foam molded article, and a method for manufacturing the same, which can improve secondary processability.

[課題を解決するための手段] 本発明は前記目的を達成するために、次のような構成と
した。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.

即ち、第1の発明の構成は1重合度か300〜700で
ある塩化ビニル系樹脂1001iE1部、並びに前記塩
化ビニル系樹脂100重量部に対して、可塑剤な0〜2
0重量部、耐衝撃剤を5〜30重量部及び発泡剤として
重炭酸塩とそれ以外の発泡剤とを0.5〜3.5重量部
(その内9重度S塩以外の発泡剤は0〜0.5重量部)
の割合で含有することを特徴とする発泡用硬質塩化ビニ
ル系樹脂組成物であり。
That is, the composition of the first invention is 1 part of vinyl chloride resin 1001iE having a degree of polymerization of 300 to 700, and 0 to 2 parts of plasticizer for 100 parts by weight of the vinyl chloride resin.
0 parts by weight, 5 to 30 parts by weight of impact-resistant agent, and 0.5 to 3.5 parts by weight of bicarbonate and other blowing agents as blowing agents (of which blowing agents other than 9 heavy S salts are 0. ~0.5 parts by weight)
A hard vinyl chloride resin composition for foaming, characterized in that it contains a foaming hard vinyl chloride resin composition.

第2の発明の構成は、第1の発明の発泡用硬質塩化ビニ
ル系樹脂組成物を射出成形してなるとともに、比重が1
62以下であることを特徴とする硬質塩化ビニル系樹脂
発泡成形体であり、第3の発明の構成は、第1の発明の
発泡用硬質塩化ビニル系樹脂組成物を用いるとともに、
ノズル径が5〜20mmであるシャットオフノズルを用
いて、金型のゲート部の断面積が最小である部分におけ
る剪断速度か0.Sx 102〜5 X 10” ci
+/秒の条件で射出J&型することを特徴とする硬質塩
化ビニル系樹脂発泡成形体の製造方法である。
The structure of the second invention is made by injection molding the hard vinyl chloride resin composition for foaming of the first invention, and has a specific gravity of 1.
It is a hard vinyl chloride resin foam molded article characterized in that it has a polyvinyl chloride resin composition of 62 or less, and the configuration of the third invention uses the hard vinyl chloride resin composition for foaming of the first invention, and
Using a shut-off nozzle with a nozzle diameter of 5 to 20 mm, the shear rate at the part where the cross-sectional area of the gate part of the mold is the smallest is 0. Sx 102~5 X 10” ci
This is a method for producing a hard vinyl chloride resin foam molded article, which is characterized by injection J& molding under conditions of +/second.

本発明の組成物において用いる塩化ビニル系樹脂は、塊
状重合、溶液重合、懸濁重合、乳化重合のうちどの重合
方法を用いて得たものでも良く、特に限定されるもので
はないが、経済的には懸濁重合方法で得たものが好まし
い、ここに用いる塩化ビニル系樹脂とは、塩化ビニル重
量体の単独の重合体及び塩化ビニル単量体と共重合可能
な不飽和単量体を塩化ビニル単量体の使用量の範囲な越
えない量で共重合させた共重合樹脂をいう。
The vinyl chloride resin used in the composition of the present invention may be obtained using any polymerization method among bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, and is not particularly limited. The vinyl chloride resin used here is preferably obtained by a suspension polymerization method. It refers to a copolymerized resin that is copolymerized with vinyl monomer in an amount that does not exceed the amount used.

前記の共重合可能な不飽和単量体としては1例えば、エ
チレン、プロピレン等のオレフィン類、酢酸ビニル、ス
テアリン酸ビニル等のビニルエステル類、アクリル酸エ
ステル、メタクリル酸エステル等のビニルエステル類、
エチルビニルエーテル、セチルビニルエーテル等のビニ
ルエーテル舶、アクリル酸、マレイン酸等の不飽和酸類
、スチレン等の芳香族ビニル類、アクリロニトリルなど
が挙げられるか、特に限定されるものではない。
Examples of the copolymerizable unsaturated monomer include olefins such as ethylene and propylene, vinyl esters such as vinyl acetate and vinyl stearate, vinyl esters such as acrylic ester and methacrylic ester,
Examples include vinyl ethers such as ethyl vinyl ether and cetyl vinyl ether, unsaturated acids such as acrylic acid and maleic acid, aromatic vinyls such as styrene, and acrylonitrile, but are not particularly limited.

また、コモノマーとの共重合樹脂以外の他に、例えば、
アクリルゴム、(メタ)アクリル酸エステル系樹脂、エ
チレン−酢酸ビニル共重合樹脂、エチレン−(メタ)ア
クリル酸エステル共重合樹脂、曳索化ポリエチレン樹脂
、スチレン−ブタジェンゴム等のグラフト可能な樹脂に
塩化ビニルモノマーをグラフト共重合したグラフト共重
合樹脂を使用することもできる。
In addition to copolymer resins with comonomers, for example,
Vinyl chloride is added to graftable resins such as acrylic rubber, (meth)acrylic acid ester resin, ethylene-vinyl acetate copolymer resin, ethylene-(meth)acrylic acid ester copolymer resin, corded polyethylene resin, and styrene-butadiene rubber. A graft copolymer resin obtained by graft copolymerizing monomers can also be used.

これらの塩化ビニル系樹脂は、製品に対する要求物性に
応して単独て使用することもできるし。
These vinyl chloride resins can be used alone depending on the physical properties required for the product.

単独重合樹脂、ノ(重合樹脂、グラフト共重合樹脂より
適宜に選択して二種以上を併用して使用することも出来
る。
It is also possible to use a combination of two or more selected from homopolymer resins, polymer resins, and graft copolymer resins.

使用する塩化ビニル系樹脂の平均重合度は、300〜7
0口てあり、好ましくは、400〜600である。平均
重合度か300未満の場合、溶融流動性は大幅に向4ユ
するか、成形品の耐衝撃性が大幅に低下し、成形品を単
に落下させたたけても破壊してしまう欠点かあるため使
用するのは困難である。
The average degree of polymerization of the vinyl chloride resin used is 300 to 7.
The number is 0, preferably 400 to 600. If the average degree of polymerization is less than 300, the melt fluidity will be significantly lowered, or the impact resistance of the molded product will be greatly reduced, and the molded product may break even if it is simply dropped. It is difficult to use.

また、平均重合度か700を超える場合は溶融流動性が
大幅に低下し、射出成型かてきない、高温にして溶融F
Iit動性を高めて射出成型しようとすると、樹1酊温
度か熱分解温度に極めて接近し、熱分解の発生を抑制で
きないため、熱分解が徐々に進行し、坦化ビニル糸捌脂
の発泡成型品を製逍することかできなくなる。
In addition, if the average degree of polymerization exceeds 700, the melt fluidity will decrease significantly, making injection molding impossible.
When injection molding is attempted by increasing the dynamicity of the resin, the temperature of the resin approaches the thermal decomposition temperature, and the occurrence of thermal decomposition cannot be suppressed, so thermal decomposition progresses gradually, resulting in foaming of the planarized vinyl thread resin. It becomes impossible to manufacture molded products.

尚、溶融粘度を低下させるために塩化ビニル単量体と共
重合可能な単量体との共重合樹脂及び塩化ビニル単も1
体のグラフト可能な樹脂との共重合樹1脂を使用する事
は好ましい、その使用量は成形性及び剛性の許容範囲か
ら選択される。fit動性が必要な場合には単独風合樹
脂の重合度の低いものを使用するか、または流動性に優
れた共重合樹脂を単独または併用することで溶融粘度は
改善される。しかし、剛性は低下するので、製品の要求
物性にしたがって、単独重合樹脂の重合度及び共重合8
4脂の添加量は適1f選択すればよい、剛性を改良する
には重合度の高い樹脂と流動性の優れた共重合樹脂とを
相合せて用いればよい。
In addition, in order to reduce the melt viscosity, a copolymer resin of a vinyl chloride monomer and a copolymerizable monomer and a vinyl chloride monomer are also used.
It is preferable to use a copolymer resin with a resin capable of grafting the body, and the amount used is selected from the acceptable range of moldability and rigidity. When fit mobility is required, the melt viscosity can be improved by using a single textured resin with a low degree of polymerization, or by using a copolymer resin with excellent fluidity alone or in combination. However, since the rigidity decreases, the degree of polymerization of the homopolymer resin and the degree of copolymerization must be adjusted according to the required physical properties of the product.
The amount of the four fats to be added may be selected appropriately. In order to improve the rigidity, a resin with a high degree of polymerization and a copolymer resin with excellent fluidity may be used in combination.

ここに用いることのできる可塑剤はジオクチルフタレー
ト等のフタル酸系エステル、ジオクチルアジペート5ジ
オクチルアゼレート等の脂肪族二ti! )、’;:酸
エステル系、トリオクチルトリメリテートキの芳香族多
11!基酸エステル系、エポキシ化大豆油等のエポキシ
系、ポリエステル系、トリノニルフォスフェート、トリ
クレジルフォスフェート等のリン酸エステル系などが卒
げられ、これらのi+j!! 、il+は、一種もしく
は二種以上を併用しても差し支えたい。
Plasticizers that can be used here include phthalic acid esters such as dioctyl phthalate, aliphatic esters such as dioctyl adipate, 5-dioctyl azelate, etc. ), ';: Acid ester type, aromatic polyester of trioctyl trimellitate 11! Basic acid ester types, epoxy types such as epoxidized soybean oil, polyester types, phosphate ester types such as trinonyl phosphate, tricresyl phosphate, etc. are excluded, and these i+j! ! , il+ may be used alone or in combination of two or more.

該可塑剤の添加Lkは、前記塩化ビニル系樹脂100重
量部に対して、0〜20重量部である。1強記合屋が2
0重量部を超えると溶融流動性は非常に改良されるが、
剛性か低下して構造材等に使用することは不可能である
。好ましくは、5電域部以下が剛性を低下させることな
く使用てきるので塑ましい、π合度の高い塩化ビニル樹
脂を使用する場合には、]1f塑剤の使用量を増加する
必要かあり、低重合度の塩化ビニル樹脂を使用する場合
にはTh)塑剤の使用量は少ない方か好ましい、高い重
合度の場合には、可塑剤の添加量により剛性が低下する
ため、溶槽流動性と剛性かバランスするところで、添加
itlを選択することか必要である。それ故、溶槽流動
性を高めるためにri(塑剤を多j、lに添加すると、
!lJ品の剛性を損うことになり、構造材として性用す
る・1tは不+4能になる。曲げ外性率か12 、00
0 k g / c−以下になると圧線強度か低くなる
ため、例えば、排水マスてはトラック等の重輪か乗った
時に変形したり、破壊したりして、翻水の問題か発生す
る6 これを解決するため、アスペクト比の大きいフィラーを
添加すると、添加量の増加に伴なって剛性は向上するも
のの、溶融流動性も添加量に応して低下するため成型か
困難になる。成型できる程度て添加することは、特に制
限されない、可塑剤の使用量は剛性の要求される分野て
は使用量が制限される事になる。但し、製品の分野によ
っては、少量の添加で加工性が改良されるISから添加
量を選択して使用することができる。Ilシ、その添加
量は20重量部を越えることはできない。
The amount Lk added of the plasticizer is 0 to 20 parts by weight based on 100 parts by weight of the vinyl chloride resin. 1st place kikiya is 2
If it exceeds 0 parts by weight, the melt fluidity is greatly improved, but
It is impossible to use it as a structural material because of its reduced rigidity. Preferably, when using vinyl chloride resin with a high π degree, which is plastic because it can be used without reducing rigidity in less than 5 electric regions, it is necessary to increase the amount of 1f plasticizer used. , Th) When using a vinyl chloride resin with a low degree of polymerization, it is preferable to use a small amount of plasticizer. In the case of a high degree of polymerization, the rigidity decreases depending on the amount of plasticizer added, so it is difficult to flow in the melt tank. It is necessary to select the amount of added ITl to balance the properties and rigidity. Therefore, in order to increase the fluidity of the melt tank, if ri (plastic agent is added to
! This will impair the rigidity of the 1J product, making it impossible to use it as a structural material. Bending ratio: 12,00
If it is below 0 kg/c-, the pressure line strength will be low, so for example, a drainage basin may be deformed or destroyed when a heavy wheel such as a truck rides on it, causing problems with flooding.6 To solve this problem, if a filler with a large aspect ratio is added, although the rigidity improves as the amount added increases, the melt fluidity also decreases in proportion to the amount added, making molding difficult. There is no particular restriction on adding the plasticizer to the extent that it can be molded, but the amount of plasticizer used is limited in fields where rigidity is required. However, depending on the field of the product, the addition amount can be selected from IS, which improves processability with a small addition. The amount added cannot exceed 20 parts by weight.

本発明の組X&物に用いられる耐衝撃剤としては、例え
ば、部分架橋されていない耐衝撃剤であるアクリロニト
ソルースチレン共重合樹脂、塩素化ポリエチレン樹脂、
エチレン−酢酸ビニル共重合樹脂、エチレン−エチル(
メタ)アクリレート共重合樹脂、ポリエステル樹脂、ア
クリル酸エステル系樹脂等及びこれらにエステル樹脂、
アクリル酸エステル系樹脂及びこれらに塊化ビニル七ツ
マ−をグラフト共重合した耐衝撃剤と部分架橋されてい
るアクリロニトリルーブタジエンースチレンノ(重合樹
脂、メチル(メタ)アクリレート−ツタジエン−スチレ
ン共重合樹脂等があげられる。
Examples of the impact-resistant agent used in the group
Ethylene-vinyl acetate copolymer resin, ethylene-ethyl (
meth)acrylate copolymer resins, polyester resins, acrylic ester resins, etc. and ester resins,
Acrylonitrile-butadiene-styrene (polymer resin, methyl (meth)acrylate-tutadiene-styrene copolymer resin that is partially crosslinked with an acrylic acid ester resin and an impact-resistant agent obtained by graft-copolymerizing agglomerated vinyl heptamer) etc. can be mentioned.

これらの耐衝撃剤は1部分架橋されていない耐衝撃剤と
部分架橋されている耐衝撃剤のそれぞれ単独あるいは単
独品の併用、もしくはそれぞれから二種以」−を選択し
て併用しても差し支えない。
These impact-resistant agents may be used alone or in combination of partially non-crosslinked impact-resistant agents and partially cross-linked impact-resistant agents, or two or more of each may be selected and used in combination. do not have.

該耐衝撃剤の添加量は、前記塩化ビニル糸捌脂lO口屯
星部に対して5〜30重量部である。該配合量か5虫1
.)部未満になると耐衝撃性か不足して、製品を落下さ
せただけで製品が破壊する21Gかある。添加量か30
重及部を越えると耐衝撃性は改良されるか、射出成形時
の溶融粘度か増大し、射出成形かできなくなる。高温高
圧で射出成形しようとすると、塩化ビニル系樹脂は高剪
断になるため発熱して熱分解する。即ち、通常の部分架
橋されたメチル(メタ)アクリレート−ブタジェン−ス
チレン共重合樹脂系の耐衝撃剤を添加すると溶融粘度が
高くなり射出成形が困難になる。従って。
The amount of the impact-resistant agent added is 5 to 30 parts by weight based on the amount of vinyl chloride yarn processing fat 10 parts by weight. The amount of 5 insects 1
.. ), the impact resistance will be insufficient and the product will be destroyed just by dropping it at 21G. The amount added is 30
If it exceeds the overlapped portion, the impact resistance will either be improved or the melt viscosity during injection molding will increase, making injection molding impossible. When injection molding is performed at high temperatures and pressures, vinyl chloride resins undergo high shear, which generates heat and thermally decomposes. That is, when a conventional partially crosslinked methyl (meth)acrylate-butadiene-styrene copolymer resin-based impact agent is added, the melt viscosity increases, making injection molding difficult. Therefore.

部分架橋された系の耐衝撃剤の添加量を増量すると溶融
粘度が増大するので1部分tJ橘されてぃないlit衝
撃剤を併用して溶融粘度の増大を防止すると同時に衝撃
性も補強することが望ましい、その比率は要求物性に応
じて調整することができる。
If the amount of partially cross-linked impact agent is increased, the melt viscosity will increase, so a partially crosslinked impact agent should be used in combination to prevent the increase in melt viscosity and at the same time reinforce the impact properties. is desirable, and the ratio can be adjusted depending on the required physical properties.

加工性に重点を置いた場合には部分架橋されていない耐
衝撃剤の比率を増し、衝撃性か要求されるときは部分架
橋されている耐衝撃剤を加工性が許容できる範囲で増量
するのか好ましい0部分架橋された耐衝撃剤と、架橋さ
れていない耐衝撃剤との比率は +00/ 0〜50/
 50が良い0部分架橋されていない耐衝撃剤を使mし
た製品は部分架橋された耐衝撃剤を使用した製品より衝
撃強度が低いため部分架橋された耐衝撃剤の使用量より
多く使用することは好ましくない、?iL動性な求めら
れる製品の場合には、耐衝撃剤のほかに重合度の低いル
化ビニル樹脂を選択して使用することかてきる。
If the emphasis is on processability, increase the proportion of non-partially cross-linked impact resistance, and when impact resistance is required, increase the amount of partially cross-linked impact resistance within the range that processability allows. The preferred ratio of zero-partially crosslinked impact agent to non-crosslinked impact agent is +00/0 to 50/
50 is good 0 Products using impact resistance agents that are not partially crosslinked have lower impact strength than products using impact resistance agents that are partially crosslinked, so use more than the amount of impact resistance agents that are partially crosslinked. is not desirable? In the case of a product that requires iL-activity, it is possible to select and use a vinylide resin with a low degree of polymerization in addition to the impact-resistant agent.

塩化ビニル系樹脂の重合度を高くすると流動性は低ドす
るか耐衝撃性は向上するために、耐衝撃剤の添加量は少
なくて良い、逆に重合度を低下させると流動性は向上す
るものの耐#Ig性は低下するため1iIIJ衝撃剤の
添加r4は増加させる必黄かあり流動性は低下すること
になる。従って、塩化ビニル系樹脂の重合度と耐衝撃剤
の添加量は適宜選択して使用する事が必要である。
If the degree of polymerization of vinyl chloride resin is increased, the fluidity will be lowered or the impact resistance will be improved, so the amount of impact agent added may be small.On the other hand, if the degree of polymerization is lowered, the fluidity will be improved. Since the #Ig resistance of the material decreases, the addition of 1iIIJ impact agent r4 increases the yellowing and fluidity decreases. Therefore, it is necessary to appropriately select the degree of polymerization of the vinyl chloride resin and the amount of impact-resistant agent added.

本発明の組成物には1通常、安定剤が用いられる。用い
られる安定剤としては1例えば、三11!基性硫酸鉛、
二塩基性亜りん酸鉛、ケイ酸鉛、塩基性炭酸鉛、ハイド
ロタルサイト等の無a塩類、ステアリン酸鉛、ステアリ
ン酸カドミウム等の鉛、カドミウム、バリウム、カルシ
ウム、アルミニム系金屈石鹸類、ラウレート系、マレー
ト系、メルカプト系、サルファイド系等の有機スズ類等
が挙げられ、これらの安定剤は、一種もしくは二種以」
二を併用しても差し支えない、該安定剤の添加量は、前
記塊化ビニル系樹脂loo重湯部に対し1〜目)虫艮部
である。該配合にか1重量部未満になると熱安定性か不
足して、剪断発熱及び発泡剤のラジカル分解と相まって
、製品に黒状4フランシュ等が発生し、ひどい場合には
、塩化ビニル系樹脂か分解してしまうこともあり、射出
特に分解ガスか発生して作業環境を多大にlり染するこ
とがある。安定剤の添加量か101量部を越えると、熱
安定性は改良され、射出成形時の分解等の発生は防止さ
れるが、添加量に相応する効果はなく経済上も問題であ
る。安定剤は、製品の要求物性、形状にあわせて、適宜
選択される。即ち、当業界で公知の安定剤を適宜使用す
ることで好適に成形できる。
Stabilizers are typically used in the compositions of the present invention. Stabilizers used include 1, for example, 311! basic lead sulfate,
A-free salts such as dibasic lead phosphite, lead silicate, basic lead carbonate, and hydrotalcite; lead, cadmium, barium, calcium, and aluminum-based soaps such as lead stearate and cadmium stearate; Examples include organic tins such as laurate, malate, mercapto, and sulfide stabilizers, and one or more of these stabilizers may be used.
The amount of the stabilizer to be added, which may be used in combination with the above two, is 1 to 1) the amount of insect repellent to the amount of heavy water of the agglomerated vinyl resin. If the amount is less than 1 part by weight, the thermal stability will be insufficient, and combined with shear heat generation and radical decomposition of the blowing agent, black 4 francs will occur in the product, and in severe cases, vinyl chloride resin will deteriorate. It can also decompose, and injection gases, especially decomposition gases, can be generated and greatly stain the working environment. If the amount of the stabilizer added exceeds 101 parts, the thermal stability will be improved and the occurrence of decomposition during injection molding will be prevented, but the effect will not be commensurate with the amount added and there will be economic problems. The stabilizer is appropriately selected according to the required physical properties and shape of the product. That is, suitable molding can be achieved by appropriately using stabilizers known in the art.

本発明の組成物には滑剤を用いることができる。用いら
れる滑剤としては、例えば、天然パラフィン、低分子量
ポリエチレン等の炭化水素類。
A lubricant can be used in the composition of the invention. Examples of the lubricant used include hydrocarbons such as natural paraffin and low molecular weight polyethylene.

ステアリン酸、ラウリン酸、エルカ酸等の脂肪酸頽、セ
チルアルコール、ステアリルアルコール等の脂肪族アル
コール類、ステアリン酸アミド、メチレンビスステアロ
アミド等の脂肪酸アミド類。
Fatty acids such as stearic acid, lauric acid, and erucic acid, aliphatic alcohols such as cetyl alcohol and stearyl alcohol, and fatty acid amides such as stearic acid amide and methylene bisstearamide.

ブチルステアレート等の脂肪酸の低級アルコールエステ
ル類、グリセリンモノステアレート等の脂肪酸の多価ア
ルコールエステル類、ステアリルステアレート等の高級
脂肪酸の高級脂肪族アルコールエステル類等が挙げられ
る。これらの滑剤は、一種もしくは二種以上を併用して
PJ差し支えない。該滑剤の添加1.′Eは、前記塩化
ビニル系樹脂100重量部に対し、1〜10重量部であ
る。該配合jヨが1虫量部未満になると成形機のスクリ
ューに粘着して塩化ビニル系樹脂の熱分解を促進すると
同昨に塊化ビニル系樹脂の内部発熱を防止することかで
きないため熱分解が発生する。 10重量部を超えると
射出成形時の溶融粘度が低下し、溶融流動性も改良され
るが、一般に滑剤か多量に添加されると、相溶性がない
ために、ペレタイズ峙にダイス出口て目ヤニか発生する
し、射出成形特には層′A離が出て耐衝撃性か低下する
。好ましくは、2〜5正bk部か適当である。滑剤は、
単独の使用よりも内部滑剤、外部滑剤を適宜選択して、
人々を併用して滑性を調整して使用するのか好ましい。
Examples include lower alcohol esters of fatty acids such as butyl stearate, polyhydric alcohol esters of fatty acids such as glycerin monostearate, and higher aliphatic alcohol esters of higher fatty acids such as stearyl stearate. These lubricants may be used alone or in combination of two or more for PJ. Addition of the lubricant1. 'E is 1 to 10 parts by weight based on 100 parts by weight of the vinyl chloride resin. If the amount of the blended resin is less than 1 part, it will stick to the screw of the molding machine and promote thermal decomposition of the vinyl chloride resin. occurs. If the amount exceeds 10 parts by weight, the melt viscosity during injection molding will be lowered and the melt fluidity will be improved, but in general, if a large amount of lubricant is added, there will be no compatibility and the die exit eye stains during pelletizing. Especially during injection molding, separation of the layer 'A' occurs and the impact resistance decreases. Preferably, 2 to 5 regular bk parts are appropriate. The lubricant is
Rather than using a single lubricant, choose an internal lubricant or an external lubricant as appropriate.
It is preferable to use it together with other people to adjust the lubricity.

溶融Mte性を重視する場合は、内部滑性に富む内部滑
剤を多量に使用することか好ましい、即ち、当業界で公
知の滑剤を適量使用する事で成形できる。
When the melt Mte property is important, it is preferable to use a large amount of an internal lubricant having high internal lubricity; that is, molding can be performed by using an appropriate amount of a lubricant known in the art.

本発明の組成物に用いられる発泡剤としては。The blowing agent used in the composition of the present invention includes:

例えば、ffi炭iv塩等の無機塩類、アゾジカルボン
アミド等のアゾ系、p、p′−オキシ−ビス=(ベンゼ
ンスルホニルヒドラジド)等のスルホヒドラジド系、N
、N’−ジニトロソ−(ジメチルテレフタルアくト)等
のニトロソ系が挙げられる。
For example, inorganic salts such as ffi carbon IV salt, azo type such as azodicarbonamide, sulfohydrazide type such as p,p'-oxy-bis=(benzenesulfonylhydrazide), N
, N'-dinitroso-(dimethyl terephthalate) and the like.

これらの発泡剤は、重炭酸塩又はこれとこれ以外の発泡
剤を併用して使用する。!11炭酸塩としては、炭酸水
素アンモニウム、炭酸水素カリウム。
These blowing agents are used in combination with bicarbonate or other blowing agents. ! 11 Carbonates include ammonium hydrogen carbonate and potassium hydrogen carbonate.

炭酸水素カルシウム、炭酸水素コバルトカリウム、炭酸
水素セシウム、炭酸水素ナトリウム、炭酸水素二ッケル
、炭酸水素マグネシウム、炭酸水素マグネシウムカリウ
ム、炭酸水素リチウム、炭酸水素ルビジウム等が挙げら
れる。これらの中でも、特に炭酸水素ナトリウム及び炭
酸水素マグネシウムが好ましい。
Examples include calcium hydrogen carbonate, cobalt potassium hydrogen carbonate, cesium hydrogen carbonate, sodium hydrogen carbonate, nickel hydrogen carbonate, magnesium hydrogen carbonate, potassium magnesium hydrogen carbonate, lithium hydrogen carbonate, and rubidium hydrogen carbonate. Among these, sodium hydrogen carbonate and magnesium hydrogen carbonate are particularly preferred.

該発泡剤の添加量は、前記塩化ビニル系樹脂100重量
部に対し、0.5〜3.5重量部である。該発泡剤の添
加量が0.5重量部未満であると、発泡倍率が低く軽量
化の面で好ましくなく、峰済性的でもない、一方、3.
5重量部を超えて使用しても発泡効率は添加量に比例し
て向−ヒすることはない、逆に表面か荒れて、ソリッド
層かなくなり耐衝撃性か低下し商品価(+11を下落さ
せることになる。重炭酸塩以外の発泡剤、特に1例えば
アゾジカルボンアミドを使用する場合は発泡剤の分解熱
とラジカルの発生による塩化ビニル樹脂の分解か射出成
形機の内部で発生して焼は物、耐衝撃性の不良、+1!
素ガス等のため製品の外蜆不良を伴い。
The amount of the foaming agent added is 0.5 to 3.5 parts by weight based on 100 parts by weight of the vinyl chloride resin. If the amount of the foaming agent added is less than 0.5 parts by weight, the foaming ratio will be low, which is not preferable in terms of weight reduction, and it will not be economical.
Even if more than 5 parts by weight is used, the foaming efficiency does not decrease in proportion to the amount added; on the contrary, the surface becomes rough, there is no solid layer, the impact resistance decreases, and the product price (+11) decreases. When using a blowing agent other than bicarbonate, especially azodicarbonamide, the vinyl chloride resin may be decomposed due to the heat of decomposition of the blowing agent and the generation of radicals, which may be generated inside the injection molding machine and cause sintering. Poor impact resistance, +1!
Due to the presence of raw gas, etc., the product may be defective on the outside.

安定成形を長期間続けることは困難である。It is difficult to continue stable molding for a long period of time.

従って、アゾジカルボンアミド等の重炭酸塩以外の発泡
剤の添加量は0〜o、s、11部である。好ましくは0
.2〜0.3重量部である。0.5重量部を超えて添加
すると熱安定性に問題か生して成形を続行することはで
きない、ところが、ffi>&WkMの使用は分解か吸
熱反応のため発熱することがないことと、ラジカルの発
生もないことから樹脂の分解が促進されることがない。
Therefore, the amount of the blowing agent other than the bicarbonate such as azodicarbonamide is 0 to 11 parts. Preferably 0
.. It is 2 to 0.3 parts by weight. If more than 0.5 parts by weight is added, there will be problems with thermal stability and molding cannot be continued.However, when using ffi>&Wkm, there is no heat generation due to decomposition or an endothermic reaction, and radical Since there is no generation of , the decomposition of the resin is not promoted.

但し、射出成形の場合には冷却工程でしばしばヒケか生
じる。このヒケを防止するために金型温度を20〜60
℃に保持して急冷による過冷却にて生じる局部的な収縮
を防止する。冷却温度が20°Cより低くなると収縮か
大きくなりヒケか生じやすい。また、冷却温度か60℃
を超えると過発泡が起こって製品の寸法、形状、内部に
空洞かできる等の問題を生じやすい、コスト面からはで
きるだけ冷却時間を短縮する必要があるが、冷却時間が
短く内部まで冷えないと後ぶくれを起こすおそれがある
However, in the case of injection molding, sink marks often occur during the cooling process. In order to prevent this sink mark, the mold temperature should be set at 20~60℃.
℃ to prevent local shrinkage caused by supercooling caused by rapid cooling. When the cooling temperature is lower than 20°C, shrinkage increases and sink marks are likely to occur. Also, the cooling temperature is 60℃
Exceeding this will cause over-foaming, which will easily cause problems such as the size, shape, and cavities of the product.From a cost standpoint, it is necessary to shorten the cooling time as much as possible, but if the cooling time is short and the inside cannot be cooled, There is a risk of causing back blister.

さらに、金型温度によるヒケ防止以外にアゾシカ−ボン
アミドの少量添加は急冷に伴う収縮によるヒケを防止す
る。その添加量は0〜0.5重量部である。添加しない
場合は金型の冷却社度を調整することでヒケを防止出来
ることは前述のとおりである。アゾシカ−ボンアミドを
添加すると、発生するガスのためにヒケを防止できる。
Furthermore, in addition to preventing sink marks due to mold temperature, addition of a small amount of azosicabonamide prevents sink marks due to shrinkage caused by rapid cooling. The amount added is 0 to 0.5 parts by weight. As mentioned above, if it is not added, sink marks can be prevented by adjusting the cooling rate of the mold. Addition of azosicabonamide can prevent sink marks due to the gas generated.

添加量がQ 、5 gl 置部を越えると分解によって
生じるラジカルと分解熱の発生のために熱安定性か損な
われて成形できないようになる。
If the amount added exceeds Q, 5 g, the thermal stability will be impaired due to the generation of radicals and heat of decomposition resulting from decomposition, and molding will become impossible.

本発明に用いられるその他の添加剤、充填剤。Other additives and fillers used in the present invention.

カラー、抗酸化剤、紫外線防止剤等は、当業界で公知の
添加剤を目的を損なわない範囲で添加することは何等制
限されない。
There is no restriction in any way that additives known in the art, such as color, antioxidant, and ultraviolet inhibitor, may be added to the extent that the purpose is not impaired.

本9.lJlに用いられる成形条ヂ[は、滞留のないシ
ャットオフノズルとし、ノズル径が5〜20mmてあり
、金型のゲート部の断面積が最小である部分における剪
断速度か0.Sx 10”〜5 X In”C37秒と
する。
Book 9. The molding strip used for IJl is a shut-off nozzle with no stagnation, the nozzle diameter is 5 to 20 mm, and the shear rate at the part of the mold where the cross-sectional area of the gate part is the smallest is 0. Sx 10" to 5 X In"C 37 seconds.

他の成形条件は、シリンダー温度が160〜200℃、
ノズル温度が180〜200℃、スクリュー周速が8か
ら18−7分、射出圧力が60〜120kg/cmであ
り、マルチステーション型の金型の成形機を使用して成
形時間を短縮するのが好ましい。
Other molding conditions include cylinder temperature of 160-200℃;
The nozzle temperature is 180~200℃, the screw peripheral speed is 8~18-7 minutes, the injection pressure is 60~120kg/cm, and the molding time is shortened by using a multi-station mold molding machine. preferable.

ノズル部は滞留のないシャットオフノズルとし、スクリ
ュー先端にチエツクリングを設けて樹脂の滞留とバック
フローを防止することでシリンダー内に滞留する樹脂量
を最小に押さえることができる。バックフローか起こる
と一度熱を受けた樹脂が再度スクリューで混練されるた
め、基本的に熱安定性の悪い樹脂が二度の熱履歴をうけ
て、熱分解を引き起こし成形不良となる。さらに、先端
部よりの樹脂漏れも防止でき、溶融体の射出量も一定化
されるため成形性が安定し、製品の不良率か低減される
The nozzle part is a shut-off nozzle that does not stagnate, and a check ring is provided at the tip of the screw to prevent stagnation and backflow of resin, thereby minimizing the amount of resin stagnation in the cylinder. When a backflow occurs, the resin that has been heated once is kneaded by the screw again, so the resin, which has poor thermal stability, is basically subjected to a second thermal history, causing thermal decomposition and resulting in poor molding. Furthermore, resin leakage from the tip can be prevented and the amount of molten material injected can be made constant, resulting in stable moldability and a reduction in product defect rates.

ノズル径は5〜20−であり、金型のゲート部の最小断
面積で、剪断速度が0.5xlG”〜5X 102cm
/秒の条件で射出成形するのが適当である。ノズル径が
5msより小さいと、大きいノズル径で射出する場合と
同一量を同一時間で射出するためには剪断速度を5 X
 10” C17秒より大きくしなければならなくなる
。剪断速度か大きくなると、樹脂が発熱し、極端な場合
には分解を引き起こすことになる。これらの発熱1分解
を防止するために安定剤、滑剤を増量するのはイ■効で
あるか、経済的に使用できる限界がある。また、射出圧
力も高圧にする必要ができて、高粘度の組成物を無理に
金型に充填することになり、樹脂の熱安定性の限界を超
えてしまう場合が発生する。高圧充填した場合は成形品
の表面性はスワニルマークが発生して商品価値が激減す
る。即ち、成形機のノズル径または金型の最小断面積部
分を組成物が通過するときの剪断速度か5 X 10”
cm 7秒より大きくなると前記の問題点がクローズア
ップされてくることになる。
The nozzle diameter is 5~20cm, and the shear rate is 0.5xlG''~5x102cm at the minimum cross-sectional area of the mold gate.
It is appropriate to perform injection molding under the conditions of 1/sec. If the nozzle diameter is smaller than 5ms, the shear rate must be increased by 5
10" C17 seconds. If the shear rate increases, the resin will generate heat and, in extreme cases, will cause decomposition. To prevent these exothermic decompositions, stabilizers and lubricants must be added. Increasing the amount is either ineffective or there is a limit to how economically it can be used.In addition, the injection pressure must be high, forcing the mold to be filled with a highly viscous composition. There are cases where the limit of thermal stability of the resin is exceeded.If high-pressure filling is used, the surface of the molded product will show swanil marks and the commercial value will be drastically reduced.In other words, the nozzle diameter of the molding machine or the minimum mold The shear rate when the composition passes through the cross-sectional area is 5 x 10"
cm If the time is greater than 7 seconds, the above-mentioned problems will come into focus.

ノズル径が20−■より大きいと剪断速度は0.5cm
/秒より小さくなり、発熱による樹脂の分解等は防出さ
れるが、金型への充填不足をきたすことになり、製品と
しての機能が満足されないことになる。また、発泡倍率
は発熱が小さいために少なくなる。これを防止するには
シリンダー温度を高くして溶融粘度を低下させるととも
に発泡剤の分解を促進して発泡倍率を改良する対策をと
ることができるが、樹脂温度が上昇すると樹脂の熱分解
温度に接近して樹脂の分解か促進され、現実には成形で
きないことになる。
If the nozzle diameter is larger than 20-■, the shear rate is 0.5 cm.
/second, and decomposition of the resin due to heat generation is prevented, but the mold will be insufficiently filled, and the product's functionality will not be satisfied. In addition, the expansion ratio decreases because the heat generation is small. To prevent this, measures can be taken to raise the cylinder temperature to lower the melt viscosity and promote the decomposition of the blowing agent to improve the expansion ratio, but as the resin temperature increases, the thermal decomposition temperature of the resin increases. If they get close to each other, the decomposition of the resin will be accelerated, making it impossible to actually mold it.

従って、商品として成形できる条件は、ノズル径か5〜
20■であり、金型のゲート部の最小断面積で、剪断速
度が0.5 X 10’ 〜5 X 1102a/秒か
奸ましい。
Therefore, the conditions that can be molded as a product are whether the nozzle diameter is 5 or more.
20 cm, and the shear rate is preferably 0.5 x 10' to 5 x 1102 a/sec at the minimum cross-sectional area of the gate part of the mold.

硬質塊化ビニル系樹脂は、シリンダー内での熱による分
解速度か♀〈、シリンダー温度を160〜200°Cと
したとき、ソリッド成形の場合1分解時間はl時間以上
で、成形特のトラブルに依る滞留時間が1時間以上にな
っても、特に樹脂の分解等の問題を発生させないか、発
泡成形では発泡剤としてアゾジカルボンアミドを使用す
ると、5〜10分間て分解してしまうため、成形特のト
ラブルに対する抵抗性か極めて小さい。
The decomposition rate of hard agglomerated vinyl resin due to heat in the cylinder is ♀ (When the cylinder temperature is 160 to 200°C, the decomposition time for solid molding is more than 1 hour, which can cause special problems in molding. Even if the residence time exceeds 1 hour, problems such as decomposition of the resin will not occur, and if azodicarbonamide is used as a blowing agent in foam molding, it will decompose in 5 to 10 minutes, so the molding characteristics The resistance to trouble is extremely small.

従、って、成形機内に滞留する時間は最小にすることか
望ましい、r&形形作山中生じるトラブルでの滞留時間
が延びることは塩化ビニル樹脂の分解をもたらすため望
ましくない、従って滞留時間は15分間以下か良いef
fllj5酸塩ll用した場合はアゾジカルボンアミド
に比較して塩化ビニル樹脂の分解を促進する作用が相対
的に少ないため射出成形することはできるが、滞留時間
は最小にすることか好ましい。
Therefore, it is desirable to minimize the residence time in the molding machine.It is undesirable to prolong the residence time due to the troubles that occur during the R & shape pile, as this will lead to decomposition of the vinyl chloride resin.Therefore, the residence time is 15 Good ef for less than a minute
When using the flljpenta-acid salt, injection molding is possible because it has a relatively low effect of promoting decomposition of vinyl chloride resin compared to azodicarbonamide, but it is preferable to minimize the residence time.

滞留時間を最小にするために3から6ステーシヨンの金
型を有するマルチステーション化を図ることで、計量時
間、射出時間、移動時間のみの時間で成形てきるように
なるため樹脂の分解が防1してきる。一般の射出成形機
ではその上に、さらに、マルチステーション型に比較し
て冷却時間か必安なため、その時間かシリンダ一部、ノ
ズル部に滞留する時間を大幅に増加させ滞留により樹脂
か分解し、成形機内に分解物か蓄積して徐々に黒化物か
製品に射出されてくる事になる。
By using a multi-station mold with 3 to 6 station molds to minimize the residence time, molding can be completed using only measuring time, injection time, and travel time, which prevents resin decomposition. I'll do it. In addition, in general injection molding machines, cooling time is required compared to multi-station models, so the time spent in the cylinder or nozzle is significantly increased, and the resin decomposes due to residence. However, decomposition products accumulate in the molding machine and gradually become injected into the product.

一般に、冷却と計量、射出、移動間の時間の長さの関係
は冷却時間の方か長いので、樹脂の分解を促進する方向
に作用する。従って、発泡成形はソリッド成形に比較し
て成形安定性が極端に悪いと言うことである。このこと
は、成形温度範囲と分解温度範囲とか接近しているため
に、ソリッド成形の場合でも200°Cを越えると、成
形するのは困難である。シリンダー内で樹脂の滞留か発
生するのを防止するために滑剤の適当な組合わせが必要
である。この組合わせの中てシリンダー、スクリュー等
に粘着するのを防止すると同時に樹脂同志の剪断による
発熱を防止することで耐熱性を向上させる必要がある。
In general, the relationship between the length of time between cooling, metering, injection, and movement is such that the cooling time is longer, which acts to promote the decomposition of the resin. Therefore, foam molding has extremely poor molding stability compared to solid molding. This is because the molding temperature range and the decomposition temperature range are close to each other, so even in the case of solid molding, it is difficult to mold at temperatures exceeding 200°C. A suitable combination of lubricants is required to prevent resin buildup within the cylinder. In this combination, it is necessary to improve heat resistance by preventing adhesion to cylinders, screws, etc., and at the same time preventing heat generation due to shearing of resins together.

特に、樹脂同士の摩擦による発熱を防止する内部滑性に
富む内部滑剤を外部滑剤より多量に使用することか重要
である。
In particular, it is important to use a larger amount of internal lubricant, which has good internal lubricity to prevent heat generation due to friction between resins, than external lubricant.

発泡倍率を上げるためには発泡剤の分解を促進するため
に、樹脂温度を上昇させる必要かあるか、樹脂温度を上
昇させると、塊化ビニル系樹脂の分解も促進されて射出
成形は不可能になる。シリンダー温度か200℃を越え
ると発泡成形は、発泡剤の分解によるラジカルの発生と
熱による樹脂の分解か相乗して成形中に樹脂の黒化か始
まる。
In order to increase the foaming ratio, is it necessary to increase the resin temperature to promote the decomposition of the blowing agent? If the resin temperature is increased, the decomposition of the agglomerated vinyl resin will also be accelerated, making injection molding impossible. become. When the cylinder temperature exceeds 200°C, the resin begins to blacken during molding due to the combination of the generation of radicals due to the decomposition of the foaming agent and the decomposition of the resin due to heat.

逆に、シリンダー温度を175℃以下にすると発泡剤の
発泡効率か低下すると同時に溶融粘度か上昇し、高射出
圧力にしないと金型に充填できない。
On the other hand, if the cylinder temperature is lower than 175°C, the foaming efficiency of the blowing agent decreases and at the same time the melt viscosity increases, making it impossible to fill the mold without a high injection pressure.

高射出圧力にすると!!!1断発熱が発生して溶融粘度
は低下するものの樹脂温度も上昇するため1局部的に樹
脂の分解が発生する。従って、シリンダー内における樹
脂温度が、 200°Cを越えると樹脂の分解゛が始ま
るため、この湿度以下に保存する必要かあり、樹脂の温
度範囲は、175〜200℃に保持することか成形ので
きる条件である。樹脂温度は必要な発泡倍率に合せて選
択することかできる。
High injection pressure! ! ! Although the melt viscosity decreases due to the generation of intermittent heat generation, the resin temperature also rises, causing local decomposition of the resin. Therefore, if the resin temperature inside the cylinder exceeds 200°C, the resin will begin to decompose, so it is necessary to store the resin at a humidity below this temperature range. This is a possible condition. The resin temperature can be selected depending on the required expansion ratio.

スクリュー周速は、圧縮比によっても変動するか、8〜
18m/分か適当であり、8−1分工焉では塩化ビニル
系樹脂の溶融が不足する。溶融させるためにはシリンダ
ー内温度を200℃を超える温度にする必要があり、こ
の温度範囲になると樹脂の分解か始まるために徐々に黒
化物が製品中に現われてくることになる。また、未溶融
の組成物を高射出圧力で成形しても金型に完全に充填出
来ないことになり製品とはならない0周速が18■/分
を超えると、シリンダー温度が局部的に上昇して、特に
、圧縮比の大きいスクリューを用いれば、このことはさ
らに加速されることになり樹脂の分解か促進される。
Does the screw circumferential speed vary depending on the compression ratio?
A speed of 18 m/min is appropriate, and if the process ends in 8-1 min, the vinyl chloride resin will not be sufficiently melted. In order to melt the resin, it is necessary to raise the temperature inside the cylinder to over 200°C, and when this temperature range is reached, the resin begins to decompose, and black matter gradually appears in the product. In addition, even if the unmolten composition is molded at high injection pressure, it will not be possible to completely fill the mold and the product will not be produced.If the zero circumferential speed exceeds 18 cm/min, the cylinder temperature will locally increase. In particular, if a screw with a high compression ratio is used, this will be further accelerated and the decomposition of the resin will be promoted.

さらに、スクリューによる剪断発熱のために樹脂塩度全
体も上昇して樹脂の分解が全面的に発生して完全な分解
状態になり塩素ガスが成形するときに噴き出してくるこ
とになる。従って、周速は8〜18−/分の範囲か適当
である。硬質用のスクリューは圧縮比か1.5〜2,5
のものを用い、スクリュー周速による局部的な発熱の発
生を低減する必要かある。
Furthermore, due to the shear heat generated by the screw, the salinity of the entire resin increases, and the resin decomposes over the entire surface, resulting in a complete decomposition state, and chlorine gas is blown out during molding. Therefore, the peripheral speed is suitably in the range of 8 to 18-/min. The compression ratio for hard screws is 1.5 to 2.5.
It is necessary to reduce the local heat generation caused by the circumferential speed of the screw.

[作 用] 本発明における塩化ビニル系樹脂は、重合度が300〜
700の低分子量としたのて、混練によるゲル化か速く
、且つ、溶融粘度の低いため射出成形、特に発泡射出成
形に有効である。
[Function] The vinyl chloride resin in the present invention has a degree of polymerization of 300 to 300.
It has a low molecular weight of 700, gels quickly during kneading, and has a low melt viscosity, making it effective for injection molding, especially foam injection molding.

さらに、発泡成形では発泡剤の分解による発熱、分解で
生しるラジカル、スクリューによる剪断発熱、シリンダ
一部の高温加熱のため樹脂の分解が促進されるのて、射
出成形特の溶融粘度はできる限り低くすることが効果的
である。溶融粘度を低くするには、剛性の許す範囲て樹
脂の重合度を下げることと可塑剤を添加することである
Furthermore, in foam molding, the decomposition of the resin is accelerated due to heat generation due to the decomposition of the foaming agent, radicals generated by decomposition, shear heat generated by the screw, and high temperature heating of a part of the cylinder, so the melt viscosity of the injection molding can be reduced. It is effective to keep it as low as possible. In order to lower the melt viscosity, it is necessary to lower the degree of polymerization of the resin within the range allowed by the rigidity and to add a plasticizer.

発泡剤の分解による分解熱とラジカルの発生で生しる熱
安定性の低下はラジカルの発生しない発泡剤である重炭
酸塩を使用すると有効であるか、成形品にヒケを生じる
欠点がある。
The reduction in thermal stability caused by the generation of decomposition heat and radicals due to the decomposition of the blowing agent may be effectively avoided by using bicarbonate, which is a blowing agent that does not generate radicals, or may have the drawback of causing sink marks on molded products.

成形品のヒケについては金型温度を高くして適度に後発
泡させることと、重炭酸塩以外の発泡剤を併用して後発
泡させることにより有効に防ILできる。
Sink marks in molded products can be effectively prevented by increasing the mold temperature and performing post-foaming appropriately, and by using a foaming agent other than bicarbonate in combination to perform post-foaming.

溶融粘度を低下させるために低重合度のレジンな使用す
ると耐衝撃性か低下するが、耐衝撃性の低下K)j +
hには耐衝撃剤の添加が有効である。耐衝撃剤の添加は
、溶融粘度の増大をもたらすため、溶融粘度の比較的に
低い部分架橋していない耐衝撃剤を部分架橋している耐
衝撃剤にブレンドして使用するのが好ましい。
If a resin with a low degree of polymerization is used to lower the melt viscosity, the impact resistance will decrease;
It is effective to add an impact-resistant agent to h. Since the addition of an impact-resistant agent causes an increase in the melt viscosity, it is preferable to use a non-partially cross-linked impact-resistant agent having a relatively low melt viscosity blended with a partially-cross-linked impact-resistant agent.

また、前記発泡用硬質塩化ビニル系樹脂組成物は、硬質
塩化ビニル系樹脂発泡成形体の射出成形を+f)能にす
る。
Further, the hard vinyl chloride resin composition for foaming enables injection molding of a hard vinyl chloride resin foam molded article.

さらに、本発明ては成形条件をノズル径か5〜20■I
であり、金型のゲート部の最小断面積て、剪断速度か0
.5 xlO’〜5 X 10” c■/秒としたノズ
ル径と剪断速度の限定は、樹脂の発熱と分解を防止し、
金型への充填不足をきたすことなく、さらに発泡倍率を
高めるのに有効である。
Furthermore, in the present invention, the molding conditions are adjusted to a nozzle diameter of 5 to 20 μI.
The minimum cross-sectional area of the gate of the mold is the shear rate or 0.
.. Limiting the nozzle diameter and shear rate to 5 x lO'~5 x 10" c/sec prevents heat generation and decomposition of the resin,
This is effective in further increasing the foaming ratio without causing insufficient filling of the mold.

以上の構成によって、硬質塩化ビニル糸樹脂による大型
の射出発泡成形品が製造できることになる。
With the above configuration, a large injection foam molded product made of hard vinyl chloride thread resin can be manufactured.

[実施例] 以下に実施例を示すか、本発明はこれに限定されるもの
てはない、尚、以下の例において「部」とあるのは「重
量部」を表わす。また、実施例に用いた塩化ビニル系樹
脂組X&、物及びそれから得られる製品の品質評価は次
の方法で行なった。
[Example] Examples are shown below, but the present invention is not limited thereto. In the following examples, "parts" represent "parts by weight." Furthermore, the quality of the vinyl chloride resin set X & used in the examples and the products obtained therefrom were evaluated by the following method.

■塊化ビニル樹脂の重合度の測定 J I S  K−6721に準拠。■Measurement of degree of polymerization of agglomerated vinyl resin Compliant with JIS K-6721.

■比 重 J I S  K−7112に準拠。■Gravity Compliant with JIS K-7112.

■熱安定性 射出成形品の外観を次の5段階で評価した。■Thermal stability The appearance of the injection molded product was evaluated on the following five scales.

◎  表面か滑らかで色調が良好。◎ Smooth surface and good color tone.

○  表面が滑らかでゲート口が少し変色。○ The surface is smooth and the gate opening is slightly discolored.

Δ  表面が少しザラつき全体が少し着色。Δ The surface is a little rough and the whole thing is a little discolored.

×  表面がザラつき焼は物がある。× There is something special about grilled rice with a rough surface.

×× 焼けてガスか発生。XX It burns and generates gas.

■落錘試験 1−1’j径60−で2kg鋼球を35c口の上からゲ
ート口に落下させてひび、捌れを5段階で評価した。
(2) Drop weight test 1-1 A 2 kg steel ball with a diameter of 60 mm was dropped from above the 35c opening into the gate opening, and cracking and separation were evaluated on a 5-grade scale.

◎  表面が滑らかでひび、割れがない。◎ Smooth surface with no cracks or breaks.

○  表面が滑らかでゲートか少し傷つく。○ The surface is smooth and the gate is slightly scratched.

八  表面に若干ひびが入る。8. There are some cracks on the surface.

×  表面にかなり大きいひびが入る。× Quite large cracks appear on the surface.

×× 割れて四散する。XX It cracks and scatters.

■落下試験 成形品自体を1.2mの高さから落下させて外観を次の
5段階で評価した。
■ Drop test The molded product itself was dropped from a height of 1.2 m, and its appearance was evaluated on the following five scales.

◎  リブの部分も割れない。◎ The rib part will not crack.

○  リブの先端が少しへこむ。○ The tip of the rib is slightly dented.

△  リブの収り付は部分にひびか入る。△ There are cracks in some parts of the ribs.

×  リブ及びその周辺か割れる。× The rib and its surroundings are cracked.

×× 全体か翔れて四散する。XX The whole thing flies up and scatters.

■圧縮試験 成形品を使用状態と同様な位置になるように圧縮試験機
にセットし4000kgの荷重をかけた時の成形品の外
観を次の5段階で評価した。
■Compression test The molded product was placed in a compression testing machine in the same position as in use, and a load of 4000 kg was applied.The appearance of the molded product was evaluated on the following five scales.

◎  リブの部分も割れない。◎ The rib part will not crack.

○  リブの先端か少しへこむ。○ The tip of the rib is slightly dented.

Δ  リブの取り付は部分にひびが入る。Δ There are cracks in the rib installation.

×  リブ及びその周辺が割れる。× Ribs and their surroundings are cracked.

×× 全体か割れて四散する。XX The whole thing cracked and scattered.

■外観形状 成形品の形状法の5段階で評価した。■External shape The molded product was evaluated in five stages according to its shape.

◎  完全な成形品。◎ Completely molded product.

○  リブの部分が少しショートショット。○ The rib part is a little short shot.

Δ  リブの部分が全熱入らない。Δ The rib part does not get all the heat.

×  本体部分の一部がショートショット。× A short shot of part of the main body.

×X 本体部分の大部がショートショット。×X Most of the main body is a short shot.

■接着性 パイプの外周とインバートの出口の内面に積木化学工業
■製の接着剤216を塗春して46着し、二人で引っ張
って試験した。
■ Adhesive Adhesive 216 manufactured by Miki Kagaku Kogyo ■ was applied to the outer circumference of the pipe and the inner surface of the invert outlet, and 46 pieces were applied, and two people pulled and tested.

O外れない。O can't be missed.

×  外れる。× It comes off.

■曲げ弾性率 JIS  K−7203に準拠、試験片はリブの部分を
切削して作成した。
■Bending elastic modulus A test piece was prepared by cutting the rib portion according to JIS K-7203.

◎  弾性率≧2.0×104 Q   1.5≦弾性率<2.0 △  1.2≦弾性率<1.5 ×  弾性率<1.2 kg/am’ [相]ヒケ 成形品の外戚形状より次の5段階で評価した。◎ Elastic modulus ≧2.0×104 Q   1.5≦Modulus<2.0 △  1.2≦Modulus<1.5 × Elastic modulus <1.2 kg/am' [phase] sink mark The molded product was evaluated on the following five scales based on its external shape.

◎  ヒケのない完全な成形品。◎ Completely molded product with no sink marks.

○  ヒケの極めて少ない。○ Very few sink marks.

△  少しヒゲがある。△ He has a little beard.

×  凹凸がはっきりとわかる。× Irregularities are clearly visible.

×× 凹凸が大きい。XX Large unevenness.

(実施例1〜4.比較例1〜2) 塊化ビニル屯独虫合樹脂:重合度650の樹脂(以下、
P2S5と言う)、重合度700の樹脂(以下、P2O
3と言う)、重合度800の樹脂(以下、P2O3と言
う)、重合度350の樹脂(以下、P2S5と言う)1
重合度450の樹脂(以下、P2S5と言う)〉、重合
度500の樹脂(以下、psooと言う)を各25kg
及びその100重量部に対して錫系安定剤として三共有
機合處■製のBM(N)、BK −110OL、日東化
成■製ノTVS#1400.耐衝撃剤として日本合成ゴ
ム■製の部分架橋されたアクリロニトリル−ブタジェン
−スチレン共重合樹脂である68に−IF、可塑剤とし
てDOP、滑剤として理研ビタミン■製のEW−100
,0PL−06、5L−900を第−表に記載の通り配
合して、オリンピア化工機■製の 100L高速ミキサ
ー(H−100型)に投入して120℃まて昇温後60
℃まて冷却して粉末コンパウンドを取り出した。該コン
パウンドを三菱重工業■製の異方向50m−二軸押出!
&(にM D −50に型)でC,:  1:10℃、
C2140℃、 CHI  :  150℃、AD:I
40℃、D:140℃、スクリーンメツシュ:60Me
X1枚。
(Examples 1 to 4. Comparative Examples 1 to 2) Agglomerated vinyl resin: Resin with a degree of polymerization of 650 (hereinafter referred to as
(referred to as P2S5), resin with a polymerization degree of 700 (hereinafter referred to as P2O
3), resin with a polymerization degree of 800 (hereinafter referred to as P2O3), resin with a polymerization degree of 350 (hereinafter referred to as P2S5) 1
25 kg each of resin with a polymerization degree of 450 (hereinafter referred to as P2S5) and resin with a polymerization degree of 500 (hereinafter referred to as psoo)
and BM(N) and BK-110OL manufactured by Sankyoki Co., Ltd. and TVS#1400. manufactured by Nitto Kasei ■ as tin stabilizers for 100 parts by weight thereof. 68-IF, a partially cross-linked acrylonitrile-butadiene-styrene copolymer resin manufactured by Japan Synthetic Rubber ■, was used as an impact resistance agent, DOP was used as a plasticizer, and EW-100 manufactured by Riken Vitamin ■ was used as a lubricant.
, 0PL-06, and 5L-900 were blended as shown in the table and put into a 100L high-speed mixer (model H-100) manufactured by Olympia Kakoki ■, heated to 120℃, and then heated to 60℃.
The powder compound was cooled to 0.degree. C. and taken out. The compound was extruded by twin screw extrusion in different directions for 50 m manufactured by Mitsubishi Heavy Industries ■!
& (MD-50 type): 1:10℃,
C2140℃, CHI: 150℃, AD:I
40℃, D: 140℃, Screen mesh: 60Me
x1 piece.

80Me′X1枚、回転数: 25rpmの条件でペレ
タイズした。また、前記のベレットにDOPを0.5重
量部添加して表面を濡らして、発泡剤として重炭酸ソー
ダを1ffi量部、アゾシカ−ボンアミドを0、:lf
i量部置部てタンブラ−で混合した。
Pelletization was carried out under the conditions of 1 sheet of 80Me′ and rotation speed: 25 rpm. Further, 0.5 parts by weight of DOP was added to the pellet described above to wet the surface, 1 ffi part of bicarbonate of soda was added as a blowing agent, and 0:lf of azosicabonamide was added to the pellet.
i parts were mixed in a tumbler.

かくして製逍したベレットはHettinga Equ
ipsent Inc、製のTCM威形成形TCM5k
g成形a)を成形して第−表の条件で排水マス用金型に
射出成形した。それらの結果を第−表に記載した。尚、
ノズル径が1.0cmシャフトオフノズルを使用した。
The beret produced in this way is Hettinga Equ.
TCM shape molded TCM5k manufactured by ipsent Inc.
g Molding a) was molded and injection molded into a drainage mass mold under the conditions shown in Table 1. The results are listed in Table 1. still,
A shaft-off nozzle with a nozzle diameter of 1.0 cm was used.

また、各数値の単位の記載のないものの中位は特にこと
わらない限り1時間は秒、温度は℃、率は%、速度はc
m/秒である。その他の記載のないものは単位がないこ
とを表す、以下の実施例でも特に断らないかぎり同様で
ある。さらにまた、第−表において「剪断速度」とある
のは、金型のゲート部の断面積が最小である部分におけ
る剪断速度を言う、以下の表においても同様である。
In addition, unless otherwise specified, the middle value of each numerical value is seconds, temperature is °C, rate is %, and speed is c.
m/sec. Unless otherwise specified, it means that there is no unit. The same applies to the following examples unless otherwise specified. Furthermore, the term "shear rate" in Table 1 refers to the shear rate at the portion where the cross-sectional area of the gate portion of the mold is the smallest, and is the same in the following tables.

(本貫、以下余白) 第−表から明らかなように塩化ビニル系樹脂の重合度、
呵塑剤足及び耐衝撃剤量を選択することで、[1標の物
性をクリアーすることができる。重合度が700を越え
ると溶融粘度が大幅に増大して1発泡射出成形すると、
徐々に焼は物が発生して、落錘試験では焼は物のところ
でひびや割れが発生する。重合度の低い樹脂を使用した
場合、耐衝撃性が低下傾向にあるのも明らかである。
(Main text, below in the margins) As is clear from Table 1, the degree of polymerization of vinyl chloride resin,
By selecting the amount of plasticizer and the amount of impact-resistant agent, it is possible to clear the physical properties of [1]. When the degree of polymerization exceeds 700, the melt viscosity increases significantly, resulting in one-foam injection molding.
Gradually, cracks appear in the fired product, and cracks and cracks appear in the fired product during the drop weight test. It is also clear that when a resin with a low degree of polymerization is used, the impact resistance tends to decrease.

(実施例5、比較例3〜6) 塩化ビニル単独重合樹脂はP2S5.耐衝撃剤は68K
 −I F、可塑剤はDOPを第二表記佐のとおりに配
合した以外は、前記実施例2と全く同一の条ヂトで試験
を行なった。その結果を第二表に記載した。なお、参考
のため前記実施例2の結果を第二表に記・或した。
(Example 5, Comparative Examples 3 to 6) The vinyl chloride homopolymer resin was P2S5. Impact resistance agent is 68K
The test was carried out in exactly the same manner as in Example 2, except that DOP was used as the plasticizer and DOP was blended as shown in the second notation. The results are listed in Table 2. For reference, the results of Example 2 are shown in Table 2.

(来貢、以下余白) 第 表 第二表から明らかなように低重合度の塩化ビニル樹脂の
P2S5は可塑剤量が20PHRを越えると1111げ
弾性率が低下する。可塑剤を全く含有しないと溶融粘度
が高くなり熱安定性が悪化し落錘衝撃も低ドする。耐衝
撃剤を添加すると溶融粘度が轟くなるため可数剤の添加
が必要となる。その添加j正は15重置部以下である。
(Raiko, hereafter blank) As is clear from Table 2, the 1111 elastic modulus of P2S5, a vinyl chloride resin with a low degree of polymerization, decreases when the amount of plasticizer exceeds 20 PHR. If no plasticizer is contained, the melt viscosity will be high, the thermal stability will be poor, and the falling weight impact will be low. Adding an impact-resistant agent increases the melt viscosity, making it necessary to add a number agent. The addition amount is 15 parts or less.

(実施例6、比較例7〜8) 第二表の比較例3.4.5の耐衝撃剤の68K −IF
の一部または全部を大日本インキv4製の部分架橋され
ていないエチレン−酢酸ビニル共重合樹脂である450
− Pにて第三表の通りに置換した以外は前記実施例2
と同様の条ヂトで成形した。その結果を第三表に記・成
した。なお、参考のため前記比較例3.4.5の結果を
第三表に記載した。
(Example 6, Comparative Examples 7-8) 68K-IF of the impact resistance agent of Comparative Example 3.4.5 in Table 2
450, which is a partially non-crosslinked ethylene-vinyl acetate copolymer resin manufactured by Dainippon Ink V4.
- Example 2 above except that P was replaced according to Table 3.
It was molded using the same strip. The results are shown in Table 3. For reference, the results of Comparative Examples 3, 4, and 5 are listed in Table 3.

(来貢、以下余白) 第三 第三表から明らかなように、部分架橋したアクリロニト
リル−ブタジェン−スチレン共重合樹脂の68K −I
 Fは、添加量につれて溶融粘度が増大する。それに対
して部分架橋されていないエチレン−酢酸ビニル共重合
樹脂の450− Pは部分架橋タイプに比較して溶融粘
度の増大が少ない代わりに、耐衝撃性の向ヒする程度が
低いのがわかる。
(Raiko, hereafter blank) As is clear from Table 3, 68K-I of partially crosslinked acrylonitrile-butadiene-styrene copolymer resin.
The melt viscosity of F increases with the amount added. On the other hand, 450-P, which is an ethylene-vinyl acetate copolymer resin that is not partially crosslinked, has a smaller increase in melt viscosity than the partially crosslinked type, but it is seen that the impact resistance is improved to a lesser degree.

従って、これらを組合せることで、可塑剤が配合されて
いない組成物でも費求物性を満足するものがイ11られ
るのが明らかである。
Therefore, it is clear that by combining these, a composition that does not contain a plasticizer can satisfy the cost and material properties.

(実施例7〜9) 第二表の塩化ビニル樹脂のP2S5、耐衝撃剤を第四表
のように女史した以外は、前記実施例2と同様の条件で
試験した。その結果を第四表に記載した。尚、第四表中
のP 450以外の塊化ビニル捌脂は、P430  (
重合度:430.エチレン含有量:2.5 %) 、 
P510  (ff1合度:510.プロピレン含イj
 ii) : 4.4%) 、  P 450G (重
合度: 450 、 zチレンーエチルアクリレー[1
脂含有M5.1%)である。
(Examples 7 to 9) Tests were conducted under the same conditions as in Example 2, except that the vinyl chloride resin P2S5 in Table 2 and the impact resistance agent were changed as shown in Table 4. The results are listed in Table 4. In addition, agglomerated vinyl resins other than P450 in Table 4 are P430 (
Degree of polymerization: 430. Ethylene content: 2.5%),
P510 (ff1 degree: 510. Contains propylene)
ii): 4.4%), P 450G (degree of polymerization: 450, z tyrene-ethyl acrylate [1
fat content M5.1%).

なお 参考のため前記比較例4の結果を第 四表に記・敗した。In addition For reference, the results of Comparative Example 4 are shown below. Recorded in Table 4 and lost.

(木瓜、 以r余白) 第 四 表 第四表から明らかなように溶融粘度の低い共重合樹脂は
耐衝撃性が悲〈なっているため、耐衝撃剤を増へ1する
心安があるが可塑剤を添加して溶融粘度を低くする必要
はない、共重合樹脂は粘度が低いため成形性が良好なこ
とは外観形状が優れていることで明らかである。
(Gourd, hereafter in the margin) Table 4 As is clear from Table 4, copolymer resins with low melt viscosity have poor impact resistance, so it is safe to increase the impact resistance, but plastic There is no need to lower the melt viscosity by adding a copolymer resin.Since the viscosity of the copolymer resin is low, the moldability is good, which is clear from the excellent external shape.

(実施例1O1比較例9〜11) 塩化ビニル単独重合樹脂としてP 450を25kg及
びその100重量部に対し鉛系安定剤として水沢化1学
株製のTC1堺化学■製のDSL、耐衝撃剤として11
本合成ゴム■製の68K −I F、可塑剤としてDO
P、滑剤として堺化学■製のS C−100理研ビタミ
ン■製(7)EW−100、0PL−06SL −90
0を第五表に記載の通り配合して、オリンピア化工機■
製の100L高速ミキサー(H−100型)に投入して
+ 20 ”Cまで昇温後60”Cまで冷却して粉末コ
ンパウンドを取り出した。該フンパウンドを三菱爪工業
■製の異方向50m5二軸押出a(KMD−50に型)
 テc l : 170 ”C1C2: 180 ”C
1C5:190℃、AD: 190 ’O,D : 1
90 ’C!、スクリーンメツシュ:60Me′×1枚
、80Me’X1枚、回転数: 25rp−の条件でペ
レタイズした。該ペレットにDOPを0.5重量部添加
して表面を濡らして、発泡剤を第五表の記載のように条
件を変更した以外は実施例2と同じ条件で成形した。そ
れらの結果を第五表に記載した。
(Example 1 O1 Comparative Examples 9 to 11) 25 kg of P 450 as a vinyl chloride homopolymer resin and 100 parts by weight thereof, TC manufactured by Mizusawa Kagaku Co., Ltd. as a lead-based stabilizer, DSL manufactured by Sakai Kagaku ■, and an impact resistance agent. as 11
68K-IF made of this synthetic rubber, DO as a plasticizer
P, as a lubricant, S C-100 manufactured by Sakai Chemical ■, manufactured by Riken Vitamin ■ (7) EW-100, 0PL-06SL-90
0 as listed in Table 5, Olympia Kakoki■
The powder compound was put into a 100L high-speed mixer (H-100 model) manufactured by Co., Ltd., and heated to +20"C, then cooled to 60"C, and the powder compound was taken out. The powder was extruded in different directions by 50 m5 twin screw extrusion a manufactured by Mitsubishi Tsume Kogyo (KMD-50 mold).
Tecl: 170 ”C1C2: 180”C
1C5: 190℃, AD: 190'O, D: 1
90'C! , screen mesh: 60Me'×1 sheet, 80Me'×1 sheet, rotation speed: 25 rpm. 0.5 parts by weight of DOP was added to the pellets to wet the surface, and the pellets were molded under the same conditions as in Example 2, except that the conditions for the blowing agent were changed as shown in Table 5. The results are listed in Table 5.

(来貢、以下余白) 第 五 表 第五表から明らかなようにソリッドの射出成形の場合、
成形性、熱安定性、物性等特に問題になる点はないが比
重が大きい0発泡では溶融粘度が高い配合になると熱安
定性が悪化して、物性が不足することが明らかである。
(Raiko, hereafter blank) As is clear from Table 5, in the case of solid injection molding,
Although there are no particular problems with moldability, thermal stability, physical properties, etc., it is clear that when zero foaming with a large specific gravity is blended with a high melt viscosity, the thermal stability deteriorates and the physical properties are insufficient.

(実施例12、比較例12〜14) 第六表記載のように計量時間、可塑化率、射出速度、射
出圧力、射出時間、滞留時間、シリンダー温度及びノズ
ル温度を変更した以外は、第五表の実施例10と全く同
様に試験した。その結果を第六表に記載した。尚、第六
表のように比較例として、PVC以外の樹脂であるPP
[三菱油化■のBCO3GS]を使用し、発泡剤の添加
に使用する可塑剤は使用せずに発泡剤を同量添加した。
(Example 12, Comparative Examples 12 to 14) Except for changing the metering time, plasticization rate, injection speed, injection pressure, injection time, residence time, cylinder temperature, and nozzle temperature as shown in Table 6, The test was conducted in exactly the same manner as in Example 10 in the table. The results are listed in Table 6. In addition, as shown in Table 6, as a comparative example, PP, which is a resin other than PVC,
[Mitsubishi Yuka ■ BCO3GS] was used, and the same amount of the foaming agent was added without using the plasticizer used for adding the foaming agent.

なお、参考のため実施例10の結果を第六表に記載した
For reference, the results of Example 10 are listed in Table 6.

(木瓜、以下余白) 第 表 第六表から明らかなように滞留時間が長くなると、塩化
ビニル樹脂は熱安定性が悪いために、分解して成形品の
物性及び外観不良となるのに反してPPは製品として使
用できる。但し、塩化ビニルパイプなどの接着は、PP
が無極性のため適当な接着剤が存在しないので、接着で
きないのが第六表から明らかである。
(Gourd, hereafter blank) As is clear from Table 6, when the residence time becomes long, vinyl chloride resin has poor thermal stability, so it decomposes and causes poor physical properties and appearance of the molded product. PP can be used as a product. However, when adhering vinyl chloride pipes, etc., PP
It is clear from Table 6 that it cannot be bonded because it is non-polar and there is no suitable adhesive.

(実施例12、比較例15〜17) 第七表記載のようにシャットオフノズル径を変更した以
外は、第五表に記載の実施例11の条件で試験した。そ
の結果を第七表に記載した。尚、ソリッドの比重は1.
28であった。シャットオフノズル径の寸法の単位はC
11である。なお、参考のため実施例11の結果を第六
表に記載した。
(Example 12, Comparative Examples 15 to 17) Tests were conducted under the conditions of Example 11 listed in Table 5, except that the shutoff nozzle diameter was changed as listed in Table 7. The results are listed in Table 7. The specific gravity of the solid is 1.
It was 28. The unit of the shutoff nozzle diameter is C.
It is 11. For reference, the results of Example 11 are listed in Table 6.

(来貢、以下余白) 第 七 表 高剪断速度の場合は塩化ビニル樹脂が分解し、逆に低剪
断速度の場合は充填できないことになる。適当な剪断速
度が必要なことが第七表から明らかである。
(Laikong, hereafter blank) Table 7: At high shear rates, the vinyl chloride resin decomposes, and conversely, at low shear rates, it cannot be filled. It is clear from Table 7 that a suitable shear rate is required.

(実施例13〜14.比較例18〜19)第六表記載の
ように金型温度と発泡剤を変更した以外は第五表の実施
例11の条件で試験した。その結果を第六表に記載した
(Examples 13-14. Comparative Examples 18-19) Tests were conducted under the conditions of Example 11 in Table 5, except that the mold temperature and blowing agent were changed as shown in Table 6. The results are listed in Table 6.

(来貢、以下余白) 第 八 表 第九表から重炭酸ソーダのみを使用すると金型温度によ
ってヒケの発生が起こることが明らかである。
(Raiko, hereafter in the margin) It is clear from Table 8 and Table 9 that when only sodium bicarbonate is used, sink marks occur depending on the mold temperature.

(実施例15〜16、比較例20〜21)第九表記載の
ように発泡剤の種類と量を変更した以外は第五表の実施
例11の条件で試験した。その結果を第九表に記載した
(Examples 15-16, Comparative Examples 20-21) Tests were conducted under the conditions of Example 11 in Table 5, except that the type and amount of blowing agent were changed as shown in Table 9. The results are listed in Table 9.

(来貢、以下余白) 第 九 表 第九表から重炭酸ソーダ屯とアジシカ−ポンアミドの併
用でヒケが防止できるのが明らかである。
(Raiko, hereafter in the margin) From Table 9, it is clear that sink marks can be prevented by using sodium bicarbonate in combination with Ajisicaponamide.

[発明の効果] 木兄171によると、重合度が300〜700の低分子
f、jの硬賀鳩化ビニル系樹脂組成物を用い、添加剤の
!1gA及び量の特定、さらに成形条件を限定したので
、 (1)  低重合度による耐衝撃性の低下とラジカルの
発生が防止され、硬質珈化ビニル系樹脂成形体、特に、
発泡成形体用樹脂組成物として使用することができ、 (2)  硬質塩化ビニル系樹脂成形体の軽量化と大型
化を図ることができるとともに、落下させても破損しな
い充分な強度を持つ射出成形品が得られ、 (3)  発泡させても成形品の表面に薄い表皮が生成
することがなく、従って、接着性に優れ二次加[性が向
上して (4)シかも、成形品の剛性を損なうことなく、従って
、例えば、排水マスのような大葉の発泡射出成形品を製
造することができる、 等の種々の利点を有する工業的に衣用な発泡用硬質塩化
ビニル系樹脂組成物並びに硬質塩化ビニル系招脂発泡成
形体及びその製造方法を提供することができる。
[Effects of the Invention] According to Kinoe 171, a hard-coated vinyl resin composition of low molecular weights f and j with a degree of polymerization of 300 to 700 is used, and additives are used. By specifying 1gA and the amount and further limiting the molding conditions, (1) a decrease in impact resistance and the generation of radicals due to a low degree of polymerization are prevented, and a hard vinyl resin molded product, especially,
It can be used as a resin composition for foamed molded products, and (2) injection molding can reduce the weight and size of hard vinyl chloride resin molded products and has sufficient strength to prevent breakage even when dropped. (3) Even when foamed, a thin skin does not form on the surface of the molded product. Therefore, it has excellent adhesive properties and improves secondary addi- tivity. A hard polyvinyl chloride resin composition for industrial use in foaming, which has various advantages, such as being able to produce large-leaf foam injection molded products such as drainage masses without loss of rigidity. Furthermore, it is possible to provide a hard vinyl chloride resin-induced foamed molded article and a method for producing the same.

Claims (3)

【特許請求の範囲】[Claims] (1)重合度が300〜700である塩化ビニル系樹脂
100重量部、並びに前記塩化ビニル系樹脂100重量
部に対して、可塑剤を0〜20重量部、耐衝撃剤を5〜
30重量部及び発泡剤として重炭酸塩とそれ以外の発泡
剤とを0.5〜3.5重量部(その内、重炭酸塩以外の
発泡剤は0〜0.5重量部)の割合で含有することを特
徴とする発泡用硬質塩化ビニル系樹脂組成物。
(1) 100 parts by weight of a vinyl chloride resin having a degree of polymerization of 300 to 700, and 100 parts by weight of the vinyl chloride resin, 0 to 20 parts by weight of a plasticizer, and 5 to 5 parts by weight of an impact resistance agent.
30 parts by weight and 0.5 to 3.5 parts by weight of bicarbonate and other blowing agents as blowing agents (of which, blowing agents other than bicarbonate are 0 to 0.5 parts by weight). A hard vinyl chloride resin composition for foaming, comprising:
(2)請求項1記載の発泡用硬質塩化ビニル系樹脂組成
物を射出成形してなるとともに、比重が1.2以下であ
ることを特徴とする硬質塩化ビニル系樹脂発泡成形体。
(2) A hard vinyl chloride resin foam molded article, which is formed by injection molding the foamable hard vinyl chloride resin composition according to claim 1, and has a specific gravity of 1.2 or less.
(3)請求項1記載の発泡用硬質塩化ビニル系樹脂組成
物を用いるとともに、ノズル径が5〜20mmであるシ
ャットオフノズルを用いて、金型のゲート部の断面積が
最小である部分における剪断速度が0.5×10^2〜
5×10^2cm/秒の条件で射出成型することを特徴
とする硬質塩化ビニル系樹脂発泡成形体の製造方法。
(3) Using the hard vinyl chloride resin composition for foaming according to claim 1 and using a shut-off nozzle having a nozzle diameter of 5 to 20 mm, Shear rate is 0.5×10^2 ~
A method for producing a hard vinyl chloride resin foam molded article, which comprises injection molding at a rate of 5 x 10^2 cm/sec.
JP1286316A 1989-11-01 1989-11-01 Rigid vinyl chloride-based resin composition for expansion and foam therefrom and its production Pending JPH03146534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1286316A JPH03146534A (en) 1989-11-01 1989-11-01 Rigid vinyl chloride-based resin composition for expansion and foam therefrom and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286316A JPH03146534A (en) 1989-11-01 1989-11-01 Rigid vinyl chloride-based resin composition for expansion and foam therefrom and its production

Publications (1)

Publication Number Publication Date
JPH03146534A true JPH03146534A (en) 1991-06-21

Family

ID=17702810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286316A Pending JPH03146534A (en) 1989-11-01 1989-11-01 Rigid vinyl chloride-based resin composition for expansion and foam therefrom and its production

Country Status (1)

Country Link
JP (1) JPH03146534A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2314841A (en) * 1996-07-04 1998-01-14 Foaming Technology Limited A blowing agent and a process for extruding plastics material
CN102181108A (en) * 2011-03-30 2011-09-14 林敏刚 Crosslinked high flame-retardant foamed polyvinyl chloride modified material
CN104530608A (en) * 2015-01-22 2015-04-22 南安市荣兴专利技术转移中心有限公司 High-strength PVC pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2314841A (en) * 1996-07-04 1998-01-14 Foaming Technology Limited A blowing agent and a process for extruding plastics material
GB2314841B (en) * 1996-07-04 2000-04-19 Foaming Technology Limited A blowing agent and a process for extruding plastics material
CN102181108A (en) * 2011-03-30 2011-09-14 林敏刚 Crosslinked high flame-retardant foamed polyvinyl chloride modified material
CN104530608A (en) * 2015-01-22 2015-04-22 南安市荣兴专利技术转移中心有限公司 High-strength PVC pipe

Similar Documents

Publication Publication Date Title
JP2009007559A (en) Thermoplastic resin composition for blow molding and product of blow molding
JPH03146534A (en) Rigid vinyl chloride-based resin composition for expansion and foam therefrom and its production
JPWO2017111100A1 (en) Injection molded product of polypropylene resin composition
JPH0359811B2 (en)
JP2005068362A (en) Thermoplastic resin composition and molded product
CA2633364C (en) Polyvinyl halide - uncrosslinked elastomer alloy
JP2010120335A (en) Method of manufacturing moisture-proof light-weighted resin molding
JP4504699B2 (en) Cleaning agent for molding machine
JP4829185B2 (en) Foamed molded body, foamable thermoplastic elastomer composition and method for producing the same
JPS6140707B2 (en)
JPS58189238A (en) Expanded vinyl cyloride resin composition
JP2000248134A (en) Styrene resin composition for extrusion molding and molded product
JPH05320330A (en) Internal mold release agent
JPS6356894B2 (en)
JP6087263B2 (en) Manufacturing method of master pellet and wood-like resin molding
KR101696995B1 (en) Extruded plastics
JP6385219B2 (en) Vinyl chloride resin composition for foam molding
JPH09151269A (en) Foamable vinyl chloride resin composition for injection molding
JPH0482034B2 (en)
JP3640773B2 (en) Foam made of modified polypropylene resin composition and process for producing the same
JP2006089637A (en) Production process of polyproylene resin foamed sheet
JPH05320472A (en) Molding thermoplastic composition endowed with improved mold release properties
JP2002046224A (en) Composite molding
JP3623675B2 (en) Composite resin composition for extrusion molding and method for producing the molded product
JP3269856B2 (en) Foam sheet