JPH03146494A - Production of compound semiconductor crystal - Google Patents

Production of compound semiconductor crystal

Info

Publication number
JPH03146494A
JPH03146494A JP28193589A JP28193589A JPH03146494A JP H03146494 A JPH03146494 A JP H03146494A JP 28193589 A JP28193589 A JP 28193589A JP 28193589 A JP28193589 A JP 28193589A JP H03146494 A JPH03146494 A JP H03146494A
Authority
JP
Japan
Prior art keywords
crystal
temperature
boat
melt
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28193589A
Other languages
Japanese (ja)
Other versions
JP2856458B2 (en
Inventor
Katsushi Fujii
克司 藤井
Fumio Orito
文夫 折戸
Mikitoshi Ishida
石田 幹敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Polytec Co
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Polytec Co, Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Polytec Co
Priority to JP28193589A priority Critical patent/JP2856458B2/en
Publication of JPH03146494A publication Critical patent/JPH03146494A/en
Application granted granted Critical
Publication of JP2856458B2 publication Critical patent/JP2856458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent the occurrence of strain due to solidification and to reduce defects by keeping the temp. of a range close to the interface between a seed crystal and a melt of a compd. semiconductor higher than the m.p. of the semiconductor when a crystal is grown by the Bridgman method or other method while moving a boat for crystal growth. CONSTITUTION:A semiconductor seed crystal 6 is set at one end of a boat 3 for crystal growth and a polycrystal of a compd. semiconductor to be grown and/or the constituent elements of the semiconductor are housed in the boat 3 in contact with the seed crystal 6. The boat 3 is heated to form a melt 5 of the semiconductor and this melt 5 is successively cooled from the seed crystal side to grow a single crystal. In this boat growth method, the temp. of a range close to the interface between the seed crystal 6 and the melt 5 is kept higher than the temp. of the remaining part of the melt 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体結晶の製造方法に係り、特にGa
As、 InAs、 GaP、 InP等のm−v族化
合物、Zn−5,Zn−5e等の■−■族化合物等一方
の元素の解離蒸気圧が高い化合物半導体結晶の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing compound semiconductor crystals, particularly Ga
The present invention relates to a method for manufacturing compound semiconductor crystals in which one element has a high dissociation vapor pressure, such as m-v group compounds such as As, InAs, GaP, and InP, and ■-■ group compounds such as Zn-5 and Zn-5e.

〔従来の技術〕[Conventional technology]

化合物半導体結晶成長はバルク結晶成長とエピタキシー
に大きく分類される。特にバルク結晶は化合物半導体の
構成元素からなる融液を冷却・固化させることにより成
長される。
Compound semiconductor crystal growth is broadly classified into bulk crystal growth and epitaxy. In particular, bulk crystals are grown by cooling and solidifying a melt consisting of the constituent elements of a compound semiconductor.

このようなバルク結晶成長方法としてそれぞれ第2図、
第3図及び第4図に示したそれぞれ水平Brldgma
n (ブリッジマン)法、Gradient Free
ze(グラデイエンドフリーズ)法及び2one Me
lting(ゾーンメルティング)法が主に知られてい
る。
Figures 2 and 2 show such bulk crystal growth methods, respectively.
Horizontal Brldgma shown in FIGS. 3 and 4, respectively.
n (Bridgeman) method, Gradient Free
ze (grady end freeze) method and 2one Me
The lting (zone melting) method is mainly known.

水平ブリッジマン法では化合物半導体の多結晶又はその
構成元素の少なくとも1種を収納したボートと該ボート
を加熱して該化合物半導体の融液を形成させるための炉
を相対的に移動させ、またグラデイエンドフリーズ法で
は温度勾配を保持したまま温度を降下させたりして結晶
を成長させるボート成長法である。ゾーンメルティング
法は、原料となる化合物半導体多結晶の一部のみ融解し
、かつ融解部分を移動させて結晶を成長させる方法であ
る。
In the horizontal Bridgman method, a boat containing a polycrystalline compound semiconductor or at least one of its constituent elements and a furnace for heating the boat to form a melt of the compound semiconductor are moved relative to each other. The day-end freeze method is a boat growth method in which crystals are grown by lowering the temperature while maintaining a temperature gradient. The zone melting method is a method in which only a portion of a compound semiconductor polycrystal serving as a raw material is melted and the melted portion is moved to grow the crystal.

上記ブリッジマン法その他の方法は図示の如く横型及び
縦型でも主に用いられている。
The Bridgman method and other methods are mainly used in horizontal and vertical types as shown in the figure.

また、これら化合物の成長を行う場合に重要なことは、
良好な結晶を得るための固液界面制御及び取り出し冷却
過程の制御、容器から混入する不純物の制御及びそれぞ
れの原料から合成し結晶を成長出来るようにする合成過
程の制御等である。
Also, what is important when growing these compounds is that
These include solid-liquid interface control and extraction cooling process control to obtain good crystals, control of impurities mixed in from the container, and control of the synthesis process so that crystals can be synthesized from each raw material and grown.

これらのことについてそれぞれ上記の結晶成長方法を例
にとり説明する。
Each of these will be explained by taking the above-mentioned crystal growth method as an example.

まず第2図で示したブリッジマン法について説明する。First, the Bridgman method shown in FIG. 2 will be explained.

第2図において低温側反応器1と高温側反応器2がデイ
フュージョンバリアーを介して連通されており、高温反
応器2内には結晶成長用ボート(以下単にボートと記す
)3が配置されており、そのボート3内には化合物融液
5が収容され、その進行方向先端には種結晶6が設けら
れており、また低温側反応器1内の先端には化合物元素
のうち解離しやすい元素(例えばGaAsでいえば^S
)が配設されている。
In FIG. 2, a low-temperature side reactor 1 and a high-temperature side reactor 2 are communicated via a diffusion barrier, and a crystal growth boat (hereinafter simply referred to as a boat) 3 is arranged in the high-temperature reactor 2. A compound melt 5 is accommodated in the boat 3, and a seed crystal 6 is provided at the tip in the direction of movement, and a seed crystal 6 is provided at the tip in the low-temperature side reactor 1 to contain elements that are easily dissociated among the compound elements. (For example, in GaAs, ^S
) are provided.

各反応器1.2上方に示した実線IOは温度分布を示し
たものでTXは化合物の融点を示している。
The solid line IO shown above each reactor 1.2 shows the temperature distribution, and TX shows the melting point of the compound.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このブリッジマン法は種結晶近傍でT。温度以上から7
M以下に急激な温度勾配を有した状態で結晶成長がなさ
れる。
This Bridgman method produces T near the seed crystal. Temperature above 7
Crystal growth is performed in a state where there is a steep temperature gradient below M.

この急激な成長結晶の冷却により、結晶性の一つの指標
であるB、P、D、 (エッチ・ピット密度:Btch
 Pit Density)又は転位密度が高くなりま
た、融点と融液の温度差もそれほど大きくとれないため
固液界面制御も困難で、また石英容器を用いた場合その
容器から混入する不純物の制御を行う酸化物気体の制御
も出来なかった。
This rapid cooling of the growing crystal causes B, P, D, (etch pit density: Btch
Pit Density) or dislocation density becomes high, and the temperature difference between the melting point and the melt cannot be that large, making it difficult to control the solid-liquid interface.Also, when a quartz container is used, oxidation is required to control impurities that enter the container. It was also impossible to control gases.

第3図に示したグラデイエンドフリーズ法では、高温側
反応器2において温度分布が徐々に低下する温度勾配を
有している。従って結晶戊長時固液界面付近の温度勾配
が小さく例えば結晶の自由表面内で結晶成長方向に垂直
な方向に1℃程度の温度差等の少しの外乱があっても固
液界面がすぐに乱れる不具合を生じた。
In the gradient-end freeze method shown in FIG. 3, the temperature distribution in the high-temperature side reactor 2 has a temperature gradient that gradually decreases. Therefore, the temperature gradient near the solid-liquid interface during crystal elongation is small, and even if there is a small disturbance, such as a temperature difference of about 1°C in the direction perpendicular to the crystal growth direction within the free surface of the crystal, the solid-liquid interface will close immediately. A problem occurred that caused confusion.

また第4図に示すゾーンメルティング法においては、−
炭化合物を予め合成しておく必要があり、生産性に問題
があった。
In addition, in the zone melting method shown in Fig. 4, -
It was necessary to synthesize the carbon compound in advance, which caused problems in productivity.

そこで本発明は固液界面における固化歪が少ないより安
定した化合物半導体結晶方法を提供することを目的とす
る。
Therefore, an object of the present invention is to provide a more stable method for crystallizing a compound semiconductor with less solidification strain at the solid-liquid interface.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は本発明によれば一端に半導体種結晶を配し且
つ該種結晶に接して、被成長化合物半導体の多結晶又は
構成元素の少なくとも1種を収納した結晶成長用ボート
を加熱し、前記被成長化合物半導体の融液を形成させた
後、前記種結晶に接する側から前記融液を順次冷却させ
ることによって前記種結晶に連続した単結晶を成長させ
るボート成長法による化合物半導体結晶の製造方法にお
いて、前記種結晶と被成長化合物融液との界面近傍範囲
の温度を前記界面近傍範囲後方より高い温度に保持する
温度分布とすることを特徴とする化合物半導体結晶の製
造方法によって解決される。
According to the present invention, the above-mentioned problem can be solved by heating a crystal growth boat which has a semiconductor seed crystal at one end and houses a polycrystal or at least one constituent element of a compound semiconductor to be grown in contact with the seed crystal. A method for manufacturing a compound semiconductor crystal by a boat growth method, in which a melt of a compound semiconductor to be grown is formed, and then a single crystal continuous to the seed crystal is grown by sequentially cooling the melt from the side in contact with the seed crystal. The problem is solved by a method for manufacturing a compound semiconductor crystal, characterized in that the temperature distribution is such that the temperature in the vicinity of the interface between the seed crystal and the compound melt to be grown is maintained at a higher temperature than in the rear part of the vicinity of the interface.

〔作 用〕 すなわち本発明ではGaAs等の化合物半導体の結晶成
長をボート成長法で行なう場合、種結晶の融液側末端の
界面近傍範囲の温度を該化合物半導体の融点より高い温
度(第1の設定温度=15ないし30℃高い温度が好ま
しい〉迄上昇させ、その後温度を降下させて該融点より
わずかに高い温度(第。
[Function] That is, in the present invention, when crystal growth of a compound semiconductor such as GaAs is performed by the boat growth method, the temperature in the vicinity of the interface at the end of the seed crystal on the melt side is set to a temperature higher than the melting point of the compound semiconductor (first temperature). The set temperature is increased to a temperature slightly higher than the melting point (preferably 15 to 30°C higher), and then the temperature is lowered to a temperature slightly higher than the melting point.

2の設定温度:5ないし15℃高い温度が好ましい)に
て、しかもその界面近傍より融液側でその温度で保持す
る温度分布を用いるものである。
2 (preferably a temperature 5 to 15° C. higher), and uses a temperature distribution in which the melt side is maintained at that temperature than near the interface.

上記第1の設定温度で該融点より15ないし30℃高い
温度が好ましいとした理由は、15℃未満では温度勾配
の関係で効果が出にくくなり、一方30℃を超えると融
液の解離の点からである。
The reason why it is preferable to set the first set temperature to 15 to 30 degrees Celsius higher than the melting point is because if it is less than 15 degrees Celsius, it will be difficult to produce an effect due to the temperature gradient, whereas if it exceeds 30 degrees Celsius, the melt will dissociate. It is from.

また第2の設定温度で5℃未満の場合は炉内に温度分布
が生じた場合その部分が固化して多結晶を形成すること
となる。また15℃を超えるとボートとの反応が激しく
なる。
Further, if the second set temperature is less than 5° C., if a temperature distribution occurs in the furnace, that portion will solidify and form polycrystals. Furthermore, if the temperature exceeds 15°C, the reaction with the boat will become more intense.

なお本発明では種結晶配置位置から反応器反応進行方向
であってメルトのうち解離圧の高い成分(GaAsでい
えばAs成分)の配置位置近傍塩を、結晶が固化した後
の急激な冷却を防止するために1000〜1200℃程
度にし、それより620℃程度の温度にしてAsの量(
解離圧)をコントロールする。
In addition, in the present invention, the salt is cooled rapidly after the crystal has solidified, in the direction of reaction progress in the reactor from the seed crystal placement position, in the vicinity of the placement position of the component with high dissociation pressure (As component in the case of GaAs) in the melt. In order to prevent this, the temperature is set to about 1000 to 1200℃, and then the temperature is set to about 620℃ to reduce the amount of As (
dissociation pressure).

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の詳細な説明するための模式図である。FIG. 1 is a schematic diagram for explaining the present invention in detail.

第1図に示した実施例はGaAsの横型ボート成長法で
あり結晶成長用ボートとしては石英製ボートを使用した
The embodiment shown in FIG. 1 is a horizontal boat growth method for GaAs, and a quartz boat was used as the crystal growth boat.

本方法で使用する装置は従来法で用いた装置と同一でよ
く、本実施例では幅75mm、長さ550mmの半円形
ボート3を用いGaとAsを直接合成して6000 g
のGaAs結晶を図示温度分布で製造した。炉(図示せ
ず)内に反応器をセットしてボート3内の種結晶6の端
部から約100aunの範囲(固液界面制御ゾーン)で
は融点(TX ) 1238℃から徐々に上昇させTx
湿温度り約25℃高い温度としそれからまた徐々に温度
を下げT、温度より約10℃高い温度までとし、それ以
降のメルト保持の高温ゾーンではその温度を維持させた
。一方種結晶6から前方の温度はまず種結晶の長さ方向
中央部で約1050℃としてその温度をアフターヒータ
ーゾーン及び急冷防止ゾーン迄保持し、それ以前は約1
00mmの長さで温度を620℃に降下させそれ以前は
その温度を維持させた。本実施例では図の状態から結晶
成長が進行するにつれて反応器を炉に対して相対的に左
側に進行させた。その速度は2mm/時〜4fflff
l/時程度であった。
The equipment used in this method may be the same as the equipment used in the conventional method; in this example, a semicircular boat 3 with a width of 75 mm and a length of 550 mm was used to directly synthesize Ga and As, and a 6000 g
GaAs crystals were manufactured with the temperature distribution shown. A reactor is set in a furnace (not shown), and the melting point (TX) is gradually raised from 1238°C in a range of about 100 au from the end of the seed crystal 6 in the boat 3 (solid-liquid interface control zone).
The temperature was set to about 25° C. higher than the humidity temperature, and then the temperature was gradually lowered to a temperature of about 10° C. higher than the humidity temperature, and that temperature was maintained in the subsequent high temperature zone for holding the melt. On the other hand, the temperature in front of the seed crystal 6 is first set at about 1050°C at the longitudinal center of the seed crystal, and maintained until the afterheater zone and the rapid cooling prevention zone;
The temperature was lowered to 620° C. over a length of 0.00 mm and maintained at that temperature before that. In this example, the reactor was moved to the left relative to the furnace as crystal growth progressed from the state shown in the figure. The speed is 2mm/hour ~ 4fflff
It was about 1/hour.

このようにして製造されたGaAs単結晶について種結
晶側100u位置(固化率(g) =O,15)のB、
P、D、  (エッチピット密度)は3.6 xio”
 /am!、一方テイル側450mmの位置(同化率(
g)=0.8)のB、P、 D、は4.3 XIO’ 
/crlであったε、P、D、l;!KOH溶融液を用
いて行なった。
Regarding the GaAs single crystal produced in this way, B at the 100u position on the seed crystal side (solidification rate (g) = O, 15),
P, D, (etch pit density) is 3.6 xio”
/am! , while the tail side 450mm position (assimilation rate (
B, P, D of g) = 0.8) are 4.3 XIO'
/crl was ε, P, D, l;! This was carried out using a KOH melt.

比較例として本実施例と同じ大きさの幅75mm長さ5
50mmのボートを用いてGaとAsとを直接合成して
6000 gの結晶をグラデイエンドフリーズ法(第3
図)により製造した。得られたGaAs結晶の後半部分
で欠陥多結晶化し、完全な単結晶とはならなかった。
As a comparative example, the same size as this example, width 75 mm and length 5 was used.
Ga and As were directly synthesized using a 50 mm boat, and 6000 g of crystals were produced using the gradient-endofreeze method (3rd phase).
Figure). The second half of the obtained GaAs crystal became polycrystalline with defects and did not become a perfect single crystal.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば従来法より安定した欠
陥の少ない化合物半導体、特にGaAsの単結晶を製造
することができた。
As explained above, according to the present invention, it was possible to produce a compound semiconductor, particularly a single crystal of GaAs, which is more stable than the conventional method and has fewer defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための模式第2図から
第4図鑑は従来技術を説明するための模式図であり、特
に第2図はHorizontal Bridgman法
、第3図はGradient Freeze法、第4図
ハZoneMelting法を示す。 l・・・低温側反応器、  2・・・高温側反応器、3
・・・結晶成長用ボート、− 4・・・ディフユージョン・バリアー、5・・・化合物
融液、   6・・・種結晶、7・・・化合物のうち解
離しゃすい物質、Tw・・・化合物の融点、 1o・・
・温度分布。 第 1 図 従来例 第2図 従来例 !43図 従来例 篤4図
FIG. 1 is a schematic diagram for explaining the present invention in detail. FIGS. 2 to 4 are schematic diagrams for explaining the prior art. In particular, FIG. 2 shows the Horizontal Bridgman method, and FIG. 3 shows the Gradient Freeze method. , FIG. 4C shows the Zone Melting method. l...low temperature side reactor, 2...high temperature side reactor, 3
... Boat for crystal growth, -4... Diffusion barrier, 5... Compound melt, 6... Seed crystal, 7... Substance that dissociates among compounds, Tw... Compound Melting point of 1o...
·Temperature distribution. Fig. 1 Conventional example Fig. 2 Conventional example! Figure 43 Conventional example Atsushi Figure 4

Claims (1)

【特許請求の範囲】 1、一端に半導体種結晶を配し且つ該種結晶に接して、
被成長化合物半導体の多結晶又は構成元素の少なくとも
1種を収納した結晶成長用ボートを加熱し、前記被成長
化合物半導体の融液を形成させた後、前記種結晶に接す
る側から前記融液を順次冷却させることによって前記種
結晶に連続した単結晶を成長させるボート成長法による
化合物半導体結晶の製造方法において、 前記種結晶と被成長化合物融液との界面近傍範囲の温度
を前記界面近傍範囲後方より高い温度に保持する温度分
布とすることを特徴とする化合物半導体結晶の製造方法
。 2、ボートもしくは炉を移動させて前記結晶成長を行う
ことを特徴とする特許請求の範囲第1項記載の方法。 3、前記温度分布を前記種結晶側からボート後端側に向
かって移動させて結晶成長を行うことを特徴とする特許
請求の範囲第1項記載の方法。
[Claims] 1. A semiconductor seed crystal is arranged at one end and in contact with the seed crystal,
After heating a crystal growth boat containing at least one of the polycrystals or constituent elements of the compound semiconductor to be grown and forming a melt of the compound semiconductor to be grown, the melt is poured from the side in contact with the seed crystal. In a method for producing a compound semiconductor crystal by a boat growth method in which a continuous single crystal is grown on the seed crystal by sequential cooling, the temperature in a range near the interface between the seed crystal and the compound melt to be grown is adjusted to a temperature behind the range near the interface. A method for manufacturing a compound semiconductor crystal, characterized in that the temperature distribution is maintained at a higher temperature. 2. The method according to claim 1, wherein the crystal growth is performed by moving a boat or a furnace. 3. The method according to claim 1, wherein crystal growth is performed by moving the temperature distribution from the seed crystal side toward the rear end of the boat.
JP28193589A 1989-10-31 1989-10-31 Method for manufacturing compound semiconductor crystal Expired - Lifetime JP2856458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28193589A JP2856458B2 (en) 1989-10-31 1989-10-31 Method for manufacturing compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28193589A JP2856458B2 (en) 1989-10-31 1989-10-31 Method for manufacturing compound semiconductor crystal

Publications (2)

Publication Number Publication Date
JPH03146494A true JPH03146494A (en) 1991-06-21
JP2856458B2 JP2856458B2 (en) 1999-02-10

Family

ID=17645982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28193589A Expired - Lifetime JP2856458B2 (en) 1989-10-31 1989-10-31 Method for manufacturing compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JP2856458B2 (en)

Also Published As

Publication number Publication date
JP2856458B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
TWI281520B (en) InP single crystal, GaAs single crystal, and method for producing thereof
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
JPH03146494A (en) Production of compound semiconductor crystal
JP2712594B2 (en) Method for producing group 3-5 compound semiconductor single crystal
JP2781857B2 (en) Single crystal manufacturing method
JP3443766B2 (en) Method for synthesizing compound semiconductor polycrystal
JP3624295B2 (en) Single crystal manufacturing method and manufacturing apparatus thereof
JPH0222200A (en) Production of semiconductor single crystal of iii-v compound
JP4576571B2 (en) Method for producing solid solution
JP2814657B2 (en) Method for growing compound semiconductor single crystal
JPS6374990A (en) Production of single crystal of compound semiconductor and production device therefor
JPH0567598B2 (en)
JPS6042293A (en) Manufacture of single crystal
JPH0357078B2 (en)
JPH09227268A (en) Production of solid solution single crystal
JPH07206598A (en) Device for producing cd1-x-ymnxhgyte single crystal
KR950013003B1 (en) Growth method of polycrystalline for gaas single-crystal growth
JPH06239699A (en) Compound semiconductor polycrystal and its synthesis
JPH05279164A (en) Production of iii-v group compound semiconductor single crystal and apparatus therefor
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPS62197397A (en) Production of single crystal
JPH01126289A (en) Production of compound semiconductor single crystal body
JP2001322890A (en) Method for producing solid solution single crystal
JPH02217393A (en) Production of compound semiconductor single crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

EXPY Cancellation because of completion of term