JPH03145930A - Electric power factor controller by fuzzy inference - Google Patents

Electric power factor controller by fuzzy inference

Info

Publication number
JPH03145930A
JPH03145930A JP1284145A JP28414589A JPH03145930A JP H03145930 A JPH03145930 A JP H03145930A JP 1284145 A JP1284145 A JP 1284145A JP 28414589 A JP28414589 A JP 28414589A JP H03145930 A JPH03145930 A JP H03145930A
Authority
JP
Japan
Prior art keywords
power
reactive power
unit
amount
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1284145A
Other languages
Japanese (ja)
Other versions
JP2748608B2 (en
Inventor
Akio Hayazaki
早崎 昭男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1284145A priority Critical patent/JP2748608B2/en
Publication of JPH03145930A publication Critical patent/JPH03145930A/en
Application granted granted Critical
Publication of JP2748608B2 publication Critical patent/JP2748608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To control an electric power factor in consideration of the variation of power consumption and past records by controlling closing and leading of a phase-advancing capacitor on the basis of measured reactive power at the receiving point of external power. CONSTITUTION:Electric energy counting part 9, reactive energy counting part 13, etc., first measures power consumption, reactive power and the number of times of closing and leading of a phaseadvancing capacitor. Power consumption, under- and overenergy and accumulated under- and overenergy in a predetermined time unit such as day unit are obtained by accumulated under- and overenergy operation part 16, etc., from accumulated under- and overenergy storage part 11, etc., and the measured power consumption and measured reactive power. Fuzzy inference part 20 draws an inference by the use of these values to obtain a set reactive power at that time. Closing of the phase- advancing capacitor is controlled by the use of the set reactive power. Because the set reactive power is determined according to the state of use of power when the power consumption, under- and overenergy, etc., are used as conditional part, a power factor can be controlled in consideration of the variation of power consumption and past records.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、外部から電力を受ける受電点にて無効電力を
測定し、測定無効電力に基づいて、走用コンデンサの投
入・引き出しを制御することにより、電力力率を制御す
る装置に関する。
[Detailed Description of the Invention] A. Industrial Field of Application The present invention measures reactive power at a receiving point that receives power from the outside, and controls the input and withdrawal of a running capacitor based on the measured reactive power. In particular, it relates to a device for controlling power factor.

B2発明の概要 本発明は、所定時間単位における使用電力量、過不足量
、累計過不足量および切換回数を検出し、これらの値お
よび前回の設定無効電力に基づいて今回の設定無効電力
を求め、このようにして求めた設定無効電力を用いて進
相コンデンサの投入・引き出しを制御することとし、 使用電力の変動や過去の実績を考慮した制御を可能とす
るものである。
B2 Overview of the Invention The present invention detects the amount of power used, excess/deficiency, cumulative excess/deficiency, and switching frequency in a predetermined time unit, and calculates the current set reactive power based on these values and the previous set reactive power. The set reactive power obtained in this way is used to control the input and output of the phase advance capacitor, making it possible to perform control that takes into account fluctuations in power consumption and past performance.

C1従来の技術 一般に、水処理設備などにおいては、負荷のほとんどが
誘導電動機であるため、受電点における力率は遅れとな
る。この遅れ力率を補償し、力率を改善するため、進相
コンデンサが投入される。
C1 Prior Art In general, in water treatment equipment and the like, most of the loads are induction motors, so the power factor at the power receiving point lags. In order to compensate for this lagging power factor and improve the power factor, a phase advance capacitor is inserted.

第4図は、電力力率制御装置の概要を示す。FIG. 4 shows an overview of the power factor control device.

交流電源lは、交流電力を母線2に供給する。AC power supply l supplies AC power to bus bar 2 .

この母線2から誘導電動機などの負荷3,3・・・に交
流電力が供給される。交流電力の受電点には、電圧検出
部4および電流検出部5が付設されている。無効電力調
整部6は検出電圧および検出電流から無効電力を測定し
、進相コンデンサ7の投入引き出しを制御し、無効電力
を一定の範囲に保持する。
AC power is supplied from this bus 2 to loads 3, 3, etc., such as induction motors. A voltage detection section 4 and a current detection section 5 are attached to the AC power receiving point. The reactive power adjustment unit 6 measures the reactive power from the detected voltage and the detected current, controls the input/output of the phase advance capacitor 7, and maintains the reactive power within a certain range.

第5図は、無効電力の制御を示す。FIG. 5 shows control of reactive power.

無効電力調整部6は、無効電力幅V arHの無効電力
許容範囲があらかじめ設定されており、この無効電力許
容範囲を測定無効電力が逸脱した場合、進相コンデンサ
7の没入・引き出しを行う。測定無効電力が設定投入無
効電力VarAを上回った場合、進相コンデンサ7を投
入し、設定引き出し無効電力V arTを下回った場合
、進相コンデンサ7を引き出す。
The reactive power adjustment unit 6 has a reactive power tolerance range of the reactive power width V arH set in advance, and when the measured reactive power deviates from this reactive power tolerance range, the phase advance capacitor 7 is retracted or withdrawn. When the measured reactive power exceeds the set input reactive power VarA, the phase advance capacitor 7 is turned on, and when it falls below the set withdrawal reactive power VarT, the phase advance capacitor 7 is drawn out.

D4発明が解決しようとする課題 上記の従来技術では、設定投入無効電力VarAおよび
設定引き出し無効電力V arTとしてあらかじめ設定
された固定的な値を使用しているため、次のような問題
点があった。
D4 Problems to be Solved by the Invention In the above-mentioned conventional technology, fixed values set in advance are used as the set input reactive power VarA and the set withdrawn reactive power VarT, so there are the following problems. Ta.

(1)過去の実績が設定無効電力に反映されない。(1) Past results are not reflected in the set reactive power.

(2)使用電力が少ないときの低無効電力(低力率)を
改善できないため、平均力率の改善に限界がある。
(2) Since it is not possible to improve low reactive power (low power factor) when the power used is low, there is a limit to the improvement of the average power factor.

(3)使用電力は、常に変動し、かつそのパターンも一
定でないため、安定した制御を行えず、進相コンデンサ
の投入・引き出し回数が多くなり、進相コンデンサの寿
命が短くなってしまう。また平均力率も安定しない。
(3) Since the power used constantly fluctuates and its pattern is not constant, stable control cannot be performed, the number of times the phase advance capacitor must be turned on and taken out increases, and the life of the phase advance capacitor is shortened. Also, the average power factor is not stable.

本発明は、このような問題点に鑑み、使用電力の変動や
過去の実績を考慮して、電力力率の制御を行える電力力
率制御装置を提供することを目的とする。
In view of such problems, an object of the present invention is to provide a power power factor control device that can control the power power factor in consideration of fluctuations in power usage and past performance.

81課題を解決するための手段 本発明は、上記の目的を達成するために、外部から電力
を受ける受電点にて無効電力を測定し、測定無効電力お
よび設定無効電力を比較し、その比較結果に基づいて、
進相コンデンサの投入を制御することにより、電力力率
を制御する電力力率1、I]御装置において、次の手段
を設けたものである。
81 Means for Solving the Problems In order to achieve the above object, the present invention measures reactive power at a receiving point that receives power from the outside, compares the measured reactive power and set reactive power, and calculates the comparison result. On the basis of the,
This is a power power factor control device that controls the power power factor by controlling the input of a phase advance capacitor, and is provided with the following means.

■ 使用する電力を測定する電力測定部。■Power measurement unit that measures the power used.

■ 測定使用電力に基づいて、所定時間単位における使
用電力量を計数する電力量計数部。
■ A power consumption counting unit that counts the power consumption in a predetermined time unit based on the measured power consumption.

■ 使用電力量および設定力率に基づいて、基準無効電
力量を演算する基準無効電力量演算部。
■ A reference reactive power amount calculation unit that calculates a reference reactive power amount based on the power consumption and the set power factor.

■ 測定無効電力に基づいて、所定時間単位におけるj
jl効電力量を計数する無効電力量計数部。
■ j in a given time unit based on the measured reactive power
jlReactive power amount counting unit that counts effective power amount.

■ 基準無効電力量および無効電力量の偏差をとり、所
定時間単位における過不足量を求める過不足量演算部。
■ An excess/deficiency calculation unit that takes the deviation between the reference reactive energy amount and the reactive energy amount, and calculates the excess/deficiency amount in a predetermined time unit.

■ この過不足量を累計し、累計過不足量を求める累計
過不足量演算部。
■ A cumulative excess/deficiency calculation unit that accumulates the excess/deficiency amount and calculates the cumulative excess/deficiency amount.

■ 所定時間単位における進相コンデンサの投入・切断
の切換回数を計数する切換回数計数部。
■ A switching frequency counter that counts the number of times the phase advance capacitor is switched on and off in a predetermined time unit.

■ 使用電力量、過不足量、累計過不足量、切換回数お
よび前回の設定無効電力を現象項目としてファジィ推論
を行い、予め設定されたメンバシッフ関数に基づいて、
各現象項目についてのメンバシップ値を求め、予め設定
されたファジィルールに従って各メンバシップ値から今
回の設定無効電力を決定する設定無効電力決定部。
■ Fuzzy inference is performed using the power consumption, excess/deficiency, cumulative excess/deficiency, number of switching times, and previously set reactive power as phenomenon items, and based on a preset member-schiff function,
A set reactive power determination unit that calculates membership values for each phenomenon item and determines current set reactive power from each membership value according to a preset fuzzy rule.

この設定無効電力決定部は、ファジィ推論により、設定
無効電力の決定に必要な係数を求め、この後、その係数
を使用して今回の設定無効電力を求める態様を含む。
This set reactive power determination unit includes an aspect in which a coefficient necessary for determining the set reactive power is determined by fuzzy inference, and then the current set reactive power is determined using the coefficient.

11作用 本発明によれば、使用電力、無効電力および進相コンデ
ンサの投入・引き出しの切換回数を測定し、測定使用電
力および測定無効電力から、日単位等の所定時間単位に
おける使用電力量、過不足量および累計過不足量を求め
る。
11 Effects According to the present invention, the power consumption, reactive power, and the number of times the phase advance capacitor is switched on and off are measured, and from the measured power consumption and the measured reactive power, the power consumption and excess energy consumption in a predetermined unit of time, such as daily, are calculated. Calculate the amount of shortage and cumulative excess or deficiency.

すなわち測定使用電力から所定時間単位における使用電
力量を求め、この使用電力量および予め設定された設定
力率に基づいて基準無効電力量を演算すると共に、測定
無効電力から所定時間単位における無効電力量を求める
。そして、基準無効電力量および無効電力量の偏差をと
ることによって、所定時間単位における過不足量を求め
る。また、この過不足量を累計して、累計過不足量を求
める。
In other words, the amount of power used in a predetermined time unit is calculated from the measured power consumption, the reference reactive power amount is calculated based on this amount of power used and a preset power factor, and the amount of reactive power in a predetermined time unit is calculated from the measured reactive power. seek. Then, by taking the deviation between the reference reactive power amount and the reactive power amount, the amount of excess or deficiency in a predetermined time unit is determined. In addition, this excess/deficiency amount is accumulated to obtain a cumulative excess/deficiency amount.

そして、求めた所定時間単位における使用電力量、過不
足量および累計過不足量と、前記の切換回数および前回
の設定無効電力とを使用してファジィ推論を行い、今回
の設定無効電力を求める。
Fuzzy inference is then performed using the calculated power consumption, excess/deficiency, and cumulative excess/deficiency in the predetermined time unit, the number of switching times, and the previous set reactive power to determine the current set reactive power.

このようにして求めた設定無効電力を使用して進相コン
デンサの投入を制御する。
The set reactive power thus obtained is used to control the input of the phase advance capacitor.

使用電力量、過不足量および累計過不足量を条件部とす
ることによって、電力の使用状況に応じて設定無効電力
を決定するので、使用電力の変動や過去の実績を考慮し
た電力力率制御が可能となる。
By using the amount of power used, amount of excess or deficiency, and cumulative amount of excess or deficiency as condition parts, the set reactive power is determined according to the power usage status, so power factor control takes into account fluctuations in power usage and past performance. becomes possible.

G、実施例 以下、図面、を用いて、本発明の詳細な説明する。G. Example Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明に係る電力力率制御装置の要部を示す
FIG. 1 shows the main parts of a power factor control device according to the present invention.

電力量検出部8からの電力量パルスにより、電力量計数
部9は一日の電力量を計数する。設定力零記憶部10は
、あらかじめ設定された設定力率1)F(たとえば95
%)を記憶している。Jji(動電力量演算部11は、
電力量計数部9からの前日の電力ff! W uと、設
定力率記憶部10からの設定力率PFとに基づいて、(
1)式により基準無効電力量VarH,を求める。
The power amount counting section 9 counts the amount of power for one day based on the power amount pulse from the power amount detection section 8 . The set force zero storage unit 10 stores a preset set power factor 1) F (for example, 95
%). Jji (The dynamic energy calculation unit 11 is
The previous day's power ff from the power consumption counter 9! Based on W u and the set power factor PF from the set power factor storage unit 10, (
1) Determine the reference reactive power amount VarH, using the formula.

無効電力量検出部12からの無効電力量パルスにより、
無効電力量計数部13は、−日の無効電力I V ar
)f tを計数する。前日過不足演算部14は、基準無
効電力ffi V arI−I 、から前日の無効電力
量VarH,を減算し、無効電力量の前日過不足量Va
rH,を求める。
Due to the reactive power pulse from the reactive power amount detection section 12,
The reactive power amount counting unit 13 calculates the reactive power I V ar on day -
) f Count t. The previous day's surplus/deficiency calculation unit 14 subtracts the previous day's reactive power amount VarH, from the reference reactive power ffi VarI-I, to obtain the previous day's surplus/deficit amount Va of the reactive power amount.
Find rH.

累計過不足記憶部15は、前々日までの無効電力量の累
計過不足m V ar)[、’を記憶している。
The cumulative surplus/deficiency storage unit 15 stores the cumulative surplus/deficiency m V ar)[,' of the reactive power amount up to two days before.

累計過不足演算部16は、前々日までの累計過不足m 
V arH、と前日の累計過不足ff1VarH,とを
加算し、前日までの累計過不足m V arH、を求め
る。
The cumulative surplus/deficiency calculation unit 16 calculates the cumulative surplus/deficiency m up to two days before.
V arH, and the previous day's cumulative surplus/deficiency ff1VarH, are added to obtain the cumulative surplus/deficiency m V arH up to the previous day.

この後、累計過不足記憶部15は、累計過不足演算部1
6で求めた累計過不足量V arHsを前回までの累計
過不足ffi V arHSとして記憶し、次回の動作
に備える。
Thereafter, the cumulative excess/deficiency storage section 15 stores the cumulative excess/deficiency calculation section 1
The cumulative surplus/deficiency amount V arHs obtained in step 6 is stored as the cumulative surplus/deficiency ffi V arHS up to the previous time in preparation for the next operation.

切換検出部17は、進相コンデンサの投入・引き出しを
検出し、切換検出信号を出力する。切換回数計数部18
は、投入・引き出しの切換回数を計数し、前日の切換回
数IAIを出力する。
The switching detection section 17 detects whether the phase advance capacitor is turned on or pulled out, and outputs a switching detection signal. Switching number counting section 18
counts the number of times of switching between loading and unloading, and outputs the number of switching IAI of the previous day.

設定無効電力記憶部19は、前日の設定無効電力V a
r lを記憶している。
The set reactive power storage unit 19 stores the set reactive power Va of the previous day.
r l is memorized.

ファジィ推論部20は、前日の電力ffi W u、前
日の無効電力量の過不足ff1VarH,、前日までの
無効電力量の累計過不足1i1VarHs、前日の切換
回数KAIおよび前日の設定無効電力Varlに基づい
てファジィ推論を行い、係数Kcを求める。この係数K
cは、前日の設定無効電力V ar lと当日の設定無
効電力VarSとの比率である。
The fuzzy inference unit 20 calculates the previous day's power ffi W u, the previous day's reactive power surplus/deficiency ff1VarH, the cumulative reactive power surplus/deficiency 1i1VarHs up to the previous day, the previous day's switching count KAI, and the previous day's set reactive power Varl. Then, fuzzy inference is performed to find the coefficient Kc. This coefficient K
c is the ratio between the previous day's set reactive power Varl and the current day's set reactive power VarS.

すなわち、ここで取り扱う現象項目は、前日の電力mW
。、前日の過不足無効電力fiVarH−1前日までの
累計過不足無効電力1VarHs、前日の切換回数KA
Iおよび設定無効電力Varlである。
In other words, the phenomenon items handled here are the power mW of the previous day.
. , previous day's surplus/deficit reactive power fiVarH-1 cumulative surplus/deficit reactive power up to the previous day 1VarHs, previous day's switching count KA
I and the set reactive power Varl.

また原因項目は、係数K。である。The cause item is the coefficient K. It is.

項目w、、 IAI、  Kcについては、VS、M。For items w, IAI, Kc, VS, M.

VLの3段階のファジィラベルを設定し、項目V ar
H3,V arHsについては、NB、ZE、PBのフ
ァジィラベルを設定する。
Set the three-stage fuzzy label of VL, and set the item V ar
For H3 and V arHs, fuzzy labels of NB, ZE, and PB are set.

第2図は、メンバシップ関数を示す。FIG. 2 shows the membership functions.

(A)はVS(小さい)またはNB(負)、(B)はM
(中くらい)またはZE(零)、(C)はVL(大きい
)またはPB(正)のメンバシップ関数を示す。
(A) is VS (small) or NB (negative), (B) is M
(medium) or ZE (zero), (C) indicates the membership function of VL (large) or PB (positive).

各現象項目について、このメンバシップ関数からメンバ
シップ値を求め、ファジィルールに従ってファジィ推論
を行う。
For each phenomenon item, membership values are determined from this membership function, and fuzzy inference is performed according to fuzzy rules.

次の表は、ルールマトリックスを示す。The following table shows the rule matrix.

この表に基づいて、 ファジィルールを記述する と、次のようになる。Based on this table, Write fuzzy rules And it becomes as follows.

1、 IF Varlls=PB、 Varlls=P
B。
1, IF Varlls=PB, Varlls=P
B.

2、 IF Varlls=N[3,Varll+=N
B。
2, IF Varlls=N[3, Varll+=N
B.

3、 IF Varlls=PB、 Varlla=N
B。
3. IF Varlls=PB, Varlla=N
B.

4、 IF Varll、=NB、 Varll、=P
B。
4, IF Varll,=NB, Varll,=P
B.

5、 IF Varlls=ZE、 Varlls=P
B。
5, IF Varlls=ZE, Varlls=P
B.

6、 IF Varlls=ZE、 Varll+=N
B。
6, IF Varlls=ZE, Varll+=N
B.

7、 IF Varlls=ZE、 Varlls=Z
E。
7. IF Varlls=ZE, Varlls=Z
E.

TIIIEN Kc=VL 8、 IF Varll、−ZE、 Varl13=Z
E。
TIIIEN Kc=VL 8, IF Varll, -ZE, Varl13=Z
E.

9、 IF Yarlls=ZE、 Varlls=Z
E。
9, IF Yarlls=ZE, Varlls=Z
E.

10、 IF Varlls=ZE、 Varll==
ZE。
10, IF Varlls=ZE, Varll==
ZE.

TIIEN KC=VL 11、 IF Varll、=ZE、 Varlls=
ZE。
TIIEN KC=VL 11, IF Varll,=ZE, Varlls=
ZE.

TIIEN Kc””M TIIEN  Kc=VS TIIEN  KC”4L TIIEN  Kc”M TIIEN  KC=M KAI=VS、 TIIEN  KC=VSKAI=V
L、 TIIEN  KC=VI。
TIIEN Kc””M TIIEN Kc=VS TIIEN KC”4L TIIEN Kc”M TIIEN KC=M KAI=VS, TIIEN KC=VS KAI=V
L, TIIEN KC=VI.

KAI=VL+ Wu=vL、 Varl=VS+に^
I=VS、 TIIEN  Kc=MK^I=M、  
TIIEN  Kc=M)FAI=VL、 III”M
、 Varl=VS。
KAI=VL+ Wu=vL, Varl=VS+^
I=VS, TIIEN Kc=MK^I=M,
TIIEN Kc=M) FAI=VL, III”M
, Varl=VS.

IAI=%’L、 L=VS、 Varl=VS。IAI=%'L, L=VS, Varl=VS.

ファジィ推論は、たとえばツムダニ法により実行するこ
とができる。ツムダニ法の場合、条件部(現象項目)の
メンバシップ値のうちから最小値を求め、この最小値で
結論部(原因項目)のメンバシップ関数をカットして、
その下側部分を求める。そして全ルールについて、結論
部のメンバシップ関数の下側部分を重ね合わせて合成関
数を求め、この合成関数の重心を推論値とする。
Fuzzy inference can be performed, for example, by the Tsumudani method. In the case of the Tsumudani method, the minimum value is found among the membership values of the condition part (phenomenon item), and the membership function of the conclusion part (causal item) is cut using this minimum value.
Find the lower part. Then, for all rules, a composite function is obtained by overlapping the lower parts of the membership functions of the conclusion part, and the center of gravity of this composite function is taken as the inference value.

設定無効電力演算部21は、ファジィ推論部20で求め
た係数Kcと、設定無効電力記憶部19に記憶されてい
る前日の設定無効電力V ar lとを乗算し、当日の
設定無効電力VarSを求める。
The set reactive power calculation unit 21 multiplies the coefficient Kc obtained by the fuzzy inference unit 20 by the previous day's set reactive power Var l stored in the set reactive power storage unit 19 to obtain the set reactive power VarS for the current day. demand.

リミッタ22は、当日の設定無効電力VarSが過大ま
たは過小である場合、その値を制限して出力する。この
リミッタ22で求めた値が設定投入無効電力VarAと
なる。
The limiter 22 limits and outputs the value when the current set reactive power VarS is too large or too small. The value obtained by this limiter 22 becomes the set input reactive power VarA.

この後、設定無効電力記憶部19は、この設定投入無効
電力V arAを前回の設定投入無効電力Varlとし
て記憶し、次回の動作に備える。
Thereafter, the set reactive power storage unit 19 stores this set input reactive power VarA as the previous set input reactive power Varl, and prepares for the next operation.

設定無効電力線記憶部23は、あらかじめ設定された設
定無効電力幅VarHを記憶している。設定引き出し無
効電力演算部24は、設定投入無効電力VarAから設
定無効電力幅V arHを減算し、設定引き出し無効電
力V arTを求める。
The set reactive power line storage unit 23 stores a set reactive power width VarH that is set in advance. The set reactive power calculation unit 24 subtracts the set reactive power width V arH from the set input reactive power VarA to obtain the set reactive power V arT.

第3図は、設定投入無効電力および設定引き出し無効電
力の修正を示す。図中、左側が前日の値を示し、右側が
当日の値を示す。
FIG. 3 shows the modification of set input reactive power and set withdrawn reactive power. In the figure, the left side shows the value of the previous day, and the right side shows the value of the current day.

設定投入無効電力VarAは、図中−点鎖線で示すリミ
ット上限値およびリミット下限値の間で設定される。設
定引き出し無効電力V arTは設定投人無効電力Va
rAに基づいて設定される。
The set input reactive power VarA is set between the upper limit value and the lower limit value shown by the dashed line in the figure. The set drawer reactive power V arT is the set drawer reactive power Va
Set based on rA.

ファジィtft E6部20で求めた係数Kcの値によ
り、設定没入無効電力V arAが修正され、これにr
゛t:って設定引き出し力!(動電力V arTも修正
される。
The set immersive reactive power V arA is corrected by the value of the coefficient Kc obtained in the fuzzy TFT E6 section 20, and r
゛t: What a powerful setting! (The dynamic force V arT is also modified.

イニシャライズ時においては、設定没入)!!(動電力
VarAは別途設定され、その値に)λづいて設定引き
出し無効電力V arTも設定される。
During initialization, the settings are fully immersed)! ! (The dynamic power VarA is set separately, and the set extraction reactive power VarT is also set based on λ).

このようにして得られた設定投入前動電力VarAおよ
び設定引き出し51!(動電力V arTは、無効電力
J、11整部6(第4図参照)に出力される。無効電力
調整部6は、これらの値に基づいて、走用コンデンサ7
(第4図参I!rj )の没入・引き出しの制御を行う
The pre-setting dynamic power VarA obtained in this way and the setting drawer 51! (The dynamic power V arT is output to the reactive power adjustment unit 6 (see FIG. 4). Based on these values, the reactive power adjustment unit 6 adjusts the running capacitor 7
(See Figure 4 I!rj) Controls immersion/extraction.

また内部時計25は、−日の終了時(あらかじめ設定さ
れた時刻)になると、演算タイミング信号を出力し、こ
の信号に基づいて、各部の動作が行われる。内部時計2
5の時刻を修正する場合、修正タイミング入力部26に
より修正タイミングを人力する。これにより、内部時計
修正部27が外部時計の時刻に基づいて内部時計25の
時刻を修正する。
Further, the internal clock 25 outputs a calculation timing signal at the end of -day (a preset time), and the operations of each part are performed based on this signal. Internal clock 2
When correcting the time of No. 5, the correction timing is input manually using the correction timing input section 26. Thereby, the internal clock correction unit 27 corrects the time of the internal clock 25 based on the time of the external clock.

It、発明の詳細 な説明したように、本発明では、所定目間111位、た
とえば−日単位で、設定力率を基準として設定jjj(
動電力を修正する構成であるので、マクロ的には力率一
定制御に近いものとなり、使用電力の変動などによる平
均力率のばらつきが小さくなる利点がある。
As described above, in the present invention, the set jjj(
Since the configuration corrects the dynamic force, it is close to constant power factor control from a macro perspective, and has the advantage of reducing variations in the average power factor due to fluctuations in power usage.

また、過去の実績値に基づいて、設定無効電力を修正す
ることによって、過去の実績を力率に反映することが可
能となる。さらに、使用電力が少ないときの低無効電力
(低力率)についても、平均力率を改善することが可能
となる。
Further, by correcting the set reactive power based on past performance values, it becomes possible to reflect the past performance on the power factor. Furthermore, it is also possible to improve the average power factor with respect to low reactive power (low power factor) when power consumption is low.

このように長期的な平均力率が向上するので、無理・無
駄のない安定した制御が可能となる。たとえば電気料金
の割り引きは、一般的に月間平均力率に基づいて行われ
るので、経済的にも有利となることが期待できる。
Since the long-term average power factor is improved in this way, stable control without unreasonableness or waste is possible. For example, electricity charges are generally discounted based on the monthly average power factor, so it can be expected to be economically advantageous.

さらに、進相コンデンサの投入・引き出しの切換回数に
基づいて設定無効電力を修正することによって、切換の
頻度を低減してコンデンサや開閉機2gなどの寿命を長
くすることができる。
Furthermore, by correcting the set reactive power based on the number of times the phase advance capacitor is switched in and out, the frequency of switching can be reduced and the life of the capacitor, the switch 2g, etc. can be extended.

さらに、設定無効電力の決定にファジィ推論を導入して
いるので、柔軟なアルゴリズムの構成が可能であり、そ
のルールの変更・修正も非常に容易に行える利点がある
Furthermore, since fuzzy inference is introduced to determine the set reactive power, it is possible to configure a flexible algorithm, and the advantage is that the rules can be changed and modified very easily.

【図面の簡単な説明】 第1図は本発明に係る電力力率制御装置の要部を示すブ
ロック図、第2図はメンバシップ関数を示す説明図、第
3図は本実施例における設定投入フ舐効電力および設定
引き出し無効電力の修正を示す説明図、第4図は電力力
率制御装置の概要を示すブロック図、第5図は電力力率
の制御を示す説明図である。 8・・・電力量検出部、9・・・電力量計数部、10設
定力率記憶部、11・・・無効電力量演算部、12・・
・無効電力量検出部、13・・・無効電力量計数部、1
4・・・前日過不足演算部、15・・・累計過不足記憶
部、16・・・累計過不足演算部、17・・・切換検出
部、18・・・切換回数計数部、19・・・設定無効電
力記憶部、20・・・ファジィ推論部、21・・・設定
無効電力演算部、 22・・・リミ・1夕、23・・・設定無効電力幅3己
憶部、 24・・・設定引き出し無効電力演算部。 設定投入無効電力および設定引き出し4I!′効電力の
修正第4図 電力力率制御装置の概要 第5図 無効電力の制御 進み
[Brief Description of the Drawings] Fig. 1 is a block diagram showing the main parts of the power factor control device according to the present invention, Fig. 2 is an explanatory diagram showing membership functions, and Fig. 3 is a setting input in this embodiment. FIG. 4 is a block diagram showing an outline of the power power factor control device, and FIG. 5 is an explanatory diagram showing the control of the power power factor. 8... Electric energy detection section, 9... Electric energy counting section, 10 Setting power factor storage section, 11... Reactive energy calculating section, 12...
- Reactive power amount detection unit, 13... Reactive power amount counting unit, 1
4... Previous day's excess/deficiency calculation unit, 15... Cumulative excess/deficiency storage unit, 16... Cumulative excess/deficiency calculation unit, 17... Switching detection unit, 18... Switching number counting unit, 19... - Setting reactive power storage section, 20... Fuzzy inference section, 21... Setting reactive power calculating section, 22... Rimi・1 evening, 23... Setting reactive power width 3 memory section, 24...・Setting drawer reactive power calculation section. Setting input reactive power and setting drawer 4I! 'Correction of effective power Figure 4 Outline of power factor control device Figure 5 Control progress of reactive power

Claims (1)

【特許請求の範囲】[Claims] (1)外部から電力を受ける受電点にて無効電力を測定
し、測定無効電力および設定無効電力を比較し、その比
較結果に基づいて、進相コンデンサの投入・引き出しを
制御することにより、電力力率を制御する装置において
、 使用する電力を測定する電力測定部と、 測定使用電力に基づいて、所定時間単位における使用電
力量を計数する電力量計数部と、 使用電力量および設定力率に基づいて、基準無効電力量
を演算する基準無効電力量演算部と、測定無効電力に基
づいて、所定時間単位における無効電力量を計数する無
効電力量計数部と、基準無効電力量および無効電力量の
偏差をとり、所定時間単位における過不足量を求める過
不足量演算部と、 この過不足量を累計し、累計過不足量を求める累計過不
足量演算部と、 所定時間単位における進相コンデンサの投入・切断の切
換回数を計数する切換回数計数部と、使用電力量、過不
足量、累計過不足量、切換回数および前回の設定無効電
力を現象項目としてファジィ推論を行い、予め設定され
たメンバシップ関数に基づいて、各現象項目についての
メンバシップ値を求め、予め設定されたファジィルール
に従って各メンバシップ値から今回の設定無効電力を決
定する設定無効電力決定部と を備えたことを特徴とするファジィ推論による電力力率
制御装置。
(1) Measure the reactive power at the receiving point that receives power from the outside, compare the measured reactive power and the set reactive power, and control the input/output of the phase advance capacitor based on the comparison result. A power factor control device includes: a power measuring unit that measures the power used; a power counting unit that counts the power consumption in a predetermined time unit based on the measured power consumption; a reference reactive power amount calculating unit that calculates a reference reactive power amount based on the measured reactive power; a reactive power amount counting unit that counts the reactive power amount in a predetermined time unit based on the measured reactive power; and a reference reactive power amount and a reactive power amount. an excess/deficiency calculation unit that calculates the excess/deficiency amount in a predetermined time unit by taking the deviation of A switching frequency counting unit counts the number of switching on/off of The present invention is characterized by comprising a set reactive power determination unit that calculates the membership value for each phenomenon item based on the membership function and determines the current set reactive power from each membership value according to a preset fuzzy rule. A power factor control device using fuzzy reasoning.
JP1284145A 1989-10-31 1989-10-31 Power power factor controller by fuzzy inference Expired - Lifetime JP2748608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1284145A JP2748608B2 (en) 1989-10-31 1989-10-31 Power power factor controller by fuzzy inference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1284145A JP2748608B2 (en) 1989-10-31 1989-10-31 Power power factor controller by fuzzy inference

Publications (2)

Publication Number Publication Date
JPH03145930A true JPH03145930A (en) 1991-06-21
JP2748608B2 JP2748608B2 (en) 1998-05-13

Family

ID=17674752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284145A Expired - Lifetime JP2748608B2 (en) 1989-10-31 1989-10-31 Power power factor controller by fuzzy inference

Country Status (1)

Country Link
JP (1) JP2748608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110132A (en) * 2010-11-17 2012-06-07 Kyuhen Co Ltd Distribution board and voltage adjustment device unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148535A (en) * 1981-03-09 1982-09-13 Meidensha Electric Mfg Co Ltd Average power factor regulator
JPS6481688A (en) * 1987-09-19 1989-03-27 Mitsubishi Electric Corp Stabilizer of power system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148535A (en) * 1981-03-09 1982-09-13 Meidensha Electric Mfg Co Ltd Average power factor regulator
JPS6481688A (en) * 1987-09-19 1989-03-27 Mitsubishi Electric Corp Stabilizer of power system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110132A (en) * 2010-11-17 2012-06-07 Kyuhen Co Ltd Distribution board and voltage adjustment device unit

Also Published As

Publication number Publication date
JP2748608B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
AU2015249324B2 (en) Optimizing voltage and VAR on the electrical grid using distributed VAR sources
JP5006104B2 (en) Power smoothing method, power smoothing device, and design method of the same
US9692243B2 (en) Frequency regulation method, frequency regulation apparatus, and storage battery system
JPH03178530A (en) Charging state decision device of cell
US5615129A (en) Method and apparatus for adaptive and corrective determination of battery run-time in uninterruptible power systems
CN114725970B (en) Intelligent SOC management method for energy storage system for realizing smooth photovoltaic
KR101187836B1 (en) Smart uninterruptible power supply capable of high efficiency operation and method of controlling uninterruptible power supply
JP4677242B2 (en) Instantaneous voltage drop compensation device
JP2012147600A (en) Discharging method of storage battery provided in power storage device
JP2006109621A (en) Operation method for electric power storage system and control program for charging/discharging of electric power storage system
EP3059829B1 (en) System and method for regulating energy in electrical installations
JP3318509B2 (en) Static var compensator
JPH03145930A (en) Electric power factor controller by fuzzy inference
JPH07274394A (en) Control system for apparatus by demand monitoring
JPH08251824A (en) Power-factor prediction method and power-factor control apparatus of power consumption installation
JP7184717B2 (en) Uninterruptible power system
EP3138182A1 (en) Dc link voltage control
JP3567783B2 (en) Static var compensator
CN106561067B (en) Induction heating apparatus
KR20200035648A (en) Controlling method for ESS
WO2023058533A1 (en) Air conditioner and control system
JP3146514B2 (en) Automatic power factor adjustment device
Nowak et al. Unfavourable Reactive Power in a Rolling Mill
CN109344503B (en) Power demand control method based on mathematical model
JPH0738979Y2 (en) Power factor controller