JPH03145605A - Optical fiber connection system - Google Patents

Optical fiber connection system

Info

Publication number
JPH03145605A
JPH03145605A JP28296789A JP28296789A JPH03145605A JP H03145605 A JPH03145605 A JP H03145605A JP 28296789 A JP28296789 A JP 28296789A JP 28296789 A JP28296789 A JP 28296789A JP H03145605 A JPH03145605 A JP H03145605A
Authority
JP
Japan
Prior art keywords
optical fiber
core diameter
gamma
fiber
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28296789A
Other languages
Japanese (ja)
Inventor
Kazuhiko Ninomiya
和彦 二宮
Tetsuji Ogawa
小川 哲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28296789A priority Critical patent/JPH03145605A/en
Publication of JPH03145605A publication Critical patent/JPH03145605A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate decrease in the quantity of light due to a difference in the core diameter of an external cable by specifying the core diameters of repeating cables in a device. CONSTITUTION:When the repeating fiber cables which connect the external optical fiber cable to a transmission and reception module for a light signal is provided, the core diameters of the input and output repeating cables are determined so that gamma i<=gamma max(<)gamma min<=o, where gamma max is the maximum value of the core diameter of the external optical fiber, gamma min the minimum value, gammai the core diameter of a fiber which transmits a signal inputted to the device among repeating optical fibers, and gamma o the core diameter of an output fiber. Consequently, the original performance of the device is satisfied regardless of the core diameters of the optical fibers in use.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 光ファイバを通信路として用いる電子装置。[Detailed description of the invention] [Industrial application field] An electronic device that uses optical fiber as a communication path.

〔従来の技術〕[Conventional technology]

光ファイバは、低損失・大容量伝送が可能など・ 1 情報の伝送路として優れた特性を備えているため、コン
ピュータシステムの中にも広範にとり入れられている。
Optical fibers have excellent characteristics as information transmission paths, such as low loss and high capacity transmission, and are therefore widely used in computer systems.

光ファイバはその伝送特性から大きく次のように分類さ
れる。
Optical fibers are broadly classified into the following types based on their transmission characteristics.

・マルチモード(GI形) ・マルチモード(SI形) ・シングルモード このうち、コンピュータシステムで主として用いられて
いるのがマルチモード(GI形)ファイバである。しか
し、このファイバ自体もコア径とのランド径がそれぞれ
50/125 (μm)のものと62.5/125 (
μm)のものなど何種類かある。どういった種類のケー
ブルを使用するかは、装置の仕様で決まってくる。一方
、ユーザの立場からいえば、すでに布設しである光ファ
イバケーブルがあるとき、そのケーブルが使えることが
望ましい。マルチモード(GI形)ファイバの場合、た
とえば、第1図のような接続構成で50/125 (μ
m)の光ファイバを使用する装置に対して、60/1.
25 (μm)の光ファイバを使用すると、第2図で示
すように・ 2 ・ 装置と光ファイバ(外部)の接合面での光モレ損失によ
り装置本来の性能(ここでは光量低下により伝送距離)
がそこなわれてしまうという問題が起きる。
・Multimode (GI type) ・Multimode (SI type) ・Single mode Among these, multimode (GI type) fiber is mainly used in computer systems. However, the fiber itself has a land diameter of 50/125 (μm) and a land diameter of 62.5/125 (μm), respectively.
There are several types, including those (μm). The type of cable to use is determined by the specifications of the device. On the other hand, from a user's standpoint, if there is an optical fiber cable that has already been installed, it is desirable to be able to use that cable. In the case of multimode (GI type) fiber, for example, the connection configuration shown in Figure 1 is 50/125 (μ
m) for devices using optical fibers of 60/1.
When using a 25 (μm) optical fiber, as shown in Figure 2, the original performance of the device (in this case, the transmission distance due to a decrease in light intensity) is reduced due to optical leakage loss at the junction between the device and the optical fiber (external).
The problem arises that the image is damaged.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、使用される光ファイバのコア径のいか
んによらず、装置本来の性能を満たすことを可能とする
An object of the present invention is to make it possible to satisfy the original performance of the device regardless of the core diameter of the optical fiber used.

〔課題を解決するための手段〕[Means to solve the problem]

コア径の異なる光ファイバ同志を接続すると、コア径大
から小への方向への光伝送では光もれによる光量低下が
あるが、その逆方向への伝送では光量低下はない。そこ
で、装置内の中継ケーブルのコア径を第3図の如く決め
ることにより、外部ケーブルのコア径の違いによる光量
低下をなくすことが可能である。
When optical fibers with different core diameters are connected, the amount of light decreases due to light leakage when light is transmitted in the direction from large to small core diameter, but there is no decrease in the amount of light when transmitted in the opposite direction. Therefore, by determining the core diameter of the relay cable inside the device as shown in FIG. 3, it is possible to eliminate the decrease in light intensity due to the difference in the core diameter of the external cable.

〔実施例〕 第1図を用いて実施例を説明する。いま、外部光ファイ
バのコア径50μmおよび62.5μmの両者いずれの
ファイバに対しても光もれのない接続を、3 可能にするには、5aの光ファイバのコア径−50μm
、6aの光ファイバのコア径−62,5μmのもので装
置内を接続する。こうすることで、装置1aとlbとの
間の光伝送は、コア径が50μmであろうと62.5μ
mであろうと、中継コネクタ7a。
[Example] An example will be described using FIG. 1. Now, in order to enable connection without light leakage to both external optical fibers with core diameters of 50 μm and 62.5 μm, the core diameter of the optical fiber 5a −50 μm is required.
, 6a with a core diameter of -62.5 μm are used to connect the inside of the apparatus. By doing this, the optical transmission between devices 1a and lb is 62.5 μm even if the core diameter is 50 μm.
Whether it is m or not, the relay connector 7a.

7bでのコア径差による光量もれの恐れはなくなる。There is no fear of light leakage due to the difference in core diameter at 7b.

〔発明の効果〕〔Effect of the invention〕

一般的にマルチモード(GI形)光ファイバの光量低下
は、光波長が0.8μmで2〜3dB/Kmと言われて
いる。一方、コア径差による光もれの結果生じる光量低
下は、62.5μmから50μmのコアへの伝送時で約
2dB程度とみられ、これは光ファイバのケーブル長に
換算するとIKm近くになる。すなわち、本発明によれ
ば、外部光ファイバのコア径が50μm、62.5μm
と違っても光量低下からくるケーブル長制限に影響は出
てこない。
In general, it is said that the light intensity drop of a multimode (GI type) optical fiber is 2 to 3 dB/Km when the optical wavelength is 0.8 μm. On the other hand, the decrease in the amount of light resulting from light leakage due to the difference in core diameter is estimated to be about 2 dB when transmitting from a core of 62.5 μm to 50 μm, which is close to IKm when converted to the cable length of an optical fiber. That is, according to the present invention, the core diameter of the external optical fiber is 50 μm or 62.5 μm.
Even if it is different, there will be no impact on cable length restrictions due to the reduction in light intensity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光ファイバを伝送路に用いた装置のシステム構
成図、第2図は光ファイバ同志を接続す、4 る中継コネクタでの光もれの様子を示した図、第3図は
本発明による装置内光ファイバのコア径の大小関係を示
すための図である。 1〉 役場 1ジ 〉 稟 5 寸法率a: p?7L 図 ro≧トml机
Figure 1 is a system configuration diagram of a device that uses optical fibers as a transmission path, Figure 2 is a diagram showing light leakage at a relay connector that connects optical fibers, and Figure 3 is a diagram of the main unit. FIG. 3 is a diagram showing the size relationship of the core diameters of the optical fibers in the device according to the invention. 1〉 Office 1〉 5 Dimensions ratio a: p? 7L Figurero≧Toml desk

Claims (1)

【特許請求の範囲】[Claims] 1、光ファイバを通信路とする装置で、外部の光ファイ
バ・ケーブルを光信号の送受信モジュールと接続する中
継光ファイバ・ケーブルを持つとき、外部の光ファイバ
のコア径の最大値をγmax、最小値をγmin、該中
継光ファイバのうち装置に対して入力となる信号を伝送
するファイバのコア径をγi、同じく出力となるファイ
バのそれをγoとすると、γi≦γmax(<)γmi
n≦γoとなるように入力/出力の中継テーブルのコア
径を決めたことを特徴とする光ファイバ接続方式。
1. When a device uses optical fiber as a communication path and has a relay optical fiber cable that connects an external optical fiber cable to an optical signal transmission/reception module, the maximum core diameter of the external optical fiber is γmax, and the minimum If the value is γmin, the core diameter of the fiber that transmits the input signal to the device among the relay optical fibers is γi, and that of the output fiber is γo, then γi≦γmax(<)γmi
An optical fiber connection method characterized in that the core diameter of the input/output relay table is determined so that n≦γo.
JP28296789A 1989-11-01 1989-11-01 Optical fiber connection system Pending JPH03145605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28296789A JPH03145605A (en) 1989-11-01 1989-11-01 Optical fiber connection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28296789A JPH03145605A (en) 1989-11-01 1989-11-01 Optical fiber connection system

Publications (1)

Publication Number Publication Date
JPH03145605A true JPH03145605A (en) 1991-06-20

Family

ID=17659452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28296789A Pending JPH03145605A (en) 1989-11-01 1989-11-01 Optical fiber connection system

Country Status (1)

Country Link
JP (1) JPH03145605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276627A (en) * 2008-05-15 2009-11-26 Hitachi Cable Ltd Communication light detector
JP2011013359A (en) * 2009-06-30 2011-01-20 Hitachi Cable Ltd Optical connector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276627A (en) * 2008-05-15 2009-11-26 Hitachi Cable Ltd Communication light detector
JP2011013359A (en) * 2009-06-30 2011-01-20 Hitachi Cable Ltd Optical connector

Similar Documents

Publication Publication Date Title
Rawson et al. Fibernet: Multimode optical fibers for local computer networks
US4301543A (en) Fiber optic transceiver and full duplex point-to-point data link
US6415076B1 (en) Mode conditioning patch for facilitating signal transmission from single mode optical fiber to multimode optical fiber
JPS61124907A (en) Optical fiber connector
AU641225B2 (en) Optical communication system with fibre optic amplifier
JP2000147294A (en) Polymer fiber optical transmission system
CA2359271A1 (en) Optical fiber communication system, communications apparatus and optical transceiver
JP2854146B2 (en) Network interface unit in optical communication system
JPS61191132A (en) Optical fiber transmission system
JPH03145605A (en) Optical fiber connection system
CN100487506C (en) Light transmit-receive integrated module self-cycle realizing device
US5311613A (en) Attenuator for integration into optical transmission systems and methods for fabrication and use thereof
JPS58187036A (en) Photoelectric converting device of composite optical communication device
EP1087548A3 (en) Use of mode-coupled optical fiber in communications systems
JP2000221352A (en) Optical fiber and optical transmission system
JPS5955649A (en) Optical transmission line system
JPS5848152U (en) Same wavelength single core bidirectional optical communication system
JPH0766777A (en) Opto/microwave transmitting equipment
Hollis et al. Fiber optics for CATV in perspective
JPH0591049A (en) Optical circuit
JPH01316706A (en) Mode conversion type optical fiber
Schoenfeld Fiber optic ring-LAN design with improved reliability through the use of four-port couplers
JPH06118265A (en) Connecting method for optical fiber
Barnoski In Systems with 20 or More Terminals, Star Couplers Outperform Tee Types
JPH08251104A (en) Detection device for disengagement of optical connector for output