JPH03145113A - Porcelain capacitor and manufacture thereof - Google Patents

Porcelain capacitor and manufacture thereof

Info

Publication number
JPH03145113A
JPH03145113A JP1283709A JP28370989A JPH03145113A JP H03145113 A JPH03145113 A JP H03145113A JP 1283709 A JP1283709 A JP 1283709A JP 28370989 A JP28370989 A JP 28370989A JP H03145113 A JPH03145113 A JP H03145113A
Authority
JP
Japan
Prior art keywords
mol
sio
point
additive component
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1283709A
Other languages
Japanese (ja)
Other versions
JPH0525374B2 (en
Inventor
Koichi Chazono
広一 茶園
Hiroshi Saito
博 斎藤
Mutsumi Honda
本多 むつみ
Hisamitsu Shizuno
寿光 静野
Hiroshi Kishi
弘志 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP1283709A priority Critical patent/JPH03145113A/en
Priority to EP90120256A priority patent/EP0425970B1/en
Priority to DE69009000T priority patent/DE69009000T2/en
Priority to US07/601,945 priority patent/US5051863A/en
Priority to KR1019900017530A priority patent/KR930004740B1/en
Publication of JPH03145113A publication Critical patent/JPH03145113A/en
Publication of JPH0525374B2 publication Critical patent/JPH0525374B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the permittivity of the title porcelain capacitor using the specific compositional range of the fundamental component, consisting of Ba and Mg or Zn and Ti in which porcelain is shown by a specific chemical formula, the first additive substance consisting of Cr2O3 or Al2O3, and the second additive substance consisting of three-component type B2O3, SiO2 and specific metal oxide. CONSTITUTION:The title porcelain capacitor is composed of the fundamental component of porcelain of 100.0 pts.wt., the first additive component of 0.01 to 3.00 pts.wt., and the second additive component of 0.2 to 5.0 pts.wt. The fundamental component consists of (Bak-xMx)OkTiO2 (provided that M contains one or more kinds of metal selected from Mg and Zn, (k indicates the value within the range of 1.00 to 1.05, and (x) indicates the value within the range of 0.01 to 0.10), the first additive component consists of the metal oxide containing one or more kinds of Cr2O3 and Al2O3, and the second additive component consists of B2O3, SiO2 and MO (provided that MO consists of the metal oxide containing one or more kinds selected from BaO, GrO, CaO, MgO and ZnO). Also, the range of composition of the above-mentioned materials is within the region surrounded by the line linking the points A, B, C, D, E and F in the triangular diagram mentioned separately. As a result, a porcelain capacitor having high permittivity can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、誘電体磁器と少なくとも2つの電極とから成
る単層又は積層構造の磁器コンデンサ及びその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic capacitor having a single-layer or laminated structure consisting of dielectric ceramic and at least two electrodes, and a method for manufacturing the same.

[従来の技術] 従来、積層磁器コンデンサを製造する際には、誘電体磁
器原料粉末から成るグリーンシート(未焼結磁器シート
)に白金又はパラジウム等の貴金属の導電性ペーストを
所望パターンに印刷し、これを複数枚積み重ねて圧着し
、1300℃〜1600℃の酸化性雰囲気中で焼結させ
た。これにより、誘電体磁器と内部t[iとが同時に得
られる。
[Prior Art] Conventionally, when manufacturing multilayer ceramic capacitors, a conductive paste of noble metal such as platinum or palladium is printed in a desired pattern on a green sheet (unsintered ceramic sheet) made of dielectric ceramic raw material powder. A plurality of these sheets were stacked and pressed together, and sintered in an oxidizing atmosphere at 1300°C to 1600°C. Thereby, dielectric ceramic and internal t[i can be obtained at the same time.

上述の如く、貴金属を使用すれば、酸化性雰囲気中で高
温で焼結させても目的とする内部電極を得ることかでき
る。しかし、白金、パラジウム等の貴金属は高価である
ため、必然的に積層磁器コンデンサがコスト高になった
As mentioned above, if a noble metal is used, the desired internal electrode can be obtained even if it is sintered at a high temperature in an oxidizing atmosphere. However, since precious metals such as platinum and palladium are expensive, the cost of multilayer ceramic capacitors has inevitably increased.

上述の問題を解決することができるものとして、本件出
願人に係わる特公昭61−14607号公報には、 (Bak−x Mx)OkTiO2(但し、MはMg及
びZnの内の少なくとも1種)から成る基本成分と、L
i  OとSiO2とから戒る添加成分とを含む誘電体
磁器組成物が開示されている。
As a solution to the above-mentioned problem, Japanese Patent Publication No. 14607/1987, filed by the applicant, describes a method of (Bak-x Mx) OkTiO2 (where M is at least one of Mg and Zn). The basic components consisting of L
A dielectric ceramic composition containing additive components selected from iO and SiO2 is disclosed.

また、特公昭61−14608号公報には、上記の特公
昭61−14607号公報のL1□Oと8102の代り
に、L120とSiO2とMO(但し、MOはBaO,
CaO及びSroの内の少なくとも1種)とから成る添
加成分とを含む誘電体磁器組成物が開示されている。
In addition, in Japanese Patent Publication No. 61-14608, instead of L1□O and 8102 in the above-mentioned Japanese Patent Publication No. 61-14607, L120, SiO2, and MO (however, MO is BaO,
A dielectric ceramic composition containing an additive component consisting of at least one of CaO and Sro is disclosed.

また、特公昭61−14609号公報には、(Bak−
、−yM、Ly)OkTiO2(但し、MはMg及びZ
nの少なくとも1種、LはSr及びCaの内の少なくと
も1りから戒る基本成分とLi  Oと810□とから
成る添加成分とを含む誘電体磁器組成物が開示されてい
る。
In addition, in Japanese Patent Publication No. 61-14609, (Bak-
, -yM, Ly) OkTiO2 (where M is Mg and Z
A dielectric ceramic composition is disclosed that includes a basic component in which n is at least one kind, L is at least one of Sr and Ca, and an additive component consisting of Li 2 O and 810□.

また、特公昭61−14610号公報には、上記の特公
昭61−14609号公報におけるLi2Oとsio 
 の代りに、L120とSiO2とMO(但し、MOは
Bad、CaO及びSrOの内の少なくとも1種)とか
ら成る添加成分を含む誘電体磁器組成物が開示されてい
る。
Moreover, in Japanese Patent Publication No. 61-14610, Li2O and sio in the above-mentioned Japanese Patent Publication No. 61-14609 are
Instead, a dielectric ceramic composition is disclosed that contains additive components consisting of L120, SiO2, and MO (MO being at least one of Bad, CaO, and SrO).

また、特公昭61−14611号公報には、(Ba1<
−x Mx)OkTiO2(但し、MはMg、7.n、
Sr及びCaの少なくとも1種)から成る基本成分と、
B2O3とSiO2とから成る添加成分とを含む誘電体
磁器組成物が開示されている。
In addition, in Japanese Patent Publication No. 14611/1987, (Ba1<
-x Mx) OkTiO2 (where M is Mg, 7.n,
a basic component consisting of at least one of Sr and Ca);
A dielectric ceramic composition is disclosed that includes additive components consisting of B2O3 and SiO2.

また、特公昭62−1595号公報には、(Ba   
M  ) OT i 02  (但し、MはMg、Z−
xxk n、Sr及びCaの内の少なくとも1種)から戒る基本
成分と、B203とMO(但しMOはBaOlMgO,
ZnO1SrO及びCaOの少なくとも1種)とから、
成る添加成分とを含む誘電体磁器組成物が開示されてい
る。
In addition, in Japanese Patent Publication No. 1595/1983, (Ba
M) OT i 02 (However, M is Mg, Z-
At least one of xxk n, Sr, and Ca), B203 and MO (however, MO is BaOlMgO,
at least one of ZnO1SrO and CaO),
Disclosed is a dielectric ceramic composition comprising the following additive components.

また、特公昭62−1596号公報には、上記の特公昭
62−1595号公報の8203とMOの代りに、B2
03とSiO□とMO(但しMOはBad、MgO,Z
nO1SrO及びCaOの内の少なくとも1種〉とから
成る添加成分とを含む誘電体磁器組成物が開示されてい
る。
In addition, in Japanese Patent Publication No. 1596-1986, instead of 8203 and MO in the above-mentioned Japanese Patent Publication No. 62-1595, B2
03, SiO□ and MO (however, MO is Bad, MgO, Z
A dielectric ceramic composition containing an additive component consisting of at least one of nO1SrO and CaO is disclosed.

これらに開示されている誘電体磁器組成物は、還元性雰
囲気1200℃以下の条件の焼成で得ることができ、比
誘電率が2000以上、静電容量の温度変化率が一25
゛C〜+85℃で±10%の範囲にすることができるも
のである。
The dielectric ceramic composition disclosed in these documents can be obtained by firing in a reducing atmosphere at 1200°C or lower, has a relative dielectric constant of 2000 or more, and has a temperature change rate of capacitance of 125.
It can be adjusted within a range of +/-10% at temperatures between +85°C and +85°C.

[発明が解決しようとする課題] ところで、近年の電子回路の高密度化に伴い、積層コン
デンサの小型化の要求が非常に強く、これに対応する為
に、温度変化率を悪化させることなく誘電体の比誘電率
を、上記各公報に開示されている誘電体磁器組成物の比
誘電率よりも更に増大させることが望まれている。
[Problem to be solved by the invention] Incidentally, with the recent increase in the density of electronic circuits, there is a strong demand for miniaturization of multilayer capacitors. It is desired to further increase the relative permittivity of the body over the relative permittivity of the dielectric ceramic compositions disclosed in the above-mentioned publications.

そこで、本発明の目的は、非酸化性雰囲気、1200℃
以下の温度での焼成で得るものであるにも拘らず、高い
誘電率を有し、且つ広い温度範囲にわたって誘電率の温
度変化率が小さい誘電体磁器を備えている磁器コンデン
サ及びその製造方法を提供することにある。
Therefore, the purpose of the present invention is to use a non-oxidizing atmosphere at 1200°C.
A ceramic capacitor equipped with a dielectric ceramic having a high dielectric constant and a small rate of change in dielectric constant over a wide temperature range, even though it is obtained by firing at the following temperatures, and a method for manufacturing the same. It is about providing.

[課題を解決するための手段] 上記目的を達成するための本発明は、誘電体磁器と、前
記磁器に接触している少なくとも2つの電極とから成る
磁器コンデンサにおいて、前記磁器が100.0重量部
の基本成分と、0.01〜3.00重量部の第1の添加
成分と、0.2〜5゜0重量部の第2の添加成分とから
成り、前記基本成分が、(Ba(−x M、)ok’r
to2 (但し、MはMg、Znの内の少なくとも1種
の金属、kは1.00〜1.05、Xは、0.01〜0
.10の範囲内の数値〉であり、少なくとも1種の添加
成分がCr2O3とA I 203との内の少なくとも
1種の金属酸化物であり、前記第2の添加成分がB2O
3とSiO2とMO(但し、MOはBaO1SrO,C
ab、MgAl2O3の内の少なくとも1mの金属酸化
物)から代り、且つ前記B20 とSiO□と前記MO
との組成範囲がこれ等の組成をモル%で示す三角図にお
ける前記B2O3が1モル%、前記5lO2が80モル
%、前記MOが19モル%の点(A)と、前記B2O3
が1モル%、前記SiO2が39モル%、前記MOが6
0モル%の点(B)と、前記B2O3が29モル%、S
iO□が1モル%、前記MOが70モル%の点(C)と
、前記B2O3が90モル%、前記SiO2が1モル%
、前記MOが9モル%の点(D)と、前記B2O3が9
0モル%、前記SiO2が9モル%、前記MOが1モル
%の点(E)と、前記B 203が19モル%、前記5
i02が80モル%、前記MOが1モル%の点(F)と
を順に結ぶ6本の直線で囲まれた領域内のものであるコ
ンデンサに係わるものである。なお、基本成分を示す組
成式において、k−x、x、kは勿論それぞれの元素の
原子数を示し、Baはバリウム、0は酸素、Tiはチタ
ン、Mgはマグネシウム、Znは亜鉛である。第1の添
加成分のCr  Oは酸化クロム、A l 203は酸
化アル3 ミニ゛ウムである。第2の添加成分におけるB2O3は
酸化ホウ素、SiO2は酸化けい素、BaOは酸化バリ
ウム、SrOは酸化ストロンチウム、CaOは酸化カル
シウム、MgOは酸化マグネシウム、ZnOは酸化亜鉛
である。
[Means for Solving the Problems] To achieve the above object, the present invention provides a ceramic capacitor comprising a dielectric ceramic and at least two electrodes in contact with the ceramic, in which the ceramic has a weight of 100.0 parts of the basic component, 0.01 to 3.00 parts by weight of the first additive component, and 0.2 to 5.0 parts by weight of the second additive component, and the basic component is (Ba( -x M,)ok'r
to2 (However, M is at least one metal among Mg and Zn, k is 1.00 to 1.05, and X is 0.01 to 0
.. 10>, at least one additive component is at least one metal oxide of Cr2O3 and A I 203, and the second additive component is B2O
3, SiO2 and MO (however, MO is BaO1SrO,C
ab, MgAl2O3), and the B20, SiO□ and the MO
Point (A) in the triangular diagram showing these compositions in mol%, where the B2O3 is 1 mol%, the 5lO2 is 80 mol%, and the MO is 19 mol%, and the B2O3
is 1 mol%, the SiO2 is 39 mol%, and the MO is 6
Point (B) where the B2O3 is 0 mol%, and the point (B) where the B2O3 is 29 mol%, S
Point (C) where iO□ is 1 mol% and the MO is 70 mol%, and the B2O3 is 90 mol% and the SiO2 is 1 mol%.
, the point (D) where the MO is 9 mol%, and the point (D) where the B2O3 is 9 mol%
Point (E) where the SiO2 is 9 mol% and the MO is 1 mol%, and the point (E) where the B 203 is 19 mol% and the 5
This relates to a capacitor that is within a region surrounded by six straight lines connecting in order the point (F) where i02 is 80 mol % and the MO is 1 mol %. In the compositional formula showing the basic components, k-x, x, and k naturally indicate the number of atoms of each element, Ba is barium, 0 is oxygen, Ti is titanium, Mg is magnesium, and Zn is zinc. The first additive component CrO is chromium oxide, and Al 203 is aluminum oxide. In the second additive component, B2O3 is boron oxide, SiO2 is silicon oxide, BaO is barium oxide, SrO is strontium oxide, CaO is calcium oxide, MgO is magnesium oxide, and ZnO is zinc oxide.

製造方法に係わる発明は、上記の基本成分と添加成分と
の混合物を用意する工程と、少なくとも2つの電極部分
を有する前記混合物の成形物を作る工程と、前記電極部
分を有する前記成形物を非酸化性雰囲気で焼成する工程
と、前記焼成で得られた成形物を酸化性雰囲気で熱処理
する工程とを含む磁器コンデンサの製造方法に係わるも
のである。
The invention related to the manufacturing method includes the steps of: preparing a mixture of the above-mentioned basic components and additive components; making a molded product of the mixture having at least two electrode parts; and non-containing the molded product having the electrode parts. The present invention relates to a method for manufacturing a ceramic capacitor, which includes a step of firing in an oxidizing atmosphere and a step of heat-treating a molded product obtained by the firing in an oxidizing atmosphere.

し作用効果] 上記発明の磁器コンデンサにおける誘電体磁器を非酸化
性雰囲気、1200℃以下の焼成で得ることができる。
Effect] The dielectric ceramic in the ceramic capacitor of the above invention can be obtained by firing in a non-oxidizing atmosphere at 1200° C. or lower.

従って、ニラゲル等の卑金属の導電性ペーストをグリー
ンシートに塗布し、グリーンシートと導電性ペーストと
を同時に焼成する方法によって磁器コンデンサを製造す
ることが可能になる。誘電体磁器の組成を本発明で特定
された範囲にすることによって、比誘電率が3000以
上、誘電体損失tanδが2.5%以下、抵抗率ρがl
X106MO・01以上であり、且つ比誘電率の温度変
化率が一55℃〜125℃で一15%〜+15%(25
℃を基準〉、−25℃〜85℃で10%〜+10%(2
0℃を基準〉の範囲に収まる誘電体磁器を備えたコンデ
ンサを提供することができる。
Therefore, it becomes possible to manufacture a ceramic capacitor by applying a base metal conductive paste such as Niragel to a green sheet and firing the green sheet and the conductive paste at the same time. By setting the composition of the dielectric ceramic within the range specified in the present invention, the dielectric constant is 3000 or more, the dielectric loss tan δ is 2.5% or less, and the resistivity ρ is l.
X106MO・01 or more, and the temperature change rate of relative permittivity is -15% to +15% (25% to 155℃ to 125℃)
℃ standard>, 10% to +10% (25℃ to 85℃)
It is possible to provide a capacitor including a dielectric ceramic that is within the range of 0°C as a reference.

[実施例コ 次に、本発明に従う実施例及び比較例について説明する
[Examples] Next, examples according to the present invention and comparative examples will be described.

まず、本発明に従う基本成分の組成式 %式% 1のx、にの欄に示す割合で得るため、換言すれば、(
B a   M   ) OT i 02 、更に詳0
.96 0.06  1.02 48]4こは、M  = MgO,05znO,01で
あるので、0.06 (Ba0.96Mgo、osZnO,01) 01.0
2T” 2を得るために、純度99.0%以上のB a
 CO3〈炭酸バリウム) 、MgO(iR化マグネシ
ウム)、Zn0(酸化亜鉛〉、及びTiO□ く酸化チ
タン)を用意し、不純物を目方に入れないで BaC0:1044.09g(0,96モル部相当) MgO: 11.11g (0,05モル部相当)Zn
O:4.48g (0,01モル部相当)TiO2:4
40.32g <1.00モル部相当)を秤量した。
First, in order to obtain the basic components according to the present invention at the ratio shown in the column x of % formula 1, in other words, (
B a M) OT i 02, more details 0
.. 96 0.06 1.02 48]4 Since M = MgO,05znO,01, 0.06 (Ba0.96Mgo, osZnO,01) 01.0
In order to obtain 2T" 2, B a with a purity of 99.0% or more
Prepare CO3 (barium carbonate), MgO (magnesium iR), Zn0 (zinc oxide), and titanium oxide (TiO□), and prepare 1044.09 g (equivalent to 0.96 mole part) of BaC0 without adding impurities. ) MgO: 11.11g (equivalent to 0.05 mole part) Zn
O: 4.48g (equivalent to 0.01 mole part) TiO2: 4
40.32 g (equivalent to <1.00 mole part) was weighed.

次に、秤量されたこれ等の原料をポットミル<1)ot
 l1ill)に入れ、更にアルミナボールと水2゜5
1とを入れ、15時時間式攪拌した後、攪拌物をステン
レスポットに入れて熱風式乾燥器で150′C14時間
乾燥した0次にこの乾燥物を粗粉砕し、この粗粉砕物を
トンネル炉にて大気中で1200℃、2時間仮焼し、上
記組成式の基本成分を得た。
Next, these weighed raw materials are put into a pot mill<1)ot
Add alumina ball and water 2゜5
After stirring for 15 hours, the stirred material was placed in a stainless steel pot and dried for 14 hours at 150'C in a hot air dryer. The product was calcined at 1200° C. for 2 hours in the air to obtain the basic components of the above compositional formula.

一方、第2表の試料Nα1の第2の添加成分を得るため
に、B2O3を0.99g (1モル部)と、S i 
O2を68.38g (80モル部)と、BaCO3を
10.63g (3,8モル部)と、SrCO3を7.
98g (3,8モル部)と、CaCO3を5.41g
 (3,8モル部)と、MgOを2.18g <3.8
モル部)と、ZnOを4.40g (3,8モル部)を
それぞれ秤量し、この混合物にアルコールを300cc
加え、ポリエチレンポットにてアルミナボールを用いて
10時間攪拌した後、大気中1000℃で2時間仮焼成
し、これを300ccの水と共にアルミナポットに入れ
、アルミナボールで15時間粉砕し、しかる後、150
℃で4時間乾燥させてB 203が1モル%、SiO2
が80モル%、MOが19モル%(Ba03.8モル%
+SrO3,8モル%+CaO3,8モル%+Mg03
.8モル%十ZnO3,8モル%〉の組成の添加成分の
粉末を得た。なお、MOの内容であるBaOとSrOと
CaOとMgOとZnOとの割合は第2表に示すように
いずれも20モル%となる。
On the other hand, in order to obtain the second additive component of sample Nα1 in Table 2, 0.99 g (1 mole part) of B2O3 and Si
68.38 g (80 mol parts) of O2, 10.63 g (3.8 mol parts) of BaCO3, and 7.0 g of SrCO3.
98g (3.8 mol parts) and 5.41g of CaCO3
(3.8 mole parts) and 2.18 g of MgO <3.8
Weighed 4.40 g (3.8 mole parts) of ZnO and 4.40 g (3.8 mole parts) of ZnO, and added 300 cc of alcohol to this mixture.
In addition, after stirring for 10 hours using an alumina ball in a polyethylene pot, it was pre-calcined in the air at 1000°C for 2 hours, put into an alumina pot with 300 cc of water, crushed with an alumina ball for 15 hours, and then, 150
Dry at ℃ for 4 hours to obtain 1 mol% B203, SiO2
is 80 mol%, MO is 19 mol% (Ba0 3.8 mol%
+SrO3, 8 mol% +CaO3, 8 mol% +Mg03
.. A powder of additive components having a composition of 8 mol % and 8 mol % of ZnO3 was obtained. Note that the proportions of BaO, SrO, CaO, MgO, and ZnO, which are the contents of MO, are all 20 mol% as shown in Table 2.

次に、100重量部(1000g)の基本成分に2重量
部(20g)の第2の添加成分を添加し、更に、第1の
添加成分として平均粒径が0.5μmでよく粒の揃った
純度99.0%以上のCr 203を0.1重量部(1
g)添加し、更に、アクリル酸エステルポリマー、グリ
セリン、縮合リン酸塩の水溶液から戊る有機バインダを
基本成分と第1及び第2の添加成分との合計重量に対し
て15重量%添加し、更に、50重量%の水を加え、こ
れ等をボールミルに入れて粉砕及び混合して磁器原料の
スラリーを作製した。
Next, 2 parts by weight (20 g) of the second additive component was added to 100 parts by weight (1000 g) of the basic component, and further, as the first additive component, well-aligned particles with an average particle size of 0.5 μm were added. 0.1 part by weight (1 part by weight) of Cr 203 with a purity of 99.0% or more
g) addition, and further adding 15% by weight of an organic binder extracted from an aqueous solution of an acrylic acid ester polymer, glycerin, and condensed phosphate based on the total weight of the basic component and the first and second additive components; Further, 50% by weight of water was added, and the mixture was placed in a ball mill and ground and mixed to prepare a slurry of porcelain raw materials.

次に、上記スラリーを真空脱泡機に入れて脱泡し、この
スラリーをリバースロールコータに入れ、ここから得ら
れる薄膜成形物を長尺なポリエステルフィルム上に連続
して受は取ると共に、同フィルム上でこれを100℃に
加熱して乾燥させ、厚さ約25μmの未焼結磁器シート
を得た。このシートは長尺なものであるが、これをl0
CI角の正方形に裁断して使用する。
Next, the above slurry is degassed by putting it into a vacuum defoaming machine, and this slurry is put into a reverse roll coater, and the thin film molding obtained from this is continuously coated on a long polyester film, and the same This was dried on a film by heating to 100° C. to obtain an unsintered porcelain sheet with a thickness of about 25 μm. This sheet is long, but it is
Cut it into a square with the CI corner and use it.

一方、内部電極用の導電ペーストは、粒径平均1.5μ
mのニッケル粉末10gと、エチルセルロース0.9g
をブチルカルピトール9.1gに溶解させたものとを撹
拌機に入れ、10時間攪拌することにより得た。この導
電ペーストを長さ14−1@7圓のパターンを50個有
するスクリーンを介して上記未焼結磁器シートの片開に
印刷した後、これを乾燥させた。
On the other hand, the conductive paste for internal electrodes has an average particle size of 1.5 μm.
10g of nickel powder and 0.9g of ethyl cellulose
was dissolved in 9.1 g of butylcarpitol, and the mixture was placed in a stirrer and stirred for 10 hours. This conductive paste was printed on one side of the unsintered porcelain sheet through a screen having 50 patterns each having a length of 14-1@7 circles, and then dried.

次に、上記印刷面を上にして未焼結磁器シートを2枚積
層した。この際、隣接する上下のシートにおいて、その
印刷面がパターンの長手方向に約半分程ずれるように配
置した。更に、この積層物の上下両面にそれぞれ4枚ず
つ厚さ60μmの未焼結磁器シートを積層した6次いで
、この積層物を約50℃の温度−で厚さ方向に約40ト
ンの荷重を加えて圧着させた。しかる後、この積層物を
格子状に裁断し、50個の積層チップを得た。
Next, two unsintered porcelain sheets were laminated with the printed surfaces facing up. At this time, the adjacent upper and lower sheets were arranged so that their printed surfaces were shifted by about half in the longitudinal direction of the pattern. Furthermore, four unsintered porcelain sheets with a thickness of 60 μm were laminated on each of the upper and lower surfaces of this laminate.Next, this laminate was subjected to a load of approximately 40 tons in the thickness direction at a temperature of approximately 50°C. I crimped it. Thereafter, this laminate was cut into a grid shape to obtain 50 laminate chips.

次に、この積層体を雰囲気焼成が可能な炉に入れ、大気
雰囲気中で100℃/hの速度で600℃まで昇温して
、有機バインダを燃焼させた。しかる後、炉の雰囲気を
大気からH2(2体積%)+N2 (98体積%)の雰
囲気に変えた。そして、炉を上述の如き還元性雰囲気と
した状態を保って、積層体加熱温度を600℃から焼結
温度の1150℃まで、100℃/hの速度で昇温して
1150℃(最高温度)を3時間保持した後、100℃
/hの速度で600’Cまで降温し、雰囲気を大気雰囲
気〈酸化性雰囲気〉におきかえて、600℃を30分間
保持して酸化処理を行い、その後、室温まで冷却して積
層焼結体チップを作製した。
Next, this laminate was placed in a furnace capable of firing in an atmosphere, and the temperature was raised to 600° C. at a rate of 100° C./h in an air atmosphere to burn the organic binder. Thereafter, the atmosphere in the furnace was changed from air to an atmosphere of H2 (2% by volume) + N2 (98% by volume). Then, while maintaining the reducing atmosphere in the furnace as described above, the heating temperature of the laminate was increased from 600°C to the sintering temperature of 1150°C at a rate of 100°C/h to 1150°C (maximum temperature). After holding for 3 hours, 100℃
The temperature was lowered to 600'C at a rate of /h, the atmosphere was changed to an atmospheric atmosphere (oxidizing atmosphere), 600°C was maintained for 30 minutes for oxidation treatment, and then the laminated sintered chip was cooled to room temperature. was created.

次に、第1図に示す積層磁器コンデンサ10を得るため
に、3つの誘電体磁器層12と2つの内部@[!14と
から成る積層焼結体チップ15に一対の外部tf#11
6を形成した。なお、外部を極16は、電極が露出する
焼結体チップ15の側面に亜鉛とガラスフリット(gl
as  frit)とビヒクル(vehicle)とか
ら成る導電性ペーストを塗布して乾燥し、これを大気中
で550℃の温度で15分間焼付け、亜鉛電極層18を
形成し、更にこの上に無電解メツキで法で銅層20を形
成し、更にこの上に電気メツキ法でpb−sn半田層2
2を設けたものから戒る。
Next, in order to obtain the multilayer ceramic capacitor 10 shown in FIG. 1, three dielectric ceramic layers 12 and two internal @[! A pair of external tf #11 and a laminated sintered chip 15 consisting of
6 was formed. Note that the external electrode 16 has zinc and glass frit (gl) on the side surface of the sintered chip 15 where the electrode is exposed.
A conductive paste consisting of (as frit) and a vehicle is applied and dried, and this is baked in the air at a temperature of 550° C. for 15 minutes to form a zinc electrode layer 18, and further electroless plating is applied on this. A copper layer 20 is formed using a method, and a pb-sn solder layer 2 is further formed on this using an electroplating method.
I will warn you from those who have set 2.

このコンデンサ10の誘電体磁器層12の厚さは0.0
2m+、一対の内部電極14の対向面積は5間×5間=
2511f12である。なお、焼結後の磁器112の組
成は、焼結前の基本成分と添加成分との混合組成と実質
的に同じである。
The thickness of the dielectric ceramic layer 12 of this capacitor 10 is 0.0
2m+, the opposing area of a pair of internal electrodes 14 is 5 spaces x 5 spaces =
It is 2511f12. Note that the composition of the porcelain 112 after sintering is substantially the same as the mixed composition of the basic components and additive components before sintering.

次に、コンデンサ10の電気特性を測定し、その平均値
を求めたところ、第3表に示す如く、比誘電率ε、が3
820.tanδが1.1%、抵抗率ρが3.9X10
6MΩ・cl、25℃の静電容量を基準にした一55℃
及び+125℃の静電容量の変化率ΔC−55、ΔC1
□5が−10,9%、+3.7%、20℃の静電容量を
基準にした一25℃、+85℃の静電容量の変化率ΔC
、Δ25 C85は−5,1%、−6,2%であった。
Next, when the electrical characteristics of the capacitor 10 were measured and the average value was calculated, as shown in Table 3, the relative dielectric constant ε was 3.
820. tan δ is 1.1%, resistivity ρ is 3.9X10
6MΩ・cl, -55℃ based on 25℃ capacitance
and rate of change of capacitance at +125°C ΔC-55, ΔC1
□5 is -10.9%, +3.7%, rate of change in capacitance ΔC at -25℃, +85℃ based on capacitance at 20℃
, Δ25 C85 were -5.1% and -6.2%.

なお、電気的特性は次の要領で測定した。Note that the electrical characteristics were measured in the following manner.

(A)  比誘電率ε、は、温度20℃、周波数1 k
Hz、電圧(実効値)1.OVの条件で静電容量を測定
し、この測定値一対の内部電極14の対向面積25關2
と一対の内部電極14間の磁器層12の厚さ0.02a
uaから計算で求めた。
(A) The relative permittivity ε is at a temperature of 20°C and a frequency of 1k.
Hz, voltage (effective value) 1. The capacitance is measured under OV conditions, and the measured value is 25 cm2, which is the opposing area of the pair of internal electrodes 14.
The thickness of the ceramic layer 12 between the pair of internal electrodes 14 is 0.02a.
Calculated from ua.

(B)  誘電体損失tanδ(%)は比誘電率と同一
条件で測定した。
(B) Dielectric loss tan δ (%) was measured under the same conditions as the relative dielectric constant.

(C)  抵抗率p<MΩ・cll)は、温度20’C
においてDClooVを1分間印加した後に一対の外部
電極16間の抵抗値を測定し、この測定値と寸法とに基
づいて計算で求めた。
(C) Resistivity p<MΩ・cll) at temperature 20'C
After applying DClooV for 1 minute, the resistance value between the pair of external electrodes 16 was measured, and calculated based on this measured value and the dimensions.

<D)  静電容量の温度特性は、恒温槽の中に試料を
入れ、−55℃、−25℃、0℃、+20℃、25℃、
+40℃、+60℃、+85℃、+105℃、+125
℃の各温度において、周波数1 kHz、電圧(実効値
)1.OVの条件で静電容量を測定し、20″C及び2
5℃の時の静電容量に対する各温度における変化率を求
めることによって得た。
<D) Temperature characteristics of capacitance are determined by placing the sample in a constant temperature bath and measuring temperatures of -55°C, -25°C, 0°C, +20°C, 25°C,
+40℃, +60℃, +85℃, +105℃, +125
At each temperature of ℃, frequency 1 kHz, voltage (effective value) 1. Measure capacitance under OV conditions, 20″C and 2
It was obtained by determining the rate of change at each temperature with respect to the capacitance at 5°C.

以上、試料11QIの作製方法及びその特性について述
べたが、試料11Q2〜100についても、基本成分及
び添加成分の組成、これ等の割合、及び還元性雰囲気で
の焼成温度を第1表〜第3表に示すように変えた池は、
試料馳1と全く同一の方法で積層磁器コンデンサを作製
し、同一方法で電気的特性を測定した。
The manufacturing method and characteristics of Sample 11QI have been described above, but for Samples 11Q2 to 100, the compositions of basic components and additive components, their ratios, and the firing temperature in a reducing atmosphere are shown in Tables 1 to 3. The pond changed as shown in the table is
A multilayer ceramic capacitor was manufactured in exactly the same manner as Sample 1, and its electrical characteristics were measured in the same manner.

第1表は、それぞれの試料の基本成分と第1の添加成分
との組成及び第2の添加成分の添加量を示し、第2表は
それぞれの試料の第2の添加成分の組成を示し、第3表
はそれぞれの試料の焼成温度、及び電気的特性を示す、
なお、第1表の基本成分の欄のx、には組成式の各元素
の原子数、即ちTiの原子数をlとした場合の各元素の
原子数の割合を示す、Xの欄のMg、Znは、一般式の
Mの内容を示し、これ等の欄にはこれ等の原子数が示さ
れ、この合計の欄にはこれ等の合計値(X値)が示され
ている。第1及び第2の添加成分の添加量は基本成分1
00重量部に対する重量部で示されている。第2表の第
2の添加成分のMOの内容の潤には、BaO1Mg01
ZnO,5rO5CaOの割合がモル%で示されている
。第3表において、静電容量の温度特性は、25℃の静
電容量を基準にした一55℃及び+125℃の静電容量
変化率ΔC(%)及びΔC(%)と、−55125 20℃の静電容量を基準にした一25℃及び+85℃の
静電容量変化率ΔC(%)及びΔC8525 〈%〉で示されている。
Table 1 shows the composition of the basic component and first additive component of each sample and the amount of the second additive component added, Table 2 shows the composition of the second additive component of each sample, Table 3 shows the firing temperature and electrical characteristics of each sample.
Note that x in the basic component column of Table 1 indicates the number of atoms of each element in the composition formula, that is, the ratio of the number of atoms of each element when the number of Ti atoms is l; , Zn indicate the content of M in the general formula, the number of atoms thereof is shown in these columns, and the total value (X value) of these is shown in the column of total. The amount of the first and second additive components is 1 of the basic component.
It is expressed in parts by weight relative to 00 parts by weight. The MO content of the second additive component in Table 2 includes BaO1Mg01
The proportions of ZnO and 5rO5CaO are shown in mol%. In Table 3, the temperature characteristics of capacitance are the capacitance change rates ΔC (%) and ΔC (%) at -55 °C and +125 °C based on the capacitance at 25 °C, and -55125 20 °C. The capacitance change rates ΔC (%) and ΔC8525 (%) at −25° C. and +85° C. are shown based on the capacitance of .

第1表〜第3表から明らかな如く、本発明に従う試料で
は、非酸化性雰囲気、1200℃以下のMΩ・C11以
上、静電容量の温度変化率ΔC−55及びΔCが−15
%〜+15%、ΔC125及び25 ΔC85は一10%〜+10%の範囲となり、所望特性
のコンデンサを得ることが出来る。一方、試料NQ7〜
10,26.31.32.37.38.46.47.5
5.56.64〜68.73.74.78.79.89
〜92.99.100では本発明の目的を達成すること
ができない、従って、これ等は本発明の範囲外のもので
ある。
As is clear from Tables 1 to 3, in the samples according to the present invention, in a non-oxidizing atmosphere, at 1200°C or less, MΩ・C11 or more, the temperature change rate of capacitance ΔC-55 and ΔC are -15
% to +15%, ΔC125 and 25 ΔC85 are in the range of -10% to +10%, and a capacitor with desired characteristics can be obtained. On the other hand, sample NQ7~
10, 26.31.32.37.38.46.47.5
5.56.64-68.73.74.78.79.89
~92.99.100 cannot achieve the purpose of the present invention, and therefore they are outside the scope of the present invention.

第3表にはΔC1、ΔC125、ΔC−25、Δ5 Cのみが示されているが、本発明の範囲に属す5 る試料の一25℃〜+85°Cの範囲の種々の静電容量
の変化率へ〇は、−10%〜+10%の範囲に収まり、
また、−55℃〜+125℃の範囲の種々の静電容量の
変化率ΔCは、−15%〜+15%の範囲に収まってい
る。
Although only ΔC1, ΔC125, ΔC-25, and Δ5C are shown in Table 3, various changes in capacitance in the range of 25°C to +85°C are shown in Table 3. To the rate, 〇 falls within the range of -10% to +10%,
Further, various capacitance change rates ΔC in the range of -55°C to +125°C are within the range of -15% to +15%.

次に、組成の限定理由について述べる。Next, the reasons for limiting the composition will be described.

Xの値が、試料11Q38.47.56に示す如く、零
の場合には、ΔC−55が一15%〜+15%の範囲外
となるが、試料NQ39.40.48.49.57.5
8に示す如く、Xの値が0.01の場合には、所望の電
気的特性を得ることができる。従って、Xの値の下限は
0.01である。一方、試料間46.55.64.65
.66.67に示す如く、Xの値が0.12の場合には
、Δc85が一10%〜+10%の範囲外となるが、試
料NQ44.45.52.53.54.61.62.6
3に示す如く、Xの値が0.10の場合には、所望の電
気的特性を得ることができる。従って、Xの値の上限は
0.10である。なお、M成分のMgとZnとはほぼ同
様に働き、これ等から選択された1つを使用しても、又
は複数を使用しても同様な結果が得られる。そして、M
成分の1種又は複数種の何れの場合においてもXの値を
0.01〜0゜10の範囲にすることが望ましい。
If the value of
As shown in 8, when the value of X is 0.01, desired electrical characteristics can be obtained. Therefore, the lower limit of the value of X is 0.01. On the other hand, between samples 46.55.64.65
.. As shown in 66.67, when the value of
As shown in FIG. 3, when the value of X is 0.10, desired electrical characteristics can be obtained. Therefore, the upper limit of the value of X is 0.10. Note that Mg and Zn, which are the M components, work almost in the same way, and the same result can be obtained even if one selected from them is used or a plurality of them are used. And M
It is desirable that the value of X be in the range of 0.01 to 0.10 in either case of one or more of the components.

kの値が、試料NQ68.74に示す如く、1.0より
も小さい場合には、ρがlX106MΩ・cm未満とな
り、大幅に低くなるが、試料NQ69.75に示す如く
、kの値がi、ooの場合には、所望の電気的特性が得
られる。従って、kの値の下限は1.00である。一方
、kの値が、試料間73.78に示す如く、1.05よ
り大きい場合には緻密な焼結体が得られないが、試料間
72.77に示す如く、kの値が1.05の場合には所
望の電気的特性が得られる。従って、kの値の上限は1
.05である。
When the value of k is smaller than 1.0, as shown in sample NQ68.74, ρ becomes less than l×106MΩ・cm, which is significantly lower. However, as shown in sample NQ69.75, when the value of k is smaller than i , oo, desired electrical characteristics can be obtained. Therefore, the lower limit of the value of k is 1.00. On the other hand, if the value of k is larger than 1.05, as shown in the sample interval 73.78, a dense sintered body cannot be obtained, but as shown in the sample interval 72.77, the value of k is 1.05. In the case of 05, desired electrical characteristics can be obtained. Therefore, the upper limit of the value of k is 1
.. It is 05.

第1の添加成分であるCr2O3及び/又はAl2O3
の添加量が試料NQ79.92に示す如く零の場合は、
ΔC−55が一15%以下となるが、試料N1181.
93.94に示す如く添加量が100′!jL量部の基
本成分に対して0.01重量部の場合には所望の特性を
得ることができる。従って第1の添加成分の下限は0.
01である。一方、試料間89.90.91.99.1
00に示す如く添加1が3.10等の様に3.0重量部
よりも多い場合には1250℃で焼成しても緻密な焼結
体が得られないが、試料11Q86.87.88.98
に示す如く添加量が3.0重量部の場合には所望の特性
を得ることができる。従って第1の添加成分の上限は3
.0重量部である。なお、第1の添加成分のCr  O
とAl2O3とはほぼ同様に3 働き、これ等から選択された1つを使用しても、又は複
数を使用しても同様な結果が得られる。そして、第1の
添加成分が1種又は複数種の何れの場合に於いても、添
加量は0.01〜3.0の範囲にすることが望ましい、
なお、この第1の添加成分は、静電容量の温度特性の改
善に寄与する。
Cr2O3 and/or Al2O3 as the first additive component
If the amount added is zero as shown in sample NQ79.92,
Although ΔC-55 is less than 15%, sample N1181.
As shown in 93.94, the amount added is 100'! When the amount is 0.01 part by weight based on jL parts of the basic component, desired characteristics can be obtained. Therefore, the lower limit of the first additive component is 0.
It is 01. On the other hand, between samples 89.90.91.99.1
As shown in Sample 11Q86.87.88.00, when Addition 1 is more than 3.0 parts by weight, such as 3.10, a dense sintered body cannot be obtained even if fired at 1250°C. 98
As shown in the figure, when the amount added is 3.0 parts by weight, desired characteristics can be obtained. Therefore, the upper limit of the first additive component is 3
.. It is 0 parts by weight. Note that the first additive component CrO
and Al2O3 work in almost the same way, and the same results can be obtained even if one selected from them is used or a plurality of them are used. And, regardless of whether the first additive component is one type or multiple types, the amount added is preferably in the range of 0.01 to 3.0.
Note that this first additive component contributes to improving the temperature characteristics of capacitance.

即ち、第1の添加成分の添加によって一55°C〜12
5℃の範囲での静電容量の温度変化率ΔC−55〜ΔC
1□5を一15%〜+15%の範囲に容易に収めること
が可能になると共に、−25°C〜85℃の範囲での静
電容量の温度変化率ΔC−25〜ΔC85を一10%〜
+10%の範囲に容易に収めることが可能になり、且つ
各温度範囲における静電容量の温度変化率の変動幅を小
さくすることができる。また、第1の添加成分は抵抗率
ρを太きくする作用を若干有する。
That is, by addition of the first additive component, the temperature is
Temperature change rate of capacitance ΔC-55 to ΔC in the range of 5℃
1□5 can be easily kept within the range of -15% to +15%, and the temperature change rate of capacitance ΔC-25 to ΔC85 in the range of -25°C to 85°C can be reduced to -10%. ~
It becomes possible to easily keep the capacitance within the range of +10%, and it is possible to reduce the fluctuation range of the temperature change rate of capacitance in each temperature range. Further, the first additive component has the effect of slightly increasing the resistivity ρ.

第2の添加成分の添加量が零の場合には、試料NQ26
.32から明らかな如く、焼成温度が1250℃であっ
ても緻密な焼結体が得られないが、試料NQ27.33
に示す如く、添加量が100重量部の基本成分に対して
0.2重量部の場合には、1190℃の焼成で所望の電
気的特性を、有する焼結体が得られる。従って、第2の
添加成分の下限は0.2重量部である。一方、試料NO
,31,37に示す如く、第2の添加成分の添加量が7
.0重量部の場合には、ε が3000未満となり、更
にΔCあるいはΔC125が一15%〜+1555 %の範囲外となるが、試料NQ30.36に示す如く、
添加量が5.0重量部の場合には所望特性を得ることが
できる。従って、添加量の上限は5゜0重量部である。
When the amount of the second additive component is zero, sample NQ26
.. As is clear from sample NQ27.32, a dense sintered body cannot be obtained even if the firing temperature is 1250°C.
As shown in Figure 2, when the amount added is 0.2 parts by weight per 100 parts by weight of the basic components, a sintered body having desired electrical properties can be obtained by firing at 1190°C. Therefore, the lower limit of the second additive component is 0.2 parts by weight. On the other hand, sample NO.
, 31, 37, the amount of the second additive component added is 7.
.. In the case of 0 parts by weight, ε is less than 3000 and ΔC or ΔC125 is outside the range of -15% to +1555%, but as shown in sample NQ30.36,
When the amount added is 5.0 parts by weight, desired characteristics can be obtained. Therefore, the upper limit of the amount added is 5.0 parts by weight.

第2の添加成分の好ましい組成は、第2図のB2B20
3−8tO2−の組成比を示す三角図に基づいて決定す
ることができる。三角図の第1の点(A)は、試料11
QIのB 203が1モル%、SiO2が80モル%、
MOが19モル%の組成を示し、第2の点(B)は、試
料NQ2のB2O3が1モル%、SiO2が39モル%
、MOが60モル%の組成を示し、第3の点(C)は、
試料馳3のB2O3が29モル%、S iO2が1モル
%、MOが70モル%の組成を示し、第4の点(D)は
、試料NQ4のB2O3が90モル%、SiO2が1モ
ル%、MOが9モル%の組成を示し、第5の点(E)は
、試料NQ5の8203が90モル%、SiO2が9モ
ル%、MOが1モル%の組成を示し、第6の点(F)は
試料NQ6の8203が19モル%、SiO2が80モ
ル%、MOが1モル%の組成を示す。
The preferred composition of the second additive component is B2B20 in FIG.
It can be determined based on a triangular diagram showing the composition ratio of 3-8tO2-. The first point (A) in the triangular diagram is sample 11
QI B 203 is 1 mol%, SiO2 is 80 mol%,
MO shows a composition of 19 mol%, and the second point (B) has a composition of sample NQ2 with 1 mol% of B2O3 and 39 mol% of SiO2.
, MO shows a composition of 60 mol%, and the third point (C) is
Sample No. 3 has a composition of 29 mol% B2O3, 1 mol% SiO2, and 70 mol% MO, and the fourth point (D) has a composition of 90 mol% B2O3 and 1 mol% SiO2 of sample NQ4. , MO shows a composition of 9 mol %, the fifth point (E) shows a composition of 90 mol % of 8203 of sample NQ5, 9 mol % of SiO2, and 1 mol % of MO, and the sixth point ( F) shows the composition of sample NQ6 with 19 mol% of 8203, 80 mol% of SiO2, and 1 mol% of MO.

本発明の範囲に属する試料の添加成分の組成は三角図の
第1〜6の点(A)〜(F)を順に結ぶ6本の直線で囲
まれた領域内の組成になっている。
The composition of the additive components of the sample that falls within the scope of the present invention is within the region surrounded by six straight lines connecting points 1 to 6 (A) to (F) in the triangular diagram in order.

この領域内の組成とすれば、所望の電気的特性を得るこ
とができる。一方、試料NQ7〜lOのように、第2の
添加成分の組成が本発明で特定した範囲外となれば、緻
密な焼結体を得ることができない、なお、MO酸成分例
えば試料81117〜21に示す如<BaOlMgO,
ZnO1SrO1CaOのいずれか1つであってもよい
し、又は他の試料で示すように適当な比率としてもよい
If the composition is within this range, desired electrical characteristics can be obtained. On the other hand, if the composition of the second additive component is outside the range specified in the present invention, as in Samples NQ7-1O, a dense sintered body cannot be obtained. As shown in <BaOlMgO,
It may be any one of ZnO1SrO1CaO, or an appropriate ratio as shown in other samples.

[変形例] 以上、本発明の実施例について述べたが、本発明はこれ
に限定されるものではなく、例えば次の変形例が可能な
ものである。
[Modifications] Although the embodiments of the present invention have been described above, the present invention is not limited thereto, and, for example, the following modifications are possible.

(a)  基本成分の中に、本発明の目的を阻害しない
範囲で微量のMn07(好ましくは0.05〜0.1重
量%)等の鉱化剤を添加し、焼結性を向上させてもよい
、tた、その他の物質を必要に応じて添加してもよい。
(a) A trace amount of mineralizing agent such as Mn07 (preferably 0.05 to 0.1% by weight) is added to the basic ingredients within a range that does not impede the purpose of the present invention to improve sinterability. Other substances may be added as necessary.

(b)  出発原料を、実施例で示したもめ以外の酸化
物又は水酸化物又はその他の化合物としてもよい。
(b) The starting materials may be oxides or hydroxides or other compounds other than those shown in the examples.

(c)  焼成時の非酸化性雰囲気での処理の後の酸化
性雰囲気での処理の温度を600℃以外の焼結温度より
も低い温度(好ましくは500℃〜1000℃の範囲)
としてもよい、即ち、ニッケル等の電極材料と磁器の酸
化とを考慮して種々変更することが可能である。
(c) The temperature of the treatment in the oxidizing atmosphere after the treatment in the non-oxidizing atmosphere during firing is lower than the sintering temperature other than 600 °C (preferably in the range of 500 °C to 1000 °C)
In other words, various changes can be made in consideration of the electrode material such as nickel and the oxidation of the porcelain.

(d)  非酸化性雰囲気中の焼成温度を、ti材料を
考慮して種々変えることができる。ニッケルを内部電極
とする場合には、1050℃〜1200℃の範囲で二ヴ
ゲル粒子の凝集がほとんど生じない。
(d) The firing temperature in a non-oxidizing atmosphere can be varied depending on the Ti material. When nickel is used as the internal electrode, almost no aggregation of Nigel particles occurs in the range of 1050°C to 1200°C.

(e) 焼結を中性雰囲気で行ってもよい。(e) Sintering may be performed in a neutral atmosphere.

(f)  積層磁器コンデンサ以外の一般的な単層の磁
器コンデンサにも勿論適用可能である。
(f) It is of course applicable to general single-layer ceramic capacitors other than multilayer ceramic capacitors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係わる積層型磁器コンデンサ
を示す断面図、 第2図は添加成分の組成範囲を示す三角図である。 12・・・磁器層、14・・・内部電極、16・・・外
部電極。
FIG. 1 is a sectional view showing a multilayer ceramic capacitor according to an embodiment of the present invention, and FIG. 2 is a triangular diagram showing the composition range of additive components. 12... Ceramic layer, 14... Internal electrode, 16... External electrode.

Claims (1)

【特許請求の範囲】 [1] 誘電体磁器と、前記磁器に接触している少なく
とも2つの電極とから成る磁器コンデンサにおいて、 前記磁器が100.0重量部の基本成分と、0.01〜
3.00重量部の第1の添加成分と、0.2〜5.0重
量部の第2の添加成分とから成り、 前記基本成分が、 (Ba_k_−_x M_x)O_kTiO_2(但し
、MはMg、Znの内の少なくとも1種の金属、 kは1.00〜1.05、 xは0.01〜0.10の範囲内の数値)であり、 前記第1の添加成分がCr_2O3とAl_2O_3の
内の少なくとも1種の金属酸化物であり、前記第2の添
加成分がB_2O_3とSiO_2とMO(但し、MO
はBaO、SrO、CaO、MgO及びZnOの内の少
なくとも1種の金属酸化物)から成り、且つ前記B_2
O_3と前記SiO_2と前記MOとの組成範囲がこれ
等の組成をモル%で示す三角図における 前記B_2O_3が1モル%、前記SiO_2が80モ
ル%、前記MOが19モル%の点(A)と、前記B_2
O_3が1モル%、前記SiO_2が39モル%、前記
MOが60モル%の点(B)と、前記B_2O_3が2
9モル%、前記SiO_2が1モル%、前記MOが70
モル%の点(C)と、前記B_2O_3が90モル%、
前記SiO_2が1モル%、前記MOが9モル%の点(
D)と、前記B_2O_3が90モル%、前記SiO_
2が9モル%、前記MOが1モル%の点(E)と、前記
B_2O_3が19モル%、前記SiO_2が80モル
%、前記MOが1モル%の点(F) を順に結ぶ6本の直線で囲まれた領域内のものであるこ
とを特徴とするコンデンサ。 [2]100.0重量部の基本成分と、0.01〜3.
00重量部の第1の添加成分と、0.2〜5.0重量部
の第2の添加成分とから成り、前記基本成分が、 (Ba_k_−_xM_x)O_kTiO_2(但し、
MはMg、Znの内の少なくとも1種の金属、kは1.
00〜1.05、Xは0.01〜0.10の範囲内の数
値)であり、前記第1の添加成分がCr_2O_3とA
l_2O_3の内の少なくとも1種の金属酸化物であり
、前記第2の添加成分がB_2O_3とSiO_2とM
O(但し、MOはBaO、SrO、CaO、MgO及び
ZnOの内の少なくとも1種の金属酸化物)から成り、
且つ前記B_2O_3と前記SiO_2と前記MOとの
組成範囲がこれ等の組成をモル%で示す三角図における
前記B_2O_3が1モル%、前記SiO_2が80モ
ル%、前記MOが19モル%の点(A)と、前記B_2
O_3が1モル%、前記SiO_2が39モル%、前記
MOが60モル%の点(B)と、前記B_2O_3が2
9モル%、前記SiO_2が1モル%、前記MOが70
モル%の点(C)と、前記B_2O_3が90モル%、
前記SiO_2が1モル%、前記MOが9モル%の点(
D)と、前記B_2O_3が90モル%、前記SiO_
2が9モル%、前記MOが1モル%の点(E)と、前記
B_2O_3が19モル%、前記SiO_2が80モル
%、前記MOが1モル%の点(F)とを順に結ぶ6本の
直線で囲まれた領域内のものであることを特徴とする混
合物を用意する工程と、 少なくとも2つの電極部分を有する前記混合物の成形物
を作る工程と、 前記電極部分を有する前記成形物を非酸化性雰囲気で焼
成する工程と、 前記焼成で得られた成形物を酸化性雰囲気で熱処理する
工程と を含む磁器コンデンサの製造方法。
[Scope of Claims] [1] A ceramic capacitor comprising a dielectric ceramic and at least two electrodes in contact with the ceramic, wherein the ceramic contains 100.0 parts by weight of a basic component and 0.01 to 0.01 parts by weight of a basic component.
It consists of 3.00 parts by weight of the first additive component and 0.2 to 5.0 parts by weight of the second additive component, and the basic component is (Ba_k_-_x M_x)O_kTiO_2 (where M is Mg , Zn, k is a numerical value within the range of 1.00 to 1.05, and x is a numerical value within the range of 0.01 to 0.10), and the first additive component is a combination of Cr_2O3 and Al_2O_3. The second additive component is B_2O_3, SiO_2, and MO (however, MO
consists of at least one metal oxide of BaO, SrO, CaO, MgO and ZnO), and the B_2
The composition range of O_3, the SiO_2, and the MO is a point (A) where the B_2O_3 is 1 mol%, the SiO_2 is 80 mol%, and the MO is 19 mol% in a triangular diagram showing these compositions in mol%. , said B_2
Point (B) where O_3 is 1 mol%, SiO_2 is 39 mol%, MO is 60 mol%, and B_2O_3 is 2 mol%.
9 mol%, the SiO_2 is 1 mol%, the MO is 70
Point (C) of mol% and the above B_2O_3 is 90 mol%,
The point where the SiO_2 is 1 mol% and the MO is 9 mol% (
D), the B_2O_3 is 90 mol%, the SiO_
Six wires connect in order the point (E) where B_2O_3 is 19 mol%, the SiO_2 is 80 mol%, and the MO is 1 mol%. A capacitor characterized by being within an area surrounded by a straight line. [2] 100.0 parts by weight of basic components, and 0.01 to 3.
It consists of 00 parts by weight of the first additive component and 0.2 to 5.0 parts by weight of the second additive component, and the basic component is (Ba_k_−_xM_x)O_kTiO_2 (however,
M is at least one metal selected from Mg and Zn, and k is 1.
00 to 1.05, X is a numerical value within the range of 0.01 to 0.10), and the first additive component is Cr_2O_3 and A
1_2O_3, and the second additive component is B_2O_3, SiO_2 and M
O (however, MO is at least one metal oxide of BaO, SrO, CaO, MgO and ZnO),
In addition, the composition range of the B_2O_3, the SiO_2, and the MO is at a point (A ) and the above B_2
Point (B) where O_3 is 1 mol%, SiO_2 is 39 mol%, MO is 60 mol%, and B_2O_3 is 2 mol%.
9 mol%, the SiO_2 is 1 mol%, the MO is 70
Point (C) of mol% and the above B_2O_3 is 90 mol%,
The point where the SiO_2 is 1 mol% and the MO is 9 mol% (
D), the B_2O_3 is 90 mol%, the SiO_
Six wires connecting in order the point (E) where 2 is 9 mol% and the MO is 1 mol%, and the point (F) where the B_2O_3 is 19 mol%, the SiO_2 is 80 mol%, and the MO is 1 mol%. a step of preparing a mixture characterized in that the mixture is within a region surrounded by a straight line; a step of making a molded article of the mixture having at least two electrode portions; and a step of making the molded article having the electrode portions A method for manufacturing a ceramic capacitor, comprising: firing in a non-oxidizing atmosphere; and heat-treating a molded product obtained by the firing in an oxidizing atmosphere.
JP1283709A 1989-10-31 1989-10-31 Porcelain capacitor and manufacture thereof Granted JPH03145113A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1283709A JPH03145113A (en) 1989-10-31 1989-10-31 Porcelain capacitor and manufacture thereof
EP90120256A EP0425970B1 (en) 1989-10-31 1990-10-22 Solid dielectric capacitor and method of manufacture
DE69009000T DE69009000T2 (en) 1989-10-31 1990-10-22 Solid dielectric capacitor and manufacturing method.
US07/601,945 US5051863A (en) 1989-10-31 1990-10-22 Solid dielectric capacitor and method of manufacture
KR1019900017530A KR930004740B1 (en) 1989-10-31 1990-10-31 Solid dielectirc capacitor and method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283709A JPH03145113A (en) 1989-10-31 1989-10-31 Porcelain capacitor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH03145113A true JPH03145113A (en) 1991-06-20
JPH0525374B2 JPH0525374B2 (en) 1993-04-12

Family

ID=17669067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283709A Granted JPH03145113A (en) 1989-10-31 1989-10-31 Porcelain capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03145113A (en)

Also Published As

Publication number Publication date
JPH0525374B2 (en) 1993-04-12

Similar Documents

Publication Publication Date Title
JPH0552604B2 (en)
JPH02228019A (en) Porcelain capacitor and manufacture thereof
JPH0552602B2 (en)
JPH02228018A (en) Porcelain capacitor and manufacture thereof
JPH02228016A (en) Porcelain capacitor and manufacture thereof
JPH02228017A (en) Porcelain capacitor and manufacture thereof
JPH02228015A (en) Porcelain capacitor and manufacture thereof
JPH0544764B2 (en)
JPH02228014A (en) Porcelain capacitor and manufacture thereof
JPS621596B2 (en)
JPH0234552A (en) Dielectric porcelain composition
JPH0552603B2 (en)
JPH03145113A (en) Porcelain capacitor and manufacture thereof
JPH03222311A (en) Ceramic capacitor and manufacture thereof
JPH0234551A (en) Dielectric porcelain composition
JPH03159110A (en) Porcelain capacitor and its manufacture
JPH03171711A (en) Porcelain capacitor and manufacture thereof
JPH0234550A (en) Dielectric porcelain composition
JPH03278415A (en) Porcelain capacitor and manufacture thereof
JPH03159108A (en) Porcelain capacitor and its manufacture
JPH03278416A (en) Porcelain capacitor and manufacture thereof
JPH03177010A (en) Ceramic capacitor and manufacture thereof
JPH03278413A (en) Porcelain capacitor and manufacture thereof
JPH03159109A (en) Porcelain capacitor and its manufacture
JPH03171715A (en) Porcelain capacitor and manufacture thereof