JPH03142909A - Cryogenic vessel - Google Patents

Cryogenic vessel

Info

Publication number
JPH03142909A
JPH03142909A JP27992389A JP27992389A JPH03142909A JP H03142909 A JPH03142909 A JP H03142909A JP 27992389 A JP27992389 A JP 27992389A JP 27992389 A JP27992389 A JP 27992389A JP H03142909 A JPH03142909 A JP H03142909A
Authority
JP
Japan
Prior art keywords
vessel
eddy current
helium
vacuum
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27992389A
Other languages
Japanese (ja)
Inventor
Sunao Ichihara
直 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27992389A priority Critical patent/JPH03142909A/en
Publication of JPH03142909A publication Critical patent/JPH03142909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To assure the reduction in eddy current and the enhancement of safety by a method wherein at least either one out of a helium vessel or a vacuum vessel is formed into a layer structure of a thin wall sheet. CONSTITUTION:The title cryogenic vessel is formed by winding up a helium vessel 3A and a vacuum vessel 4A with a stainless steel thin sheet 3a and then the initial end and the terminal end of the winding are fixed by welding process to be airtightly sealed. Normally, an oxide film is formed on the surface of the stainless steel sheet 3a having the same effect as respective layers are electrically insulated. Accordingly, within the helium vessel 3A and the vacuum vessel 4A, the two layers of the innermost layer and the outermost layer shortcircuited at the welded part are formed of only one turn so that the electric resistance in the circumferential direction may be notably increased comparing with the case of no layer formation. Through these procedures, either the rapid conduction of superconductive coil 1 or the eddy current due to the rapid conduction can be reduced for cutting down the electromagnetic force due to the eddy current.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、極低温容器、特に、急速に充、放電する超
電導コイルを収納する極低温容器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cryogenic container, and particularly to a cryogenic container housing a superconducting coil that rapidly charges and discharges.

[従来の技術] 第3図は例えば特開昭60−147000号公報に示さ
れた従来の極低温容器を示し、図において、超電導コイ
ル(1)が液体ヘリウム(2)を収容するステンレス鋼
製のヘリウム槽(3)に収納されている。
[Prior Art] Fig. 3 shows a conventional cryogenic container disclosed in, for example, Japanese Patent Application Laid-Open No. 60-147000, in which the superconducting coil (1) is made of stainless steel and contains liquid helium (2). It is stored in a helium tank (3).

ヘリウム槽(3)とそれを囲むステンレス鋼製の真空槽
(0間には真空領域(5)が形成されている。
A vacuum region (5) is formed between the helium tank (3) and a stainless steel vacuum tank (0) surrounding it.

超電導コイル(1)は支持構造体(6)により吊下げ支
持されている。
The superconducting coil (1) is suspended and supported by a support structure (6).

液体ヘリウム槽(3〉は真空領域(5〉により真空断熱
されて極低温に保持される。
The liquid helium tank (3) is vacuum insulated by the vacuum region (5) and kept at an extremely low temperature.

次に作用について説明する。超電導コイル(1)を急速
に通電する、あるいは通電しゃ断すると、これに伴って
周囲の金属体には渦電流が誘起される。中でもヘリウム
槽(3)は、超電導コイル(1)に最も近いので、極低
温容器を構成する部材のうちでも大きい渦電流が誘起さ
れる。渦電流がヘリウム(3)に流れると超電導コイル
(1)に流れる電流との相互作用により、超電導コイル
(1)とヘリウム槽(3)には電磁力が発生する。
Next, the effect will be explained. When the superconducting coil (1) is rapidly energized or de-energized, eddy currents are induced in the surrounding metal bodies. Among them, the helium bath (3) is closest to the superconducting coil (1), so that the largest eddy current is induced among the members constituting the cryogenic container. When the eddy current flows through the helium (3), an electromagnetic force is generated between the superconducting coil (1) and the helium bath (3) due to interaction with the current flowing through the superconducting coil (1).

[発明が解決しようとする課題] 以上のような従来の極低温容器では、ヘリウム・槽(3
)は強固な支持構造がなされにくいため、電磁力による
過大な応力が発生し、極端な場合には破壊にいたる。ま
た、超電導コイル(1)の支持構造1体(6)にも過大
な力が加わり、損傷にいたるなどの問題点があった。
[Problem to be solved by the invention] In the conventional cryogenic container as described above, helium bath (3
), it is difficult to construct a strong support structure, so excessive stress is generated due to electromagnetic force, which in extreme cases can lead to destruction. In addition, excessive force is applied to the support structure (6) of the superconducting coil (1), resulting in damage.

この発明は上記のような問題点を解決するためになされ
たもので、渦電流を低減し、もって、安全性の高い極低
温容器を得ることを目的としている。
This invention was made to solve the above-mentioned problems, and aims to reduce eddy currents and thereby obtain a highly safe cryogenic container.

[課題を解決するための手段] この発明に係る極低温容器は、ヘリウム槽、すなわち極
低温冷媒収納槽および真空槽の少ないともいずれかが、
薄肉金属の巻込み成層構造になっている。
[Means for Solving the Problems] The cryogenic container according to the present invention has at least one of the helium tank, that is, the cryogenic refrigerant storage tank and the vacuum tank,
It has a layered structure made of thin metal.

[作 用] この発明においては、ヘリウム槽、真空槽の電気抵抗が
高くなり、超電導コイルを急速に通電あるいは通電しゃ
断したときの渦電流が低減する。
[Function] In this invention, the electrical resistance of the helium tank and the vacuum tank is increased, and the eddy current when the superconducting coil is rapidly energized or cut off is reduced.

[実施例] 以下、この発明の一実施例を第1図、第2図について説
明する。第1図において、ヘリウム槽(3A)と真空槽
(4A)以外の構造は従来の技術について説明した第3
図のものと同じである。この実施例では、ヘリウム槽(
3A)と真空槽(4A)は、例えばステンレス鋼の薄板
を巻込み成層して形成される。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In Fig. 1, structures other than the helium tank (3A) and vacuum tank (4A) are shown in Figure 3, which describes the conventional technology.
It is the same as the one shown in the figure. In this example, a helium bath (
3A) and the vacuum chamber (4A) are formed by rolling and layering thin plates of stainless steel, for example.

次に作用について説明する。上記の構造はヘリウム槽(
3A)についても、真空槽(4A)についても同様?、
CO)で、ヘリウム槽(3A)についてその断面を第2
図に示して説明する。第2図において、ステンレス鋼薄
板(3a)を巻き重ね、その巻き始端(3b)と終端(
3c)が溶接により固定、かつ、気密シールされている
。通常、ステンレス鋼板の表面には酸化層があり、これ
が電気的に高抵抗であるため、各層の間は、電気的に絶
縁されているのと同じ効果がある。したがって、ヘリウ
ム槽(3A)は、溶接部で短絡されている最内層と最外
層の2層が電気的にlターンを形成するのみなので、成
層しない場合に比べ大幅に円周方向の電気抵抗が増す。
Next, the effect will be explained. The above structure is a helium tank (
Is the same true for 3A) and the vacuum chamber (4A)? ,
CO), and the cross section of the helium tank (3A) is
This will be explained using a diagram. In Fig. 2, a thin stainless steel plate (3a) is rolled up, and its winding start end (3b) and end end (
3c) is fixed by welding and hermetically sealed. Usually, there is an oxidized layer on the surface of a stainless steel plate, which has high electrical resistance, so each layer has the same effect as electrical insulation. Therefore, in the helium tank (3A), the two layers, the innermost layer and the outermost layer, which are short-circuited at the welding part, only form an electrical L-turn, so the electrical resistance in the circumferential direction is significantly lower than when no layers are formed. Increase.

一方、ヘリウム槽(3A)には内圧が、真空槽(4A)
には大気圧の外圧が作用するが、これら圧力に対する強
さは、成層された肉厚で決まるので、成層により強度的
な低下がもたらされることはない。
On the other hand, the internal pressure in the helium tank (3A) is
Although the external pressure of atmospheric pressure acts on the material, the strength against these pressures is determined by the layered wall thickness, so the layered structure does not result in a decrease in strength.

このように、ヘリウム槽(3A)と真空m (4A)の
周方向電気抵抗が大なるため、超電導コイル(1)の急
速通電あるいは急速放電による渦電流は大幅に軽減され
、したがって、渦電流による電磁力も大幅に低減される
。このため、ヘリウム槽(3A)、真空槽(4^)、超
電導コイル(1〉の支持構造体(6)に作用する力、応
力は微弱であり、構造的に安全である。
In this way, since the circumferential electrical resistance between the helium tank (3A) and the vacuum m (4A) is large, the eddy current caused by rapid energization or rapid discharge of the superconducting coil (1) is greatly reduced, and therefore, the eddy current caused by the eddy current is greatly reduced. Electromagnetic forces are also significantly reduced. Therefore, the force and stress acting on the helium tank (3A), the vacuum tank (4^), and the support structure (6) of the superconducting coil (1>) are weak and are structurally safe.

また、渦電流によるヘリウム槽(3^)の発熱も低減さ
れ、高価な冷媒の消費量も節約される。
Furthermore, heat generation in the helium tank (3^) due to eddy currents is also reduced, and consumption of expensive refrigerant is also saved.

なお、上記実施例では、ヘリウム槽(3A)と真空槽(
4^)の両者を成層したものとしたが、いずれかのみを
成層することでもよい。
In addition, in the above embodiment, a helium tank (3A) and a vacuum tank (
Although both of 4^) are stratified, only one of them may be stratified.

また、上記実施例では、成層された各層の層間には、特
に電気絶縁物を設けなかったが、層間に薄い電気絶縁膜
を間挿することでもよいし、あるいは薄板(3a)の表
面に電気絶縁膜を積極的に施すことでもよい。
Further, in the above embodiment, no electrical insulating material was provided between the laminated layers, but a thin electrical insulating film may be inserted between the layers, or the surface of the thin plate (3a) may be electrically insulated. It is also possible to actively apply an insulating film.

[発明の効果] 以上のように、この発明によれば、ヘリウム槽および真
空槽の少なくともいずれかを薄肉板の成層構造としたの
で渦電流を低減でき、安全性を向上する効果がある。
[Effects of the Invention] As described above, according to the present invention, since at least one of the helium tank and the vacuum tank has a layered structure of thin plates, eddy current can be reduced and safety can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の立話面図、第2図は同じ
く一部の平断面図、第3図は従来の極低温容器の立話面
図である。 (3A)・・ヘリウム槽(極低温冷媒収納槽)、(3a
)・・薄肉板、(4A)・・真空槽。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is an elevational view of an embodiment of the present invention, FIG. 2 is a partially sectional plan view of the same, and FIG. 3 is an elevational elevational view of a conventional cryogenic container. (3A)...Helium tank (cryogenic refrigerant storage tank), (3a
)... Thin plate, (4A)... Vacuum chamber. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 極低温冷媒収納槽と真空槽からなる真空断熱構造を有す
る円筒形の極低温容器において、前記極低温冷媒収納槽
の円筒部および前記真空槽の円筒部の少なくともいずれ
かが薄肉金属を巻込み成層したものであることを特徴と
する極低温容器。
In a cylindrical cryogenic container having a vacuum insulation structure consisting of a cryogenic refrigerant storage tank and a vacuum chamber, at least one of the cylindrical part of the cryogenic refrigerant storage tank and the cylindrical part of the vacuum tank is stratified with a thin metal wrapped around it. A cryogenic container characterized by being
JP27992389A 1989-10-30 1989-10-30 Cryogenic vessel Pending JPH03142909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27992389A JPH03142909A (en) 1989-10-30 1989-10-30 Cryogenic vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27992389A JPH03142909A (en) 1989-10-30 1989-10-30 Cryogenic vessel

Publications (1)

Publication Number Publication Date
JPH03142909A true JPH03142909A (en) 1991-06-18

Family

ID=17617794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27992389A Pending JPH03142909A (en) 1989-10-30 1989-10-30 Cryogenic vessel

Country Status (1)

Country Link
JP (1) JPH03142909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294503A (en) * 1991-03-25 1992-10-19 Hitachi Ltd Coil body and coil container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294503A (en) * 1991-03-25 1992-10-19 Hitachi Ltd Coil body and coil container
JP2816256B2 (en) * 1991-03-25 1998-10-27 株式会社日立製作所 Coil body

Similar Documents

Publication Publication Date Title
JPS61278109A (en) Conical impregnation-free winding for magnetic resonance
US4242534A (en) Superconductor structure and method for manufacturing same
JPH03142909A (en) Cryogenic vessel
EP0514140B1 (en) Superconductor magnetic shield
US3507038A (en) Method of manufacturing conductors having components of super and normal conductivity
US4234861A (en) Electrical windings
JPS61229306A (en) Superconducting coil
JPS6193604A (en) Superconducting magnet
EP0110400B1 (en) Superconducting wire and method of producing the same
US5285181A (en) Superconducting winding and support structure
JPH04134808A (en) Superconducting magnet
JPS6112647Y2 (en)
JPH0661045A (en) Superconducting magnet
JPH05198429A (en) Superconductor coil
JPH0638368B2 (en) Superconducting coil
JPH01238105A (en) Superconducting power storage device
JP3163164B2 (en) Magnetic shield room
JPS63216312A (en) Foil-wound transformer
JP2550168B2 (en) Foil-wound transformer
JPH01238104A (en) Superconducting power storage device
JPS58105530A (en) Superconductive magnet
US3052959A (en) Methods of making electromagnetic devices
JPH0648644B2 (en) Superconducting device
JPH0218912A (en) Foil wound transformer
JPH0727816B2 (en) Superconducting coil