JPH03142885A - Manufacture of infrared detection element - Google Patents

Manufacture of infrared detection element

Info

Publication number
JPH03142885A
JPH03142885A JP1280075A JP28007589A JPH03142885A JP H03142885 A JPH03142885 A JP H03142885A JP 1280075 A JP1280075 A JP 1280075A JP 28007589 A JP28007589 A JP 28007589A JP H03142885 A JPH03142885 A JP H03142885A
Authority
JP
Japan
Prior art keywords
crystal
cdte
semiconductor crystal
converted
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1280075A
Other languages
Japanese (ja)
Inventor
Kosaku Yamamoto
山本 功作
Tetsuya Kawachi
哲也 河内
Tetsuo Saito
哲男 齊藤
Tamotsu Yamamoto
保 山本
Yoshio Watanabe
渡邊 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1280075A priority Critical patent/JPH03142885A/en
Publication of JPH03142885A publication Critical patent/JPH03142885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To minimize the generation of cross talk and facilitate manufacturing by forming semiconductor crystal formed on a substrate partially with a different thickness and the growing semiconductor crystal for component formation on the substrate by isothermal vapor phase growth process, halting growth work when it is converted into semiconductor crystal equalized in its thickness direction by mutual diffusion, and processing the surface so that its surface may be flat. CONSTITUTION:After the formation of CdTe (x=1.0) crystal 12 including a constitutive element for Hg1-xCdxTe crystal 13 for component formation on an insulation substrate 11, the crystal 12 is etched in such a manner that its thickness may differ partially. Then, the crystal 13 is formed based on an isothermal vapor phase growth process. At first, a thin region 12A of the CdTe crystal is converted into Hg1-xCdxTe by the mutual diffusion between the CdTe crystal and the Hg1-xCdxTe. Isothermal vapor phase growth work is halted when the thin region of the CdTe crystal has been converted into Hg1-xCdxTe whose composition value is equalized in its thickness direction. Due to this process, the value x of the Hg1-xCdxTe crystal 13B converted in a thicker region 12B of the CdTe crystal is greater than the value x of the Hg1-xCdxTe crystal 13A converted in a thin region 12A of the CdTe crystal.

Description

【発明の詳細な説明】 〔概 要〕 赤外線検知素子の製造方法に関し、 画素間のクロストークの発生の少ない赤外線検知素子の
製造方法を目的とし、 基板上に形成すべき素子形成用半導体結晶の構成元素を
含む半導体結晶を部分的に厚さを異ならせて形t!、後
、 該基板上に前記素子形成用半導体結晶を等温気相成長方
法で成長し、 前記半導体結晶の部分的に厚さの薄い半導体結晶の領域
が相互拡散により厚み方向に組成の均一な素子形成用半
導体結晶に変換した時に、素子形成用半導体結晶の成長
作業を停止した後、前記基板上に等温気相成長方法で形
成された素子形成用半導体結晶の表面を平坦に加工し、
前記厚さの薄い側の半導体結晶が変換された素子形成用
半導体結晶に素子形成用の不純物原子を導入して素子を
形成することで構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing an infrared sensing element, the present invention aims at a method for manufacturing an infrared sensing element that causes less crosstalk between pixels, and a semiconductor crystal for forming the element to be formed on a substrate. Semiconductor crystals containing constituent elements are partially made with different thicknesses to form t! After that, the semiconductor crystal for forming an element is grown on the substrate by an isothermal vapor phase growth method, and the partially thin semiconductor crystal region of the semiconductor crystal is interdiffused to form an element with a uniform composition in the thickness direction. When converted into a semiconductor crystal for forming an element, after stopping the growth operation of the semiconductor crystal for forming an element, the surface of the semiconductor crystal for forming an element formed on the substrate by an isothermal vapor phase growth method is processed to be flat;
An element is formed by introducing impurity atoms for element formation into a semiconductor crystal for element formation into which the semiconductor crystal on the thinner side is converted.

〔産業上の利用分野〕[Industrial application field]

本発明は赤外線検知素子の製造方法に係り、特にクロス
トークの発生がない赤外線検知素子の製造方法に関する
The present invention relates to a method of manufacturing an infrared sensing element, and more particularly to a method of manufacturing an infrared sensing element that does not cause crosstalk.

赤外線検知素子はエネルギーバンドギャップの狭い水銀
・カドミウム・テルル(HgI−x Cdx Te)の
ような化合物半導体結晶に形成されており、このような
赤外線検知素子は該検知素子で検知すべき赤外線画像の
解像度を向上させるために益々高密度に形成するように
戒っている。
Infrared sensing elements are formed of compound semiconductor crystals such as mercury-cadmium-tellurium (HgI-x Cdx Te), which have a narrow energy bandgap. In order to improve resolution, it is advisable to form them at higher and higher densities.

〔従来の技術〕[Conventional technology]

従来の赤外線検知素子は、第5図に示すように赤外線を
透過するCdTe基+Ji l上に液相エピタキシャル
威長方法等により素子形成用のP型のHgI−xCd、
 Teより戒るエピタキシャル結晶2を形成した後、該
エピタキシャル結晶2の所定領域にN型の導電型のボロ
ン(B)原子をイオン注入してN型層3A、38.3C
を形成し、このHfh−x Cdx Teのエピタキシ
ャル結晶2とN型層3A、3B、3CとのP−N接合4
によって光起電力型の赤外線検知素子5^、5B、5C
を形成している。
As shown in FIG. 5, the conventional infrared sensing element is made of P-type HgI-xCd, which is used to form the element by a liquid phase epitaxial growth method, on a CdTe base + JIl that transmits infrared rays.
After forming the epitaxial crystal 2 that is more stable than Te, boron (B) atoms of N-type conductivity are ion-implanted into predetermined regions of the epitaxial crystal 2 to form N-type layers 3A, 38.3C.
A P-N junction 4 is formed between the Hfh-x Cdx Te epitaxial crystal 2 and the N-type layers 3A, 3B, and 3C.
Photovoltaic infrared sensing elements 5^, 5B, 5C by
is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところでこのような赤外線検知素子5A、5B、5Cは
、その検知素子の間隔を狭くして高密度に配設して赤外
線画像を高解像度に形成する必要がある。
Incidentally, such infrared detecting elements 5A, 5B, and 5C need to be arranged at high density with narrow intervals between the detecting elements to form an infrared image with high resolution.

そのため、第5図に示すようにCdTe基板l基板面側
より矢印AおよびB方向に沿って赤外線を入射した場合
、この検知素子5Aと5B、および5Bと5C間に入射
した赤外線により光電変換されて発生したキャリア6^
は、赤外線検知素子5^と5B、および赤外線検知素子
5Bと5Cの両者の検知素子に跨がって導入されるよう
になり、そのため、赤外線検知素子5Bの直下より入射
した矢印Cに示す赤外線が光電変換されたキャリア6B
に前記キャリア6Aが重畳し、クロストークの発生を見
ることになり、解像度の悪い検知素子と成る問題がある
Therefore, as shown in Figure 5, when infrared rays are incident from the CdTe substrate surface side along the directions of arrows A and B, the infrared rays incident between these detection elements 5A and 5B and between 5B and 5C are photoelectrically converted. Carrier that occurred 6^
is now introduced across both the infrared sensing elements 5^ and 5B, and the infrared sensing elements 5B and 5C, so that the infrared rays shown by arrow C incident from directly below the infrared sensing element 5B Carrier 6B is photoelectrically converted
The carrier 6A is superimposed on the sensor, causing crosstalk, resulting in a sensing element with poor resolution.

このようなりロストークの発生を防止するために本出願
人は以前に特願昭63−60778号に於いて、第6図
に示すように、CdTe基板l基板面な化合物半導体基
板上に第1のHgI−x Cdg Teのエピタキシャ
ル結晶をバッファ層7として形成後、該バッファ層より
X値の小さい第2のHgI−x Cdx Te結晶層8
を設け、該第2の”g+−x Cdz Te結晶層8を
、該第2のHgI−x Cdx Te結晶層8よりX値
の大きイHg+−x Cd、 Te結晶層9で分離し、
該分離された第2のHgI−x Cdz Te結晶層8
にN型層10を形成して検知素子を形成する赤外線検知
装置を提案している。
In order to prevent the occurrence of such losstalk, the present applicant previously proposed in Japanese Patent Application No. 63-60778, as shown in FIG. After forming an epitaxial crystal of HgI-x Cdg Te as a buffer layer 7, a second HgI-x Cdx Te crystal layer 8 having a smaller X value than the buffer layer is formed.
and separating the second "g+-x Cdz Te crystal layer 8 with a "Hg+-x Cd, Te crystal layer 9 having a larger X value than the second HgI-x Cdx Te crystal layer 8,
The separated second HgI-x Cdz Te crystal layer 8
proposes an infrared detection device in which an N-type layer 10 is formed to form a detection element.

この検知装置では素子間にX値の大きい分WIHtJが
介在しているので、この層に入射する赤外線は透過する
ので、この層内でキャリアが発生することは無く、クロ
ストークも発生しない。
In this detection device, since WIHtJ with a large X value is interposed between the elements, infrared rays incident on this layer are transmitted, so carriers are not generated within this layer and no crosstalk occurs.

然し、このような11g、□Cd、 Te結晶層を分離
する方法は煩雑な工程となる問題があった。
However, this method of separating the 11g, □Cd, Te crystal layer has the problem of a complicated process.

本発明は上記した問題点を解決し、クロストークの発生
が少なく、製造が容易な赤外線検知素子の製造方法を目
的とする。
The present invention aims to solve the above-mentioned problems, and to provide a method for manufacturing an infrared sensing element that causes less crosstalk and is easy to manufacture.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の赤外線検知素子の製造方法
は第1図(a)、および第1図(1))に示すように、
基板ll上に形成すべき素子形成用半導体結晶13の構
成元素を含む半導体結晶12を部分的に厚さを異ならせ
て形成後、 原基t7i 11上に前記素子形成用半導体結晶13を
等温気相成長方法で成長し、 前記半導体結晶12の部分的に厚さの薄い半導体結晶の
領域12Aが相互拡散により厚さ方向に組成の均一な素
子形成用半導体結晶13Aに変換した時に、素子形成用
半導体結晶の成長作業を停止した後、 前記基板上に等温気相成長方法で形成された素子形成用
半導体結晶13の表面を平坦に加工した後、前記厚さの
薄い側の半導体結晶12Aが変換された素子形成用半導
体結晶13Aに素子形成用の不純物原子を導入して素子
を形成することである。
The method for manufacturing an infrared sensing element of the present invention that achieves the above object is as shown in FIG. 1(a) and FIG. 1(1)).
After forming the semiconductor crystal 12 containing the constituent elements of the element-forming semiconductor crystal 13 to be formed on the substrate ll with partially different thicknesses, the element-forming semiconductor crystal 13 is placed on the primordium t7i 11 under isothermal air. When the partially thin semiconductor crystal region 12A of the semiconductor crystal 12 grown by a phase growth method is converted into the element-forming semiconductor crystal 13A having a uniform composition in the thickness direction by interdiffusion, After stopping the semiconductor crystal growth operation, the surface of the element forming semiconductor crystal 13 formed on the substrate by the isothermal vapor phase growth method is processed to be flat, and then the semiconductor crystal 12A on the thinner side is converted. This is to form an element by introducing impurity atoms for element formation into the element-forming semiconductor crystal 13A.

〔作 用〕[For production]

第1図(a)に示すようにサファイア基板のような絶縁
性の基板11上に素子形成用のHg1−x Cdx T
e結晶13の構成元素を含むCdTe (x = 1.
0)結晶12を形成後、該CdTe結晶を部分的に厚さ
が異なるようにエツチングする。
As shown in FIG. 1(a), Hg1-x Cdx T for element formation is placed on an insulating substrate 11 such as a sapphire substrate.
CdTe containing constituent elements of e-crystal 13 (x = 1.
0) After forming the crystal 12, the CdTe crystal is etched so that the thickness is partially different.

或いは、第1図(b)に示すように基板11に凹部領域
14を形成後、該基板上に前記CdTe結晶12を形成
後、該CdTe結晶の表面を平坦に加工して基板上に厚
さが部分的に異なるCdTe結晶を形成する。
Alternatively, as shown in FIG. 1(b), after forming the recessed region 14 on the substrate 11 and forming the CdTe crystal 12 on the substrate, the surface of the CdTe crystal is processed to be flat and the thickness is form CdTe crystals with partially different values.

次いでこのCdTe結晶12にHgI−w CdXTe
の素子形成用半導体結晶13を、等温気相成長方法を用
いて形成する。この等温気相成長方法は、アンプル内に
前記CdTe結晶を形成した基板とIlgt−x Cd
X Teのソース材料とを封入し、加熱して上記、基板
、Hg1−x Cdx Teの溶融したメルト、および
Hgl−、CdXTeのメルトの蒸気の三相平衡により
、前記CdTe結晶上にHgI−、Cdx Teの結晶
を等温気相成長する。
Next, this CdTe crystal 12 is coated with HgI-w CdXTe.
A semiconductor crystal 13 for forming an element is formed using an isothermal vapor phase growth method. In this isothermal vapor phase growth method, the substrate on which the CdTe crystal is formed and the Ilgt-x Cd
HgI-, HgI-, A CdxTe crystal is grown by isothermal vapor phase growth.

すると、このCdTe結晶と、該結晶上に成長されるH
gt−x cdXTeの結晶との間の相互拡散により前
記CdTe結晶の薄い領域12Aが最初にHgI−x 
CdX Teに変換され、このCdTe結晶の薄い領域
が厚み方向に組成(x)値の均一なHgI−x Cdx
 Teに変換された時点でアンプルの温度を低下させて
等温気相成長方法を停止する。
Then, this CdTe crystal and the H grown on the crystal
The thin region 12A of the CdTe crystal first becomes HgI-x due to interdiffusion with the gt-x cdXTe crystal.
The thin region of this CdTe crystal becomes HgI-x Cdx with uniform composition (x) value in the thickness direction.
Once converted to Te, the temperature of the ampoule is lowered and the isothermal vapor phase growth process is stopped.

このようにすると、CdTe結晶の厚い領域12Bでは
変換されたIlgt−* Cdx Te結晶13BのX
値は、CdTe結晶の薄い領域12Aが変換された)I
g+−x Cdg Te結晶13へのX値より大になる
In this way, in the thick region 12B of the CdTe crystal, the converted Ilgt-*Cdx
The value is converted from the thin region 12A of the CdTe crystal) I
g+-x Cdg It becomes larger than the X value for Te crystal 13.

このことを第4図を用いて更に詳述する。This will be explained in more detail using FIG. 4.

第4図Ta)はCdTe結晶にl(g+−x Cdx 
Te結晶を等温気相成長した時の深さ方向の組成分布と
厚みdとの関係を時間t=o、t==t、、t=t、に
ついて示している。縦軸は”g+−x CdつTeのX
値、横軸は厚みdである。
Figure 4 Ta) shows l(g+-x Cdx
The relationship between the composition distribution in the depth direction and the thickness d when a Te crystal is grown in an isothermal vapor phase is shown for times t=o, t==t, t=t. The vertical axis is "g+-x Cd Te's X
The value, the horizontal axis is the thickness d.

図に示すように、気相成長前1=0では一点鎖線のごと
< CdTe結晶の厚みはDoであり、X値はX=1で
あるa Hgt−x Cd++ Teの深さ方向のX値
分布と厚さは等温気相成長方法tとともに変動し、成長
途中の18時点では曲線31に示すように厚みはり。
As shown in the figure, when 1=0 before vapor phase growth, the thickness of the CdTe crystal is Do, and the X value is X=1, as indicated by the dashed line. The thickness changes with the isothermal vapor phase growth method t, and at time point 18 during growth, the thickness increases as shown by curve 31.

でm威勾配を持っている。そして成長を終了した時点t
、では、厚みはD2となりIlgt−x cdXTe結
晶は点線で示すように深さ方向に沿って組成が均一とな
る。
It has an m gradient. and the point at which growth ends, t
, the thickness becomes D2, and the composition of the Ilgt-x cdXTe crystal becomes uniform along the depth direction as shown by the dotted line.

等温気相成長は、表面1戒は一定組成(成長条件で決ま
る)で成長・が進み、厚み方向に組成が均一に或った時
、成長が終了する。その後、幾ら時間が経過しても、厚
み、およびMi或は変動しない。
In isothermal vapor phase growth, growth proceeds with a constant composition (determined by growth conditions) on the surface, and growth ends when the composition is uniform in the thickness direction. Thereafter, no matter how much time passes, the thickness and Mi do not change.

この成長終了時点というのは、厚み方向の組成が均一に
なった時点である。
The point at which this growth ends is the point at which the composition in the thickness direction becomes uniform.

第4図(b)の点線32は厚みが薄いd、のCdTe結
晶(第1図(alでは領域12A上に、HgI−x c
a、lTe結晶を等温気相成長した時の成長終了時(t
=h)の厚み方向m*分布を示し、成長後の厚みはd、
である。
A dotted line 32 in FIG. 4(b) indicates a thin CdTe crystal of d (in FIG.
a, At the end of growth (t
= h) in the thickness direction m* distribution, and the thickness after growth is d,
It is.

第4図(C)の曲線33は厚みがdz(dz >d、)
のCdTe結晶(第1図(a)では領域12B)上に第
4図(b)と同時に(同じ成長条件で) Hgt−x 
Cd+t Teを等温気相成長した場合、成長途中の時
間t=t3に於ける形成された)Ig+−x Cd、l
Te結晶の厚み方向組成分布を示す、厚みd4はd、よ
り大である。
Curve 33 in FIG. 4(C) has a thickness of dz (dz > d,)
Hgt-x on the CdTe crystal (region 12B in FIG. 1(a)) of FIG.
When Cd+tTe is grown in an isothermal vapor phase, the formed (Ig+-xCd,l) at time t=t3 during the growth
The thickness d4, which shows the composition distribution in the thickness direction of the Te crystal, is greater than d.

第4図(b)の点線32と第4図(C)の曲線33とを
比較すると、上記等温気相成長を開始して所定時間t。
Comparing the dotted line 32 in FIG. 4(b) and the curve 33 in FIG. 4(C), it can be seen that a predetermined time t has elapsed since the isothermal vapor phase growth was started.

(薄い層の成長終了時)経過した後の、HgI−ヨCd
After (at the end of thin layer growth) HgI-YoCd
.

TeのX値は、元のCdTe結晶の厚さが薄い場合(d
Iの時)は、厚み方向組成は均一で有るが、元のCdT
e結晶の厚さが厚い場合(dXの時〉は表面の最上部を
除< HgI−x Cdx Te層のΦχ値は薄い層に
比べて大となる。
The X value of Te is the same as when the original CdTe crystal is thin (d
I), the composition in the thickness direction is uniform, but the original CdT
When the thickness of e-crystal is thick (when dX), the Φχ value of the HgI-x Cdx Te layer is larger than that of a thin layer except for the top part of the surface.

このX値が大になる程、HgI−x Cdg Te結晶
のエネルギーバンドギャップは大であり、短波長の赤外
線に高感度を有するようになる。
The larger the X value, the larger the energy bandgap of the HgI-x Cdg Te crystal, and the higher the sensitivity to short wavelength infrared rays.

そのため、第1図(a)および(blに示すように、C
dTe結晶12の所定位置に所定形状のCdTe結晶の
厚さの薄い領域12Aを選択的に形成し、その上にHg
I−xCdXTe結晶を等温気相成長して形成し、薄い
層の成長終了時に成長を停止すると、CdTe結晶の厚
さの薄い領域12Aに形成されたl1g、−、Cd、↑
e結晶13AのX値は厚み方向に沿って均一であり、前
記領域12A以外の領域12Bに形成されたHgI−、
Cdx Teの結晶13Bの最上表面を除く層がX値の
小さいf1g+−xCd、 Teの結晶となる。
Therefore, as shown in Fig. 1(a) and (bl), C
A thin region 12A of CdTe crystal having a predetermined shape is selectively formed at a predetermined position of the dTe crystal 12, and Hg
When an I-xCdXTe crystal is formed by isothermal vapor phase growth and the growth is stopped at the end of the growth of a thin layer, l1g, -, Cd, ↑ formed in the thin region 12A of the CdTe crystal.
The X value of the e-crystal 13A is uniform along the thickness direction, and the HgI-, which is formed in the region 12B other than the region 12A,
The layers excluding the uppermost surface of the CdxTe crystal 13B are f1g+-xCd,Te crystals having a small X value.

そしテコノX4′fiの小さいHgI−x Cdx T
eの結晶13Aの所定領域にB原子をイオン注入してN
型層15を形成し、赤外線検知素子16とする。
Small HgI-x Cdx T of Tekono X4'fi
B atoms are ion-implanted into a predetermined region of crystal 13A of e, and N
A mold layer 15 is formed to form an infrared sensing element 16.

このようにすると赤外線検知素子16の間に入射した検
知波長領域の赤外線は、X値が大きくエネルギーバンド
ギャップの大きいHgI−x Cdg Teの結晶13
B内を透過し、この領域ではキャリアを発生しないので
クロストークの発生が少なくなる。
In this way, the infrared rays in the detection wavelength range that are incident between the infrared detecting elements 16 are transmitted to the HgI-x Cdg Te crystal 13 with a large X value and a large energy band gap.
Since the light passes through B and no carriers are generated in this region, the occurrence of crosstalk is reduced.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第2図(a)に示すように、赤外線を透過するサファイ
ア基板11上にCdTe結晶12をMOCVD法で6μ
mの厚さに形成し、該CdTe結晶上に図示しないが所
定パターンのレジスト膜を形成後、該レジスト膜をマス
クとして該CdTe結晶12を3μ論の厚さにエツチン
グしての所定領域に選択的に凹部14を形成する。
As shown in FIG. 2(a), a CdTe crystal 12 of 6 μm is deposited by MOCVD on a sapphire substrate 11 that transmits infrared rays.
After forming a resist film with a predetermined pattern (not shown) on the CdTe crystal, the CdTe crystal 12 is etched to a thickness of 3 μm using the resist film as a mask and selected in a predetermined area. A recessed portion 14 is formed in a specific manner.

次いで第2図(b)に示すように、該CdTe結晶12
上に)Igt−x Cdg Te結晶13を等温気相成
長方法により形成する。
Next, as shown in FIG. 2(b), the CdTe crystal 12
(Top) Igt-x Cdg Te crystal 13 is formed by isothermal vapor phase growth.

この等温気相成長方法は、前記したCdTe結晶を形成
した基板と、水銀・カドミウム・テルルの合金を溶融後
、固めたI1g+−x Cdg Teメルトとをアンプ
ル内に封入し、該アンプルを加熱することでCdTe結
晶、Hgr−x Cdx Teのメルト、該メルトが溶
融して形成された蒸気の三相平衡によって、8g+−x
CdヨTe結晶を基板上に形成することである。そして
この等温気相成長を行う過程で、CdTe結晶とHg1
−x Cd、 Te結晶との相互拡散によってCdTe
結晶がHlh−x Cdx Teに変換されるので、C
dTe結晶の厚さの薄い領域12Aが厚み方向に組成の
均一なHgI−ウCdXTeに変換された時点で等温気
相成長作業を停止する。
In this isothermal vapor phase growth method, the substrate on which the CdTe crystal described above is formed and the I1g+-x Cdg Te melt, which is made by melting and solidifying an alloy of mercury, cadmium, and tellurium, are sealed in an ampoule, and the ampoule is heated. Therefore, due to the three-phase equilibrium of the CdTe crystal, the melt of Hgr-x Cdx Te, and the vapor formed by melting the melt, 8g+-x
The method is to form Cd and Te crystals on a substrate. In the process of this isothermal vapor phase growth, CdTe crystal and Hg1
-x CdTe through interdiffusion with Cd and Te crystals
Since the crystal is converted to Hlh-x Cdx Te, C
The isothermal vapor phase growth operation is stopped when the thin region 12A of the dTe crystal is converted into HgI-CdXTe having a uniform composition in the thickness direction.

このようにすると第2図(C1に示すように、CdTe
結晶の薄い領域12Aが変換されたl(g+−x Cd
x Teの結晶13AのX値は厚み方向に一定であり、
CdTe結晶の厚い領域12Bが変換された)Igt−
yt Cdg Te結晶13Bの最上表面を除くに値(
厚み方向に変動)は上記領域12Aのに値よりも大とな
る。なおHgI−xCdXTe結晶は20μ−程度成長
させる。
In this way, as shown in Figure 2 (C1), CdTe
The thin region 12A of the crystal is transformed into l(g+-x Cd
The X value of xTe crystal 13A is constant in the thickness direction,
The thick region 12B of the CdTe crystal was converted) Igt-
Values except for the top surface of yt Cdg Te crystal 13B (
(variation in the thickness direction) is larger than the value of the region 12A. Note that the HgI-xCdXTe crystal is grown to a thickness of about 20μ.

次いで第2図(d)に示すように、前記基板上に形成さ
れた)Igl−g Cdx Te結晶13を研磨して平
坦に加工する。モしてCdTe結晶の薄い領域12Aが
変換されたHgI−x Cdx Te結晶13Aの所定
領域にB原子をイオン注入してN型層15を形成して赤
外線検知素子16を形成する。
Next, as shown in FIG. 2(d), the Igl-g Cdx Te crystal 13 (formed on the substrate) is polished to make it flat. Then, B atoms are ion-implanted into a predetermined region of the HgI-x Cdx Te crystal 13A into which the thin region 12A of the CdTe crystal has been converted to form an N-type layer 15, thereby forming an infrared sensing element 16.

このようにすると検知素子16と検知素子16の間に入
射した赤外線により形成されたキャリアは高X値のエネ
ルギーバンドギャップの大きいHlh−xCd、 Te
結晶13B中を透過するのでクロストークの発生しない
高解像度の検知素子が得られる。
In this way, the carriers formed by the infrared rays incident between the detection elements 16 are Hlh-xCd, Te, which has a high X value and a large energy band gap.
Since the light passes through the crystal 13B, a high-resolution sensing element without crosstalk can be obtained.

本発明の赤外線検知素子の製造方法の第2実施例に付い
て述べる。
A second embodiment of the method for manufacturing an infrared sensing element of the present invention will be described.

第3図(a)に示すようにサファイア基板11に、イオ
ンミリング法を用いて所定パターンの深さが3μ鴎の凹
部14を形成した後、該基板上にMOCVD法によりC
dTe結晶12を6μ−の厚さに形成後、該CdTe結
晶の表面を平坦に研磨する。
As shown in FIG. 3(a), a predetermined pattern of concave portions 14 having a depth of 3 μm is formed on the sapphire substrate 11 using the ion milling method, and then carbon dioxide is formed on the substrate using the MOCVD method.
After forming the dTe crystal 12 to a thickness of 6 μm, the surface of the CdTe crystal is polished flat.

次いで第3図(blに示すように、前記した等温気相成
長法によりCdTe結晶12上にHgI−x Cdg 
Te結晶13を形成する。このようにするとCdTe結
晶の薄い領域12Aが変換されて形成されたHgI−x
 Cdx Te結晶13AのX値は厚み方向に一定であ
り、CdTe結晶の厚い領域12Bが変換されて形成さ
れたHgI−x CdxTe結晶13Bの最上表面を除
くX値(厚み方向に変動)は領域12Aより大となる。
Next, as shown in FIG. 3 (bl), HgI-x Cdg
A Te crystal 13 is formed. In this way, the thin region 12A of the CdTe crystal is converted and formed HgI-x
The X value of the Cdx Te crystal 13A is constant in the thickness direction, and the X value (varies in the thickness direction) except for the uppermost surface of the HgI-x CdxTe crystal 13B, which is formed by converting the thick region 12B of the CdTe crystal, is the same in the region 12A. becomes larger.

次いで第3図(C)に示すように、前記形成されたHg
r−x Cdx Te結晶13の表面を研磨し平坦に加
工する。
Then, as shown in FIG. 3(C), the formed Hg
The surface of the r-x Cdx Te crystal 13 is polished to make it flat.

次いで第3図(dlに示すように、前記形成されたX値
の小さいHgI−8CdXTe結晶13Aの領域に選択
にB原子をイオン注入してN型1815を形成して赤外
線検知素子16とする。
Next, as shown in FIG. 3(dl), B atoms are selectively ion-implanted into the region of the formed HgI-8CdXTe crystal 13A having a small X value to form an N-type 1815 to form an infrared sensing element 16.

尚、本実施例の他に基板としてGaAs基板、Si基板
を用いても良い。
Note that, in addition to this embodiment, a GaAs substrate or a Si substrate may be used as the substrate.

また、この発明は一次元でも二次元のセンサにでも適用
可能である。
Further, the present invention is applicable to both one-dimensional and two-dimensional sensors.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、赤外線
検知素子の形成領域のHg1−jlCd、 Teの結晶
が、エネルギーバンドギャップの大きい、高X値のHg
+−x CdllTeの結晶で囲まれて形成されている
ので、検知素子間に入射した検知波長の赤外線は透過す
るのでクロストークの発生を見ない高解像度の高感度の
赤外線検知素子が容易に得られる効果がある。
As is clear from the above description, according to the present invention, the Hg1-jlCd, Te crystal in the formation region of the infrared sensing element is a Hg1-jlCd, Te crystal with a large energy band gap and a high X value.
+-x Since it is surrounded by CdllTe crystals, the infrared rays of the detection wavelength incident between the detection elements are transmitted, making it easy to obtain a high-resolution, high-sensitivity infrared detection element that does not cause crosstalk. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を示す原理図、 第2図(a)より第2図(ロ)迄は、本発明の赤外線検
知素子の製造方法の第1実施例を示す断面図、第3図(
a)より第3図(d)迄は、本発明の赤外線検知素子の
製造方法の第2実施例の工程を示す断面図、 第4図(a)、第4図(b)および第4図(C)はHg
+−x CdxTe結晶の厚み方向組成分布を示す図、
第5図は従来の赤外線検知素子とその不都合を示す模式
図、 第6図は従来の赤外線検知素子の断面図である。 図において、 11は基板(サファイア基板) 、12.12A、12
Bは元のCdTe結晶、13.13A、 13BはHg
+−x Cdx TI3結晶、14は凹部、15はN型
層、16は赤外線検知素子、31.32゜33はX値の
変動曲線を示す。 (Q) (b) 半発明/lガ沃を7Tぞπ0 第 1 図 (Q) (C) (d) 汗発Bf4訂;h訃完特例=qIホを訂尚泪第2図 (b) (C) 剃□訂シ2祷2も統″Jtr+I井井O情母第3図 第 図
FIG. 1 is a principle diagram showing the method of the present invention. FIGS. figure(
From a) to FIG. 3(d) are cross-sectional views showing the steps of the second embodiment of the method for manufacturing an infrared sensing element of the present invention, FIG. 4(a), FIG. 4(b), and FIG. (C) is Hg
A diagram showing the composition distribution in the thickness direction of +-x CdxTe crystal,
FIG. 5 is a schematic diagram showing a conventional infrared detection element and its disadvantages, and FIG. 6 is a sectional view of the conventional infrared detection element. In the figure, 11 is the substrate (sapphire substrate), 12.12A, 12
B is the original CdTe crystal, 13.13A, 13B is Hg
+-x Cdx TI3 crystal, 14 is a concave portion, 15 is an N-type layer, 16 is an infrared sensing element, 31.32° 33 is an X value variation curve. (Q) (b) Half-invention / 7T is π0 Fig. 1 (Q) (C) (d) Sweat Bf4 revision; (C) Shave □ Correction 2 Sei 2 Moto ``Jtr + Ii Ojomo Fig. 3 Fig.

Claims (1)

【特許請求の範囲】  基板(11)上に形成すべき素子形成用半導体結晶(
13)の構成元素を含む半導体結晶(12)を部分的に
厚さを異ならせて形成後、 該基板(11)上に前記素子形成用半導体結晶(13)
を等温気相成長方法で成長し、 前記半導体結晶(12)の部分的に厚さの薄い半導体結
晶の領域(12A)が相互拡散により厚み方向に均一な
素子形成用半導体結晶(13A)に変換した時に、素子
形成用半導体結晶(13)の成長作業を停止した後、 前記基板上に等温気相成長方法で形成された素子形成用
半導体結晶の表面を平坦に加工し、前記厚さの薄い側の
半導体結晶(12A)が変換された素子形成用半導体結
晶(13A)に素子形成用の不純物原子を導入して素子
を形成することを特徴とする赤外線検知素子の製造方法
[Claims] A semiconductor crystal for forming an element to be formed on a substrate (11) (
After forming a semiconductor crystal (12) containing the constituent elements (13) with partially different thicknesses, the semiconductor crystal (13) for forming an element is placed on the substrate (11).
is grown by an isothermal vapor phase growth method, and the partially thin semiconductor crystal region (12A) of the semiconductor crystal (12) is converted into a semiconductor crystal (13A) for device formation that is uniform in the thickness direction by interdiffusion. At this time, after stopping the growth operation of the semiconductor crystal (13) for forming an element, the surface of the semiconductor crystal for forming an element (13) formed on the substrate by isothermal vapor phase growth is processed to be flat and the thin layer is formed. A method for manufacturing an infrared sensing element, characterized in that an element is formed by introducing impurity atoms for element formation into a semiconductor crystal for element formation (13A) into which the side semiconductor crystal (12A) has been converted.
JP1280075A 1989-10-27 1989-10-27 Manufacture of infrared detection element Pending JPH03142885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1280075A JPH03142885A (en) 1989-10-27 1989-10-27 Manufacture of infrared detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1280075A JPH03142885A (en) 1989-10-27 1989-10-27 Manufacture of infrared detection element

Publications (1)

Publication Number Publication Date
JPH03142885A true JPH03142885A (en) 1991-06-18

Family

ID=17619956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1280075A Pending JPH03142885A (en) 1989-10-27 1989-10-27 Manufacture of infrared detection element

Country Status (1)

Country Link
JP (1) JPH03142885A (en)

Similar Documents

Publication Publication Date Title
US5256550A (en) Fabricating a semiconductor device with strained Si1-x Gex layer
US7361526B2 (en) Germanium photo detector having planar surface through germanium epitaxial overgrowth
US6967112B2 (en) Three-dimensional quantum dot structure for infrared photodetection
JPS60210831A (en) Manufacture of compound semiconductor crystal substrate
EP0448692B1 (en) Method of forming a monocrystalline semiconductor layer on a non-monocrystalline substrate
JPH03142885A (en) Manufacture of infrared detection element
US3823043A (en) Method of manufacturing semiconductor body
US4263065A (en) Semi-open liquid phase epitaxial growth system
TW202105755A (en) Photodetector structures formed on high-index substrates
JPS59188966A (en) Manufacture of solid-state image pickup device
Pfeiffer et al. Suppression of low angle grain boundaries in seeded thick Si films recrystallized between SiO2 layers
JPH01149488A (en) Photosensor and manufacture thereof
JPS63291897A (en) Method for growing single crystal membrane
JPH05129580A (en) Manufacture of photodetector
JPH05343727A (en) Infrared detector and its manufacture
JPH0330479A (en) Infrared detector
JPH0670971B2 (en) Crystal growth method
JPH09232603A (en) Manufacture of infrared detector
JPS6354730A (en) Manufacture of hgcdte epitaxial film
JPH0625955Y2 (en) Liquid phase epitaxial growth system
JP2647954B2 (en) Method of forming semiconductor light receiving device
JPH02278739A (en) Growth of epitaxial crystal
JPH05167089A (en) Fabrication of semiconductor crystal
JPH03270269A (en) Manufacture of photodetector
JPH03219670A (en) Manufacture of photoelectric transducer