JPH03142703A - Method and device for manufacturing thin film magnetic head - Google Patents

Method and device for manufacturing thin film magnetic head

Info

Publication number
JPH03142703A
JPH03142703A JP27837289A JP27837289A JPH03142703A JP H03142703 A JPH03142703 A JP H03142703A JP 27837289 A JP27837289 A JP 27837289A JP 27837289 A JP27837289 A JP 27837289A JP H03142703 A JPH03142703 A JP H03142703A
Authority
JP
Japan
Prior art keywords
thin film
marker
processing
gap depth
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27837289A
Other languages
Japanese (ja)
Inventor
Toshio Tamura
利夫 田村
Shinichi Nagashima
長嶋 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27837289A priority Critical patent/JPH03142703A/en
Publication of JPH03142703A publication Critical patent/JPH03142703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To execute the finish work of a submicron order for the gap depth of a magnetic head by measuring the dimension of a marker by a photodetecting means, feeding track the measured result to a relative positioning means and executing grinding and finishing. CONSTITUTION:In the thin film element part of each head chip, a marker 25 for gap depth detection to appear on a working surface with the work is provided in advance and the dimension of the marker 25 is measured by a photodetecting means 20. The measured result is fed back to a relative positioning means 21, which can control a relative position to an object 11 to be worked with high accuracy, and the grinding is executed by a rotary grindstone 15 based on feedback data. Further, the finishing is executed by a grinding tape 18 for finish. Thus, the accuracy for the gap depth of the thin film magnetic head can be controlled with high working efficiency by the submicron order.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜磁気ヘッドの製造方法および製造装置に係
シ、特に、磁気ヘッドのギャップ深さを高精度に仕上げ
加工することのできる薄膜磁気ヘッドの製造方法および
製造装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for manufacturing a thin film magnetic head, and in particular, to a thin film magnetic head that can finish the gap depth of a magnetic head with high precision. The present invention relates to a head manufacturing method and manufacturing apparatus.

〔従来の技術〕[Conventional technology]

薄膜磁気ヘッドは、第3図に示すように、基板1上に、
絶縁体2を介して、下部磁性体3、上部磁性体5、絶縁
体4、導体コイル6をパターン形成し、磁性体3と5と
の間に住5〜2μmの微小ギャップを設け、上部ギャッ
、プ側を加工し、所定のギャップ深さdを得ることによ
って作製される。
As shown in FIG. 3, the thin film magnetic head has a substrate 1 with
A lower magnetic body 3, an upper magnetic body 5, an insulator 4, and a conductor coil 6 are patterned through an insulator 2, and a minute gap of 5 to 2 μm is provided between the magnetic bodies 3 and 5, and the upper gap is , by machining the gap side to obtain a predetermined gap depth d.

このギャップ深さdは、磁気ヘッドの性能に大きく影響
するため、薄膜ヘッドでは特に厳しい寸法公差が要求さ
れ、1μm以下の公差が要求されている。このため、上
記上部ギャップ側の加工に際してギャップ深さdを測定
する必要があるが、磁気コアが保護膜7によって覆われ
ているため、精度のよい測定が困難である。
Since this gap depth d greatly affects the performance of the magnetic head, particularly strict dimensional tolerances are required for thin film heads, and tolerances of 1 μm or less are required. Therefore, it is necessary to measure the gap depth d when processing the upper gap side, but since the magnetic core is covered with the protective film 7, accurate measurement is difficult.

これに対処する方法として、これまでに、ギャップ深さ
dを示す検知用マーカを薄膜形成する方法が数多く提案
されている0例えば、特開昭第49−74519号公報
記載のように、マーカとして電気抵抗検知用素子を形成
し、加工時に、該素子の電気抵抗値の変化を利用してギ
ャップ深さdを求める方法がある。しかし、この場合電
気抵抗値とギャップ深さdとの直接的対応がとbiいと
いう問題がある。
To deal with this, many methods have been proposed to date in which a thin film is formed as a detection marker indicating the gap depth d. There is a method in which an electrical resistance sensing element is formed and the gap depth d is determined by utilizing changes in the electrical resistance value of the element during processing. However, in this case, there is a problem that the direct correspondence between the electrical resistance value and the gap depth d is difficult.

筐た、加工面上に現われるギャップ深さ検知用マーカの
寸法t−光学的に測定することによってギャップ深さを
検知する方法も提案されている(例えば、特開昭第54
−58426号公報記載)。
A method of detecting the gap depth by optically measuring the dimension t of a gap depth detection marker appearing on the machined surface has also been proposed (for example, Japanese Patent Laid-Open No. 54
-58426 publication).

この方法は、第4図および第5図に示すように、磁気コ
アの両側に全く同一の直角三角形の2つの図形9および
10を逆向きに組合わせてなるマーカ8を形成してかき
、加工の進行に伴って変化する寸法X およびX、を光
学的に測定することによってギャップ深さdを求める方
法である。この場合、図形9,10の中心の線幅は同じ
寸法となっていて、ここをマーカ基準位置Bとし、基準
位置Bがイヤツブ深さ基準位魔人と一致するように形成
されている。これによってギャップ深さdは、であられ
されることとなυ、xlおよびxbを測定することによ
ってdを求めることができる。この場合に、ギャップ深
さdの公差をサブミクロン範囲に抑えるためには上記マ
ーカの寸法読取シ精度を(L1μm前後とする必要がち
シ、このためには加工面の表面粗さを精度よく仕上げる
ことを要し、上記公報記載の例においてもラッピング加
工を施すことが挙げられている。しかしながら、ラッピ
ング加工を行う場合には、ギャップ深さの測定は精度よ
く行い得ても、寸法制御を行うことが難しく、筐た、加
工時間を管理しても、誤差が大きいために、高い加工精
度を得ることができない。
In this method, as shown in FIGS. 4 and 5, a marker 8 is formed on both sides of the magnetic core by combining two identical right-angled triangular figures 9 and 10 in opposite directions, and then processed. This method determines the gap depth d by optically measuring the dimensions X and X, which change as the gap progresses. In this case, the line widths at the center of the figures 9 and 10 are the same size, and this is set as the marker reference position B, and the reference position B is formed so as to coincide with the eartub depth reference position Majin. As a result, the gap depth d can be determined by measuring υ, xl, and xb. In this case, in order to keep the tolerance of the gap depth d within the submicron range, it is necessary to set the dimension reading accuracy of the above marker to around (L1 μm). Therefore, in the example described in the above-mentioned publication, lapping is also mentioned. However, when lapping is performed, even if the gap depth can be measured with high accuracy, dimensional control is necessary. However, even if the machining time is controlled, it is difficult to obtain high machining accuracy due to large errors.

従って、加工精度を上げるためには測定の頻度を多くす
る必要があシ、加工に多大の時間を要することになる。
Therefore, in order to improve the machining accuracy, it is necessary to increase the frequency of measurement, and the machining takes a lot of time.

−万、研削加工では、加工寸法制御機能を有してはいる
が、得られる加工面の表面粗さがラッピング加工の場合
ようも悪いため、マーカ読取多精度が低下し、上記01
μm前後の読取シ精度を得ることは困難である。
- Although grinding has a processing dimension control function, the surface roughness of the resulting machined surface is not as good as in lapping, so the marker reading accuracy decreases.
It is difficult to obtain a reading accuracy of around μm.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上述べたように、従来技術にかいては、ギャップ深さ
の寸法精度をサブミクロン範囲で制御しようとする場合
に、ラッピング加工では加工能率が悪く、iた、研削加
工ではマーカの読取り精度が悪いため十分な加工精度が
得られないという問題があった・ 本発明の目的は、上記従来技術の有していた課題を解決
して、加工能率が高く、シかも、サブミクロンの精度で
ギャップ深さを制御することのできる薄膜磁気ヘッドの
製造方法および製造装置を提供することにある。
As mentioned above, in the conventional technology, when trying to control the dimensional accuracy of the gap depth in the sub-micron range, lapping has poor processing efficiency, and grinding has poor marker reading accuracy. The purpose of the present invention is to solve the above-mentioned problems of the conventional technology, to achieve high machining efficiency, and to form gaps with submicron accuracy. An object of the present invention is to provide a method and apparatus for manufacturing a thin film magnetic head that can control the depth.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、多数個の薄膜素子を有するヘッドブロック
テープ走行面の加工において、各々のヘッドチップの薄
膜素子部に予め設けた加工に伴って該加工面にあらわれ
るギャップ深さ検知用マーカの寸法を測定することので
きる光学的検知手段と、該測定結果のフィードバックに
よって被加工物との相対的位置決めを高精度に制御でき
る相対的位置決め手段と、該位置決め結果にもとずいて
研削加工を行う回転砥石および仕上げ用研摩テープから
iる加工手段とを備えた製造装置を用いて、各々のヘッ
ドチップの薄膜素子部に、加工に伴って該加工面にあら
ゆるギャップ深さ検知用マーカを予め設けてj?き、該
マーカの寸法を光学的検知手段により測定し、該測定結
果を被加工物との相対的位置決めを高精度に制御できる
相対的位置決め手段にフィードバックし、該フィードバ
ックデ−タにもとずいて回転砥石により切削加工し、さ
らに仕上げ用研摩テープにより仕上げ加工を行うことに
よって達成することができる。
The above purpose is to improve the dimensions of the gap depth detection marker that appears on the machined surface due to the processing provided in advance on the thin film element portion of each head chip when processing a head block tape running surface that has a large number of thin film elements. An optical detection means that can perform measurement, a relative positioning means that can control relative positioning with the workpiece with high precision by feedback of the measurement results, and a rotation that performs grinding based on the positioning results. Using a manufacturing device equipped with a grindstone and a processing means consisting of a finishing abrasive tape, various gap depth detection markers are previously provided on the thin film element portion of each head chip on the processed surface during processing. j? Then, the dimensions of the marker are measured by an optical detection means, the measurement results are fed back to a relative positioning means that can control relative positioning with the workpiece with high precision, and based on the feedback data, This can be achieved by cutting with a rotary grindstone and finishing with a finishing abrasive tape.

〔作用〕[Effect]

以上の構成により、まず、被加工面を回転砥石により研
削加工した後仕上げ用研摩テープにより仕上げ加工を行
うことによって、被加工物の加工面粗さを最大高さ(R
max  )(1027111以下に仕上げることがで
きる。これによって、加工面にあられれたギャップ深さ
検出用マーカの寸法を、光学的検知手段により% a1
μm前後の精度で読取ることが可能にl)%フィードバ
ックされたこの検出信号にもとずいて研削砥石による研
削加工量をI11μ重量位で決定することが可能になる
ので、ギャップ深さの精度をサブミクロンオーダーで制
御することができる。
With the above configuration, the surface to be machined is first ground with a rotary grindstone and then finished with a finishing abrasive tape, so that the roughness of the machined surface of the workpiece can be adjusted to the maximum height (R
max ) (1027111 or less. As a result, the dimensions of the gap depth detection marker formed on the machined surface can be measured by optical detection means by % a1
It is possible to read with an accuracy of around μm. Based on this feedback signal, it is possible to determine the amount of grinding by the grinding wheel at I11 μm, so the accuracy of the gap depth can be improved. It can be controlled on the submicron order.

しかも、被加工物を加工機に取付は固定してから加工終
了筐で、被加工物を取シはずすことなく、連続的に作業
を行うことができるため、被加工物の着脱に伴う誤差の
発生を排除することができ、これによって、サブミクロ
ン精度のギャップ深さの確保が可能となる。
Moreover, since the workpiece can be installed and fixed in the processing machine, and then the work can be carried out continuously without having to remove the workpiece from the housing after processing, there is no error caused by attaching and removing the workpiece. This makes it possible to ensure gap depth with submicron accuracy.

〔実施例〕〔Example〕

以下、本発明の製造方法および製造装置について実施例
によりて具体的に説−する。
Hereinafter, the manufacturing method and manufacturing apparatus of the present invention will be specifically explained with reference to Examples.

第 図は本発明、の製造装置の一実施例の概略構成を示
す斜視図で、除振装置23t−施したペース22上に、
被加工物11を保持し、これに揺動運動を与えるモータ
15および被加工物11の長手方向の傾きを調整する微
小移動機構12を搭載し、これら全体に往復動を与える
テーブル14と、研削砥石15に回転運動を与えるモー
タ16を搭載し、研削砥石15に被加工物11に対する
切込み量を与える移動テーブル17から構成される砥石
加工部と、研摩テープ18を一方向に移動させながら上
記被加工物11の仕上げ加工を行う研摩テープ加工部1
9と、被加工物11の加工面に予め埋設したギャップ深
さ検知用マーカを光学的に読取る光学的検知手段20と
を設置してなシ、さらに制御架[21を備えた構成から
なることを示す。
FIG. 1 is a perspective view showing a schematic configuration of an embodiment of a manufacturing apparatus according to the present invention, in which vibration isolating device 23t is placed on paste 22,
A table 14 is equipped with a motor 15 that holds the workpiece 11 and gives it a swinging motion, a fine movement mechanism 12 that adjusts the inclination of the workpiece 11 in the longitudinal direction, and a table 14 that gives reciprocating motion to the whole. A grinding wheel processing section includes a movable table 17 equipped with a motor 16 that gives rotational motion to the grinding wheel 15, and a movable table 17 that gives the grinding wheel 15 the amount of cut into the workpiece 11, and a grinding wheel processing section that moves the abrasive tape 18 in one direction. Abrasive tape processing section 1 that performs finishing processing on the workpiece 11
9 and an optical detection means 20 for optically reading a gap depth detection marker buried in the processing surface of the workpiece 11 in advance, and further comprising a control rack [21]. shows.

被加工物11は、第2図に示したように、基板上に多数
(例えば、30個)の磁気コア24を形成したもので、
なお、各磁気コア240両端にギアツブ深さ検知用マー
カ25を形成したものである。ここで、該マーカ25は
、例えば、直角2等辺三角形の形状に形成してアシ、加
工面から該マーカ25の幅を測定することにより、ギャ
ップ深さを1=1の対応関係で知ることができる。!!
た、被加工物11の寸法は、長さ約52mm、41mm
1高さ2mmで、32mm方向にピッチ約1mmで磁気
コア24が約30個形成してあυ、この被加工物11の
幅1mm、長さ32mmの面に曲率半径10Rの円筒面
を形成し、しかも、各磁気コア24のギャップ深さを1
5士へ5μmに制御しようとするものである。
As shown in FIG. 2, the workpiece 11 has a large number (for example, 30) of magnetic cores 24 formed on a substrate.
Note that gear lub depth detection markers 25 are formed at both ends of each magnetic core 240. Here, by forming the marker 25 in the shape of, for example, a right-angled isosceles triangle and measuring the width of the marker 25 from the machined surface, the gap depth can be determined using a 1=1 correspondence relationship. can. ! !
In addition, the dimensions of the workpiece 11 are approximately 52 mm in length and 41 mm in length.
1. Approximately 30 magnetic cores 24 are formed with a height of 2 mm and a pitch of approximately 1 mm in the 32 mm direction, and a cylindrical surface with a radius of curvature of 10R is formed on the surface of this workpiece 11 with a width of 1 mm and a length of 32 mm. , Moreover, the gap depth of each magnetic core 24 is set to 1.
This is intended to control the thickness to 5 μm.

加工の手順は次の通うである。すなわち、壕ず、被加工
物11を保持し、モータ15により曲率半径IQRの揺
動運動(例えば、揺動回転数約12゜rpm)を与え、
研削砥石15により被加工物11のギャップ深さ検知用
マーカ24が加工面にあらわれる!で研削加工を行う0
例えば、検知用マーカ24をギャップ深さ0の位置から
60μmの位置壕で形成した場合には、概ねイヤツブ深
さ4071甲程度のところまで研削加工する。この場合
ギャップ深さの精度は、被加工物11の前加工精度、加
工機への取付は精度、研削砥石15による加工精度など
によって影響されるが、±10μm程度には容易に加工
でき、上記マーカ24を加工面にあられすことが可能で
ある。iた、研削砥石15としては、例えば直径100
mmのカップ型で砥粒径◆5000のレジンボンドダイ
ヤモンド砥石を用い、80QOrpmで回転させ加工を
行う、筐た、研削加工中は、被加工物11はテーブル1
4によりストローク約40 m m、速さ約60m l
lI/ rn i nで往復動させる。これによって、
被加工物11の加工面は表面粗さ(LD5〜a1μmR
max程度にまで仕上げることができる。しかし、この
程度の表面粗さではマーカ240寸法を約α1j1!I
Iの精度で測定することは難かしい。
The processing procedure is as follows. That is, the workpiece 11 is held without a groove, and the motor 15 applies a swinging motion with a radius of curvature IQR (for example, swinging rotation speed of about 12° rpm).
The gap depth detection marker 24 of the workpiece 11 appears on the machined surface by the grinding wheel 15! Perform grinding with 0
For example, when the detection marker 24 is formed with a position groove of 60 μm from the position of the gap depth 0, the grinding process is performed to approximately the depth of the ear tip 4071A. In this case, the accuracy of the gap depth is influenced by the pre-machining accuracy of the workpiece 11, the accuracy of the installation to the processing machine, the machining accuracy of the grinding wheel 15, etc., but it can be easily machined to about ±10 μm, and as described above. It is possible to drop markers 24 on the work surface. For example, the grinding wheel 15 has a diameter of 100 mm.
Processing is performed using a resin-bonded diamond grindstone with a cup-shaped abrasive grain size of ◆5000 mm and rotated at 80 Q Orpm.During the grinding process, the workpiece 11 is placed on the table 1.
4 stroke approximately 40 mm, speed approximately 60 ml
Reciprocate with lI/rn in. by this,
The machined surface of the workpiece 11 has a surface roughness (LD5~a1μmR)
It is possible to finish up to about max. However, with this level of surface roughness, the dimensions of the marker 240 are approximately α1j1! I
It is difficult to measure with an accuracy of I.

次いで、被加工物11をテーブル14によって移動し、
研摩テープ加工部19によって、被加工物11の円筒面
の仕上げ加工を行う。この場合、研摩テープ18として
は砥粒径a5μmの酸化クロムテープを用い、これを約
10 m m / m i nの速度で一方向に移動さ
せながら、揺動運動をしている被加工物11の円筒面に
所定の加圧力で圧着して定圧研摩する。この場合の加工
量は加工時間約1分で(L2μm程度であシ、加工量誤
差を±a1μm以下に抑えることは容易にできる。これ
によって、加工面の表面粗さ約(LO2μm Ra+a
x以下に仕上げることができる。
Next, the workpiece 11 is moved by the table 14,
The polishing tape processing unit 19 performs finishing processing on the cylindrical surface of the workpiece 11 . In this case, a chromium oxide tape with an abrasive grain diameter of 5 μm is used as the abrasive tape 18, and is moved in one direction at a speed of about 10 mm/min while the workpiece 11 is being moved in an oscillating motion. It is pressed against the cylindrical surface with a predetermined pressure and polished at a constant pressure. In this case, the machining amount is approximately 1 minute (L2μm), and the machining amount error can be easily suppressed to ±a1μm or less.As a result, the surface roughness of the machined surface is approximately (LO2μm Ra + a
It can be finished to x or less.

次に、テーブル14により被加工物11を光学的検知手
段20の位置に移動させ、加工面にあられれたマーカ2
4の寸法を読取る。この場合、加工面の表面粗さが(L
O2μm Rmax以下となっているため、マカ24の
寸法読取シ精度は約へ1μmか可能となる。この検知手
段20によって被加工物11の長さ32mmの両端数コ
アのギャップ深さを読取ル、この読取り値を制御装置2
1に送シ、被加工物11の左右の傾き量および残υの加
工量を算出し、被加工物11の左右傾きの補正を微小移
動機構12により行い、また、研削砥石加工部の位置決
め精度α1μmを有する移動テーブル17により残シの
加工量を与える。これにより研削加工を行った後、再度
研摩テープ18による研摩加工、光学的検知手段20に
よる測定を行い、被加工物11のギャップ深さを15±
(L5−mとなる1で、同様の操作を繰シ返して行う。
Next, the workpiece 11 is moved to the position of the optical detection means 20 by the table 14, and the marker 2 formed on the processing surface is
Read the dimensions of 4. In this case, the surface roughness of the machined surface is (L
Since O2μm is less than Rmax, the dimension reading accuracy of the macaque 24 can be approximately 1 μm. This detection means 20 reads the gap depth of both fractional cores of the workpiece 11 having a length of 32 mm, and this read value is sent to the control device 2.
1, calculate the amount of horizontal inclination of the workpiece 11 and the machining amount of remaining υ, correct the horizontal inclination of the workpiece 11 using the minute movement mechanism 12, and adjust the positioning accuracy of the grinding wheel processing section. The remaining machining amount is given by the moving table 17 having α1 μm. After performing the grinding process in this manner, the polishing process is performed again using the abrasive tape 18 and measurement is performed using the optical detection means 20, and the gap depth of the workpiece 11 is determined to be 15±.
(Repeat the same operation with 1 which becomes L5-m.

なお、この場合、被加工物11の左右のギャップ深さの
mきの許容値へ5μmを予め制御装置に入力しておけば
よい。
In this case, 5 μm may be input into the control device in advance as the allowable value for the left and right gap depths m of the workpiece 11.

以上の加工装置および加工手順を適用することによって
、はぼ3回の加工で目標の15±a5μmのギャップ深
さを得ることができた。しかも、加工所要時間は約10
分であり、従来のラッピングによる加工の場合と比べて
、大幅な加工時間の短縮をはかることができた。
By applying the above processing apparatus and processing procedure, the target gap depth of 15±a5 μm could be obtained in about three processing steps. Moreover, the processing time is approximately 10
This was a significant reduction in processing time compared to conventional lapping processing.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、多数個の薄膜素子を有するヘッ
ドブロックテープ走行面の加工において、本発明の製造
方法および製造装置を適用することによって、サブミク
ロンで位置決め制御可能な研削加工を行い、しかも、同
一加工機上で研摩テープによる仕上げ加工を連続して行
うことができるため、(LO2μm Rmax以下の加
工面粗さを容易に達成することができ、さらに、光学的
検知手段によりギャップ深さ検知用マーカの寸法を01
μm精度で測定することができるため、従来技術の有し
ていた課題を解決して、磁気ヘッドのギャップ深さを高
精度で、しかも高能率で得ることのできる薄膜磁気ヘッ
ドの製造方法および製造装置を提供することができた・
As described above, by applying the manufacturing method and manufacturing apparatus of the present invention to the processing of a head block tape running surface having a large number of thin film elements, it is possible to perform grinding processing that allows positioning to be controlled at a submicron level. Since the finishing process using the abrasive tape can be performed continuously on the same processing machine, it is possible to easily achieve a machined surface roughness of less than (LO2μm Rmax). Furthermore, the gap depth can be detected by optical detection means. The size of the marker for 01
A manufacturing method and manufacturing method for a thin film magnetic head that can measure with μm accuracy, solves the problems of conventional technology, and can obtain the gap depth of a magnetic head with high accuracy and high efficiency. We were able to provide the equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製造装置の一実施例の構成を示す斜視図
、第2図は本発明の製造方法および製造装置により加工
する被加工物を示す正面図、第3図は薄膜磁気ヘッドの
構成を示す部分断面図、第4図および第5図は従来技術
の製造方法による加工手順を説明するための被加工物の
正面ta>よび原理図である。 1・・・・・・基板、2・・・・・・絶縁体、3・・・
・・・下部磁性体、4・・・・・・絶縁体、5・・・・
・・上部磁性体、6・・・・・・導体コイル、7・・・
・・・保Wt膜、8・・・・・・マーカ、9.10・・
・・・・図形(直角三角形)、11・・・・・・被加工
物、12・・・・・・微小移動機構、13・・・・・・
苺−タ、14・・・・・・チー7’ル、15・・・・・
・研削砥石、16・・・・・・モータ、17・・・・・
・移動テーブル、18・・・・・・研摩テープ、19・
・・・・・研摩テープ加工部、20・・・・・・光学的
検知手段、21・・・・・・制御装置、22・・・・・
・ペース、23・・・・・・除振装置、24・・・・・
・磁気コア、25・i・・・・ギャップ深さ検知用マー
カ。 蔦10 蔦50 第4図 第50
FIG. 1 is a perspective view showing the configuration of an embodiment of the manufacturing apparatus of the present invention, FIG. 2 is a front view showing a workpiece processed by the manufacturing method and manufacturing apparatus of the present invention, and FIG. 3 is a view of a thin-film magnetic head. FIGS. 4 and 5 are a partial cross-sectional view showing the structure, and are a front view of a workpiece and a principle diagram for explaining the processing procedure by the conventional manufacturing method. 1...Substrate, 2...Insulator, 3...
... lower magnetic material, 4 ... insulator, 5 ...
...Top magnetic body, 6...Conductor coil, 7...
... Wt retention film, 8... Marker, 9.10...
...Figure (right triangle), 11...Workpiece, 12...Minute movement mechanism, 13...
Ichigo-ta, 14...Chee7'le, 15...
・Grinding wheel, 16...Motor, 17...
・Moving table, 18... Abrasive tape, 19.
...Abrasive tape processing section, 20...Optical detection means, 21...Control device, 22...
・Pace, 23... Vibration isolator, 24...
・Magnetic core, 25・i...Gap depth detection marker. Ivy 10 Ivy 50 Fig. 4 Fig. 50

Claims (1)

【特許請求の範囲】 1、多数個の薄膜素子を有するヘッドブロックテープ走
行面の加工において、各々のヘッドチップの薄膜素子部
に、加工に伴って該加工面にあらわれるギャップ深さ検
出用マーカを予め設けておき、該マーカの寸法を光学的
検知手段により測定し、該測定結果を被加工物との相対
的位置決めを高精度に制御できる相対的位置決め手段に
フィードバックし、該フィードバックデータにもとずい
て回転砥石により研削加工し、さらに、仕上げ用研摩テ
ープにより仕上げ加工を行うことを特徴とする薄膜磁気
ヘッドの製造方法。 2、多数個の薄膜素子を有するヘッドブロックテープ走
行面の加工装置において、各々のヘッドチップの薄膜素
子部に予め設けた加工に伴って該加工面にあらわれるギ
ャップ深さ検知用マーカの寸法を測定することのできる
光学的検出手段と、該測定結果のフィードバックによっ
て被加工物との相対的位置決めを高精度に制御できる相
対的位置決め手段と、該位置決め結果にもとずいて研削
加工を行う回転砥石および仕上げ用研摩テープからなる
加工手段とを備えてなることを特徴とする薄膜磁気ヘッ
ドの製造装置。
[Scope of Claims] 1. In processing a head block tape running surface having a large number of thin film elements, a marker for detecting the gap depth that appears on the processing surface during processing is attached to the thin film element portion of each head chip. The dimensions of the marker are measured in advance by an optical detection means, the measurement results are fed back to a relative positioning means that can control the relative positioning with the workpiece with high precision, and the dimensions of the marker are measured based on the feedback data. A method for manufacturing a thin film magnetic head, which comprises grinding with a rotating grindstone and finishing with a finishing abrasive tape. 2. In a head block tape running surface processing device having a large number of thin film elements, measure the dimensions of the gap depth detection marker that appears on the processed surface due to the processing previously provided on the thin film element portion of each head chip. a relative positioning means that can control relative positioning with a workpiece with high precision by feedback of the measurement results, and a rotary grindstone that performs grinding based on the positioning results. and processing means consisting of a finishing abrasive tape.
JP27837289A 1989-10-27 1989-10-27 Method and device for manufacturing thin film magnetic head Pending JPH03142703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27837289A JPH03142703A (en) 1989-10-27 1989-10-27 Method and device for manufacturing thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27837289A JPH03142703A (en) 1989-10-27 1989-10-27 Method and device for manufacturing thin film magnetic head

Publications (1)

Publication Number Publication Date
JPH03142703A true JPH03142703A (en) 1991-06-18

Family

ID=17596419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27837289A Pending JPH03142703A (en) 1989-10-27 1989-10-27 Method and device for manufacturing thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH03142703A (en)

Similar Documents

Publication Publication Date Title
US6537138B2 (en) Method of grinding an axially asymmetric aspherical mirror
US4897967A (en) Apparatus for truing a grinding wheel
JPH02237755A (en) Grinding method by grinding stone wheel and its apparatus
US20070087661A1 (en) Dicing apparatus and dicing method
JP2602293B2 (en) Processing method and processing apparatus for aspherical object
JP2849387B2 (en) Method and apparatus for grinding a workpiece with a conductive grinding tool
JP2003039282A (en) Free-form surface working device and free-form surface working method
JPH03142703A (en) Method and device for manufacturing thin film magnetic head
JP2557070Y2 (en) NC dresser error correction device
JPS6260223B2 (en)
JP3396341B2 (en) Automatic bead grinding control method and apparatus
JP2003205459A (en) Polishing machining device and method
JPH0335064B2 (en)
JPH07154117A (en) Resonance frequency adjustment grinding device and its grinding method
JPS6071162A (en) Position correcting device in angular grinding machine
JPS63237866A (en) Highly precision grinding machine
JPH05253837A (en) Abrading condition examining method of grinding wheel
JP2003062751A (en) Waviness removing method, polishing device, workpiece, mold for molding optical element, optical element and printing processor
JPH071332A (en) Grinding wheel position detecting and correcting device
JPH0852640A (en) Force control type machining device serving also as measuring in-process shape
JPS59219155A (en) Mirror finishing machine
JP2883279B2 (en) Wrap jig and lap processing method using the same
JPH06218670A (en) Grinder and grinding work
JP2604089Y2 (en) Grinder
JPH06103512A (en) Method and device matching magnetic head block