JPH03142323A - Differential flow rate measuring instrument - Google Patents

Differential flow rate measuring instrument

Info

Publication number
JPH03142323A
JPH03142323A JP1279977A JP27997789A JPH03142323A JP H03142323 A JPH03142323 A JP H03142323A JP 1279977 A JP1279977 A JP 1279977A JP 27997789 A JP27997789 A JP 27997789A JP H03142323 A JPH03142323 A JP H03142323A
Authority
JP
Japan
Prior art keywords
flow rate
differential
mode
differential flow
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1279977A
Other languages
Japanese (ja)
Inventor
Renzou Hirai
平井 錬造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1279977A priority Critical patent/JPH03142323A/en
Publication of JPH03142323A publication Critical patent/JPH03142323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To easily and quickly execute zero point calibration by providing the measure ment mode where relations between a detected flow rate and a differential flow rate measurement error stored in the teaching mode are referred to correct the differential flow rate measured value every time the value is obtd. CONSTITUTION:A first detector 1 is attached to an inflow passage, and a second detector 2 is attached to an outflow passage. Respective outputs of detectors 1 and 2 are amplified by amplifiers 3 and 4. A differential amplifier 5 outputs the differential voltage between output voltages of amplifiers 3 and 4, namely, a voltage corresponding to the difference flow rate. The voltage is converted by an A/D converter 6 and is fetched into a signal processing part 7 as a differential flow rate (y). The output of the amplifier 3 is converted by an A/D converter 8 and is fetched into the processing part 7 as a detected flow rate F1. The processing part 7 is provided with the teaching mode and the measurement mode. In the teaching mode, plural sets of relations be tween the detected flow rate F1 and a difference flow rate measurement error DELTAy are obtained and are stored in an EEPROM 9. In the measurement mode, relations between the detected flow rate F1 and the measurement error DELTAy stored in the teaching mode are referred to correct the difference flow rate measured value (y) every time the value (y) is obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、2台の電磁式流量検出器を用いた差流量測
定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a differential flow rate measuring device using two electromagnetic flow rate detectors.

(従来の技術) 電磁式流量検出器は、ファラディの法則を利用した導電
性流体の流量測定用計器である。
(Prior Art) An electromagnetic flow rate detector is an instrument for measuring the flow rate of a conductive fluid using Faraday's law.

断面積Sの測定管内に非1m$1定流体を流速Vで流し
、この流速方向と垂直に磁束密度Bをかけると、流速及
び時速のそれぞれに垂直な方向に゛起電力計が生ずる。
When a non-1 m$1 constant fluid is caused to flow at a flow rate V in a measuring tube with a cross-sectional area S, and a magnetic flux density B is applied perpendicular to the flow velocity direction, an electromotive force meter is generated in a direction perpendicular to the flow velocity and the speed.

この時、各パラメータの間にはE=kvB (但し、k
は比例定数)という比例関係があり、流速Vが増減する
と起電力Eは直線的に増減する。
At this time, the distance between each parameter is E=kvB (however, k
is a proportionality constant), and as the flow velocity V increases or decreases, the electromotive force E increases or decreases linearly.

ところで、鉄鋼の圧延などで使用される冷却水の制御に
は、流入流量と流出流量をlI?I定してその差流量を
監視することがある。
By the way, to control the cooling water used in steel rolling, etc., the inflow flow rate and the outflow flow rate are controlled by lI? The differential flow rate may be monitored.

第5図は、このような左施m AN定装置の従来例を示
すブロック図である。
FIG. 5 is a block diagram showing a conventional example of such a left-side AN setting device.

同図に示されるように、この装置は2台の電磁式流量検
出器、すなわち第1検出器1と第2検出器2とを備えて
いる。
As shown in the figure, this device includes two electromagnetic flow rate detectors, namely a first detector 1 and a second detector 2.

これらの検出器1.2の出力電圧は、増幅器3゜4でそ
れぞれ増幅された後、さらに差動増幅器5により両者の
差電圧が求められる。
The output voltages of these detectors 1.2 are each amplified by amplifiers 3 and 4, and then a differential voltage between the two is determined by a differential amplifier 5.

こうして求められた差電圧は、A/D変換器6でデジタ
ル化された後、マイクロプロセッサ等で構成された信号
処理部7へ取り込まれる。
The differential voltage obtained in this way is digitized by an A/D converter 6, and then taken into a signal processing section 7 composed of a microprocessor or the like.

信号処理部7では、A/D変換器6から読み込まれた差
電圧に基づき所定の演算を施して差流量に相当するデー
タを求め、これを図示しない表示器等に表示させ、ある
いは測定データとして外部に出力するものである。
The signal processing unit 7 performs predetermined calculations based on the differential voltage read from the A/D converter 6 to obtain data corresponding to the differential flow rate, and displays this on a display (not shown) or as measured data. It is output to the outside.

ここで、差流量を測定する場合の址準になる零点とは、
流入容量と流出容量とが等しい点のことである。
Here, the zero point that serves as the basis for measuring the differential flow rate is
This is the point where the inflow capacity and outflow capacity are equal.

この零点を調整するには、差流量がある捏度多い場合(
例えば流速換算して0. 3ml s e cli度の
場合)には、適当な流入流量を一点設定し、その時の差
流量出力が零となるように増幅器のゲインなどの調整を
行えば良い。
To adjust this zero point, if there is a large amount of kneading with a differential flow rate (
For example, the flow rate is converted to 0. In the case of 3 ml s e cli degree), it is sufficient to set an appropriate inflow flow rate at one point and adjust the amplifier gain etc. so that the differential flow rate output at that time becomes zero.

その理由は、第6図に示されるように、流入流量Xと検
出器出力Fl、F2との関係は、第1゜第2いずれの検
出器においても、差流量が比較的大きい範囲内において
はほぼ直線とみなすことができるからである。
The reason for this is that, as shown in Fig. 6, the relationship between the inflow flow rate This is because it can be regarded as almost a straight line.

(発明が解決しようとする課題) しかしながら、このような従来の差流量測定装置にあっ
ては、微小な差流量yを測定する場合には、流入流aX
と各検出器出力Fl、F2との関係は直線とみなすこと
ができなくなり、零点は流入流mxに依存して変化する
こととなる。
(Problem to be Solved by the Invention) However, in such a conventional differential flow measuring device, when measuring a minute differential flow y, the inflow flow aX
The relationship between F1 and each detector output Fl, F2 can no longer be regarded as a straight line, and the zero point changes depending on the inflow flow mx.

その為−点だけの零点校正では正しい差流量の零点をと
ることが困難となり、零点校正に手間がかかる他、場合
によっては正しい零点をとることが出来ないという問題
点があった。
Therefore, in the zero point calibration using only - points, it is difficult to obtain the correct zero point of the differential flow rate, and there is a problem that the zero point calibration is time-consuming and, in some cases, it is not possible to obtain the correct zero point.

この発明は上述の問題点に鑑み成されたものであり、そ
のl」的とするところは、この種の電磁式流量検出器を
用いた差流量測定装置において、微小な差流量を測定す
るに際し、所謂零点校正を簡単かつ迅速に行わせること
にある。
This invention has been made in view of the above-mentioned problems, and its main purpose is to provide a differential flow rate measuring device using this type of electromagnetic flow rate detector to measure minute differential flow rates. The purpose of this invention is to easily and quickly perform so-called zero point calibration.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明は、上記の目的を達成するために、それぞれ対
象流路に設置された2台の電磁式流量検出器からの信号
に基いて両流路間における差流量を1Ill定する差流
量測定装置において、前記流路のいずれか一方における
検出流量と前記両流路間における差流量測定誤差との関
係を検出流量を異ならせつつ複数組記憶させる教示モー
ドと、差流量測定値が得られる毎に、前記教示モードに
て記憶された検出流量と着流m 1lF1定誤差との関
係を参1<(シて当該差流量測定値を補正する測定モー
ドと、を具備することを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention detects the difference between two flow paths based on signals from two electromagnetic flow rate detectors installed in each target flow path. A teaching mode in which a plurality of sets of relationships between the detected flow rate in either one of the flow paths and the differential flow rate measurement error between the two flow paths are memorized with different detected flow rates in a differential flow rate measuring device that determines the flow rate by 1Ill; Every time a differential flow rate measurement value is obtained, refer to the relationship between the detected flow rate and the arrival flow rate m1lF1 constant error stored in the teaching mode. It is characterized by comprising:

(作用) このような構成によれば、教示モードへ設定することに
より簡fitかつ迅速に零点校正を行わせることができ
る一方、M1定モードに設定することにより、微小な差
流量であってもこれを正確に測定することができる。
(Function) According to such a configuration, by setting to the teaching mode, zero point calibration can be performed easily and quickly, while by setting to the M1 constant mode, even if there is a minute difference in flow rate. This can be measured accurately.

(実施例) 第1図は、本発明に関わる着流Wk illl装定の一
大施例を示すブロック図である。
(Embodiment) FIG. 1 is a block diagram showing a major embodiment of an incoming Wk ill device according to the present invention.

同図において、第1検出器1は流入流路に取り付けられ
ておりまた第2検出器2は流出流路に取り付けられてい
る。
In the figure, a first detector 1 is attached to the inflow channel, and a second detector 2 is attached to the outflow channel.

これらの検出器1.2の各出力は増幅器3,41こより
l台幅される。
The output of each of these detectors 1.2 is amplified by an amplifier 3,41.

差動増幅器5は、増幅器3の出力電圧と増幅器4の出力
電圧との差電圧、すなわち差流量に相当する電圧を出力
する。
The differential amplifier 5 outputs a voltage difference between the output voltage of the amplifier 3 and the output voltage of the amplifier 4, that is, a voltage corresponding to the differential flow rate.

この差流量に相当する電圧は、A/D変換器6によりA
/Dに変化された後、着流myとして信号処理部7に取
り込まれる。
The voltage corresponding to this differential flow rate is converted to A by the A/D converter 6.
After being changed to /D, it is taken into the signal processing section 7 as the arrival my.

一方、増幅器3の出力はA/D変換器8によりA/Dに
変換された後、第1検出器1による検出流ff1F1と
して信号処理部7に取り込まれる。
On the other hand, the output of the amplifier 3 is converted into A/D by the A/D converter 8, and then taken into the signal processing section 7 as the detection flow ff1F1 by the first detector 1.

信号処理部7は、後述するように、教示モードと測定モ
ードとを備えている。
The signal processing section 7 has a teaching mode and a measurement mode, as will be described later.

そして、教示モードにおいては、流入流量と流出流量と
を一致させた配管状態における第1検出器1による検出
流量F1と差流量測定誤差Δyとの関係を複数組求め、
これをEEPROM9に記憶させる。
Then, in the teaching mode, a plurality of sets of relationships between the detected flow rate F1 by the first detector 1 and the differential flow rate measurement error Δy are obtained in a piping state where the inflow flow rate and the outflow flow rate are matched,
This is stored in EEPROM9.

また、1I−1定モードにおいては、差流量測定値yが
得られる毎に、前記教示モードにて記憶された検出流1
nF1と差流ffi 71111定誤差Δyとの関係を
参照して当該左施ff1llI11定値yを補正するよ
うになっている。
In addition, in the 1I-1 constant mode, each time the differential flow rate measurement value y is obtained, the detected flow rate 1 stored in the teaching mode is
The left applied ff1llI11 constant value y is corrected by referring to the relationship between nF1 and the differential flow ffi 71111 constant error Δy.

第2図は、流入流量と流出流量とを一致させた状態を保
ちつつ、流入流量をxi、x2.x3゜x4.x5.x
6と順に変化させた場合における各検出器1.2の検出
流ff1F1.F2の様子を示すグラフである。
In FIG. 2, while keeping the inflow flow rate and the outflow flow rate the same, the inflow flow rate is changed to xi, x2. x3゜x4. x5. x
The detected flow of each detector 1.2 is changed in order of ff1F1.6. It is a graph showing the state of F2.

同図に示されるように、差流量が微小な領域においては
、流入流量に対し各検出流量Fl、F2は非直線的に変
化する。そのため、各流入流mx1、x2.x3.x4
.x5.x6における差流量測定誤差Δyt、 ΔY2
. Δy3.  ΔY4.  Δy5.  Δy6は個
々に相違する。
As shown in the figure, in a region where the differential flow rate is minute, each of the detected flow rates Fl and F2 changes non-linearly with respect to the inflow flow rate. Therefore, each inlet flow mx1, x2 . x3. x4
.. x5. Differential flow rate measurement error Δyt at x6, ΔY2
.. Δy3. ΔY4. Δy5. Δy6 differs individually.

第3図は、信号処理部7のマイクロプロセッサで実行さ
れる制御プログラムの構成を概略的に示すフローチャー
トである。
FIG. 3 is a flowchart schematically showing the configuration of a control program executed by the microprocessor of the signal processing section 7. As shown in FIG.

以下に、このフローチャートを参照しながら本実施例装
置の動作を説明する。同図において、プログラムがスタ
ートされると、まずイニシャル処理により各種フラグ、
レジスタ類の初期設定を行った後(ステップ301)、
動作モードの読み込みを行う(ステップ302)。
The operation of the apparatus of this embodiment will be explained below with reference to this flowchart. In the figure, when the program is started, various flags and
After initializing registers (step 301),
The operating mode is read (step 302).

ここで、動作モードが所定のスイッチなどで教示モード
に設定されていると(ステップ3o3)、前述した教示
モードが実行される。
Here, if the operation mode is set to the teaching mode by a predetermined switch or the like (step 3o3), the above-mentioned teaching mode is executed.

この教示モードでは、ポインタnを1から順次増加させ
つつ(ステップ304,309)、その都度オペレータ
が流入流量=流出流m −x nに設定するのを待って
(ステップ305,306YES)、第1検出器による
検出流ff1F1およびそのとき差動増幅器5から得ら
れる差流11 ill定誤差Δyを読み込み、これらを
一対にしてEEPROM9に記憶させる処理を繰り返す
(ステップ307゜308)。
In this teaching mode, while increasing the pointer n sequentially from 1 (steps 304, 309), each time the operator waits for the inflow flow rate = outflow flow m - x n (steps 305, 306 YES), and The process of reading the detected current ff1F1 by the detector and the differential current 11 ill constant error Δy obtained from the differential amplifier 5 at that time and storing them as a pair in the EEPROM 9 is repeated (steps 307 and 308).

一方、動作モードが11−1定モードと判定されると(
ステップ303) 、A/D変換器6およびA/D8を
介して検出流量F1および差流量yを読み込む(ステッ
プ311.312)。
On the other hand, if the operation mode is determined to be 11-1 constant mode (
Step 303), the detected flow rate F1 and the differential flow rate y are read through the A/D converter 6 and A/D 8 (steps 311 and 312).

その後、教示モードで登録されたΔy1〜Δy6を用い
て、第1検出器1による検出流量F1に対応する差流量
測定誤差Δyを直線補間により求める(ステップ313
)。
Thereafter, using Δy1 to Δy6 registered in the teaching mode, the differential flow rate measurement error Δy corresponding to the detected flow rate F1 by the first detector 1 is determined by linear interpolation (step 313
).

すなわち、前述の教示モードにおいて、FlとΔynと
の関係が複数組記憶されているから、それらの中から最
も検出流ff1F1が近いものを探しだし、それに対応
する差流量測定誤差Δyを直線補間により求めるわけで
ある。
That is, in the teaching mode mentioned above, since multiple sets of relationships between Fl and Δyn are stored, the one with the closest detected flow ff1F1 is found among them, and the corresponding differential flow measurement error Δy is calculated by linear interpolation. That's what I'm asking for.

次いで、その時の差流量測定値yに対し該当する差流量
測定誤差Δyを加えることにより、差流、Q Jl定値
の補正を行う(ステップ314)。
Next, the differential flow QJl constant value is corrected by adding the corresponding differential flow rate measurement error Δy to the differential flow rate measurement value y at that time (step 314).

その後、補正後の着流m測定値yを表示出力。After that, the corrected flow m measured value y is displayed and output.

あるいは制御出力として外部へと出力するわけである(
ステップ315)。
Alternatively, it is output to the outside as a control output (
step 315).

このように、本実施例装置によれば、予め流入流路と流
出流路との間に差流量が流れないような配管状態にして
おき、その状態を保ちつつ、流入流量を第2図に示され
るように、x1〜x6に順次変化させ、その状態におけ
る差流量測定誤差Δy1〜Δy6と第1検出器1の検出
流ff1F1との関係を予め記憶させ、実際の測定段階
においては、左施ffi測定値yが得られる毎に、検出
流量F1と差流量測定誤差Δy1〜Δy6との関係を参
照して当該差流量測定値yを補正するようにしたもので
ある。
As described above, according to the device of this embodiment, the piping condition is set in advance so that no differential flow rate flows between the inflow channel and the outflow channel, and while maintaining this state, the inflow flow rate is adjusted as shown in Fig. 2. As shown, the relationship between the differential flow measurement errors Δy1 to Δy6 and the detected flow ff1F1 of the first detector 1 in that state is stored in advance, and in the actual measurement stage, the left Each time the ffi measurement value y is obtained, the differential flow rate measurement value y is corrected with reference to the relationship between the detected flow rate F1 and the differential flow rate measurement errors Δy1 to Δy6.

尚、第2図で説明したように、差流量が微小な領域にお
いては、流入流量に対し検出器出力は必ずしも直線的に
変化しないが、これは検出部を流れる流体の物理的パタ
ーンが流量により変化して起電力が変動するからである
As explained in Fig. 2, in a region where the differential flow rate is small, the detector output does not necessarily vary linearly with the inflow flow rate, but this is because the physical pattern of the fluid flowing through the detection section changes depending on the flow rate. This is because the electromotive force fluctuates.

そして、この流体の物理的パターンの変動は検出部の構
造や配管系の構造とも関係しているもののほぼ一定であ
り、検出器の出力変化のパターンも一定であると考えら
れる。
Although this variation in the physical pattern of the fluid is related to the structure of the detection unit and the structure of the piping system, it is almost constant, and it is considered that the pattern of change in the output of the detector is also constant.

従って、差流量の零点(図中Δy1〜Δy6で示す)も
流入流量により変化するものの、その変化のパターンは
常に一定である。
Therefore, although the zero points of the differential flow rate (indicated by Δy1 to Δy6 in the figure) also change depending on the inflow flow rate, the pattern of the change is always constant.

このため、上述した教示モードにおいて、FlとΔy1
〜Δy6の関係を記憶させておけば、11?1定モード
において、正確な袖正を行うことができるわけである。
Therefore, in the teaching mode mentioned above, Fl and Δy1
If the relationship .about.Δy6 is memorized, accurate sleeve correction can be performed in the 11?1 constant mode.

尚、以上の実施例においては、差流量の演算を差動増幅
器5により行ったが、第4図に示されるように各検出器
1.2の検出流mF1.F2を直接信号処理部7が読み
込み、ソフトウェア的に差成算を行っても良いことは勿
論である。
In the above embodiment, the differential flow rate was calculated by the differential amplifier 5, but as shown in FIG. 4, the detected flow mF1. Of course, the signal processing unit 7 may directly read F2 and perform the difference calculation using software.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、この発明によればこの種
の2台の電磁式流量検出器を用いた差流量測定装置にお
いて、差流量の測定における零点校正を短特開に且つ正
確に行うことができ、またj台幅器のゲインを調整する
必要がないために、トリマコンデンサ等の部41J点数
の削減が可能で、これによりコストダウンおよび信頼性
の向上が期待できるなどの効果を有する。
As is clear from the above description, according to the present invention, in a differential flow rate measuring device using two electromagnetic flow rate detectors of this type, zero point calibration in differential flow rate measurement can be performed quickly and accurately. In addition, since there is no need to adjust the gain of the J-width amplifier, it is possible to reduce the number of parts such as trimmer capacitors, and this has the effect of reducing costs and improving reliability. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に関わる差流量測定装置の1実施例を示
すブロック図、第2図は差流量が流れない配管状態にお
いて、流入流量を徐々に変化させた場合における各検出
器の検出流量の変化を示すグラフ、第3図は信号処理部
で実行される制御プログラムの構成を概略的に示すフロ
ーチャート、第4図は本発明の他の実施例を示すブロッ
ク図、第5図は従来の左施ffi測定装置の一例を示す
ブロック図、第6図は差流量が比較的大きい範囲内にお
ける流入流量と検出器出力との関係を示すグラフである
。 1・・・第1検出器 2・・・第2検出器 3・・・七幅器 4・・・1曽幅器 5・・・差動増幅器 6・・・A/D変換器 7・・・信号処理部 8・・・A/D変換器 9・・・EEPROM
Fig. 1 is a block diagram showing one embodiment of the differential flow rate measuring device according to the present invention, and Fig. 2 shows the detected flow rate of each detector when the inflow flow rate is gradually changed in a piping state where no differential flow rate flows. 3 is a flowchart schematically showing the configuration of the control program executed in the signal processing section, FIG. 4 is a block diagram showing another embodiment of the present invention, and FIG. 5 is a conventional FIG. 6, which is a block diagram showing an example of the left-hand effi measuring device, is a graph showing the relationship between the inflow flow rate and the detector output within a range where the differential flow rate is relatively large. 1...First detector 2...Second detector 3...September 4...1sampler 5...Differential amplifier 6...A/D converter 7...・Signal processing unit 8...A/D converter 9...EEPROM

Claims (1)

【特許請求の範囲】[Claims] (1)それぞれ対象流路に設置された2台の電磁式流量
検出器からの信号に基いて両流路間における差流量を測
定する差流量測定装置において、前記流路のいずれか一
方における検出流量と前記両流路間における差流量測定
誤差との関係を検出流量を異ならせつつ複数組記憶させ
る教示モードと、 差流量測定値が得られる毎に、前記教示モードにて記憶
された検出流量と差流量測定誤差との関係を参照して当
該差流量測定値を補正する測定モードと、 を具備することを特徴とする差流量測定装置。
(1) In a differential flow rate measuring device that measures the differential flow rate between two flow paths based on signals from two electromagnetic flow rate detectors installed in each target flow path, detection in one of the flow paths is performed. a teaching mode in which a plurality of sets of relationships between the flow rate and the differential flow rate measurement error between the two flow paths are stored while varying the detected flow rate; and each time a differential flow rate measurement value is obtained, the detected flow rate stored in the teaching mode is A measurement mode for correcting the differential flow rate measurement value by referring to the relationship between the difference flow rate measurement error and the differential flow rate measurement error.
JP1279977A 1989-10-30 1989-10-30 Differential flow rate measuring instrument Pending JPH03142323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1279977A JPH03142323A (en) 1989-10-30 1989-10-30 Differential flow rate measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1279977A JPH03142323A (en) 1989-10-30 1989-10-30 Differential flow rate measuring instrument

Publications (1)

Publication Number Publication Date
JPH03142323A true JPH03142323A (en) 1991-06-18

Family

ID=17618585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1279977A Pending JPH03142323A (en) 1989-10-30 1989-10-30 Differential flow rate measuring instrument

Country Status (1)

Country Link
JP (1) JPH03142323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530346A (en) * 2014-09-04 2017-10-12 マイクロ モーション インコーポレイテッド Tools for differential flow meters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292552A (en) * 1976-01-29 1977-08-04 Hokushin Electric Works Method of measuring differential quantity of flow

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292552A (en) * 1976-01-29 1977-08-04 Hokushin Electric Works Method of measuring differential quantity of flow

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530346A (en) * 2014-09-04 2017-10-12 マイクロ モーション インコーポレイテッド Tools for differential flow meters

Similar Documents

Publication Publication Date Title
US4660161A (en) Correction method for vehicle-mounted geomagnetic field sensors
US7363182B2 (en) System and method for mass flow detection device calibration
KR950005890B1 (en) Apparatus and method for temperature compensation of catheter tip pressure transducer
US8504311B2 (en) Method and mass flow controller for enhanced operating range
JP2003065795A (en) Adjustment for magnetic resistance angle sensor
US20210063255A1 (en) Stress Distribution Measurement Device and Stress Distribution Measurement Method
JPH03142323A (en) Differential flow rate measuring instrument
JPS62143120A (en) Input device for coordinate
EP0324620B1 (en) Angular velocity sensor
US5828984A (en) Data processing method for an electronic compass system
JPH03239965A (en) Current detector
JP2842466B2 (en) Torque measuring device
JP3507991B2 (en) Mileage measurement device
JPH09232647A (en) Hall element diving circuit
JPH0769246B2 (en) Leakage position detection device
JP2936843B2 (en) Electromagnetic flow meter
JP2829158B2 (en) Deviation position detection method
JP3032910B2 (en) Analysis equipment
JPS61118631A (en) Resistance/temperature signal converter circuit of thermometer using thermistor
JPH10132568A (en) High precision azimuth measuring system using geomagnetic sensor
JPH06265564A (en) Current speed detector for gas
JPS61280579A (en) System for detecting resistance value in inductance circuit
JPH10153427A (en) Azimuth instrument
JPS59109833A (en) Measuring device of temperature of metal surface
JPH0676792A (en) Mass calibration method in magnetic field type mass spectrometer