JPH0314210B2 - - Google Patents

Info

Publication number
JPH0314210B2
JPH0314210B2 JP3759485A JP3759485A JPH0314210B2 JP H0314210 B2 JPH0314210 B2 JP H0314210B2 JP 3759485 A JP3759485 A JP 3759485A JP 3759485 A JP3759485 A JP 3759485A JP H0314210 B2 JPH0314210 B2 JP H0314210B2
Authority
JP
Japan
Prior art keywords
coil
winding
electromagnet
copper
coil device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3759485A
Other languages
Japanese (ja)
Other versions
JPS61198705A (en
Inventor
Hideyuki Tanaka
Tetsuo Yokoi
Noryuki Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP3759485A priority Critical patent/JPS61198705A/en
Publication of JPS61198705A publication Critical patent/JPS61198705A/en
Publication of JPH0314210B2 publication Critical patent/JPH0314210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電磁石用コイル装置、特に冷却機能を
有する電磁石用コイル装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electromagnet coil device, and particularly to an electromagnet coil device having a cooling function.

〔従来の技術〕[Conventional technology]

測定装置(例えば、NMR、マグネツトメータ
等)に用いられている電磁石においてはコイル装
置の最外周面に水冷パイプを巻回し、電磁石を冷
却している。
In electromagnets used in measurement devices (for example, NMR, magnetometers, etc.), a water-cooled pipe is wound around the outermost surface of a coil device to cool the electromagnet.

ここで、第2図を参照して従来の冷却機能を有
する電磁石コイル装置について説明する。
Here, a conventional electromagnetic coil device having a cooling function will be explained with reference to FIG.

非磁性体で成形され、径方向に張り出した鍔部
61を有する円筒状のコイルボビン6に巻線が巻
回されてコイル7を形成している。コイル7の外
周面には図示のように冷却パィプ8が巻かれて、
電磁石用コイル装置が構成される。そして、冷却
パィプ8には冷却水が流されて、電磁石を冷却す
るようになつている。
A coil 7 is formed by winding a winding wire around a cylindrical coil bobbin 6 made of a non-magnetic material and having a radially projecting flange 61 . A cooling pipe 8 is wound around the outer peripheral surface of the coil 7 as shown in the figure.
An electromagnet coil device is constructed. Cooling water is flowed through the cooling pipe 8 to cool the electromagnet.

ところで、所謂異方性の樹脂磁石を磁場成形に
よつて製造する場合、異方性樹脂磁石の生産効率
を上げるため、射出成形装置の金型キヤビテイは
多数個の樹脂磁石が成形できるように構成されて
いる。
By the way, when manufacturing so-called anisotropic resin magnets by magnetic field molding, in order to increase the production efficiency of anisotropic resin magnets, the mold cavity of the injection molding device is configured so that a large number of resin magnets can be molded. has been done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが金型キヤビテイを多数個の異方性樹脂
磁石が成形できるように構成した場合、金型の断
面積が広くなる。従つて、所定の磁気配向を樹脂
磁石に与えるためには金型キヤビテイを通過する
磁束を増加させなければならない。よつて射出成
形装置に取り付けられている電磁石のコイル巻数
を多くしたり、あるいは電磁石に流す電流を多く
しなければならない。
However, when the mold cavity is constructed so that a large number of anisotropic resin magnets can be molded, the cross-sectional area of the mold becomes large. Therefore, in order to impart a desired magnetic orientation to the resin magnet, the magnetic flux passing through the mold cavity must be increased. Therefore, it is necessary to increase the number of coil turns of the electromagnet attached to the injection molding device, or to increase the current flowing through the electromagnet.

電磁石から発生する磁束が多くなると、必然的に
電磁石からの発熱量が多くなる。上述した従来の
電磁石用コイル装置では冷却パイプがコイルの表
面に装置されているため、コイル内部の温度勾配
が極めて大きくなり、その結果、磁場成形された
異方性樹脂磁石の特性にバラツキが多くなつた
り、長時間運転すると、磁束密度の変動が大きく
なるから、時々電磁石への通電を停止しなければ
ならないため、射出成形装置の稼動効率が低下す
るという問題点がある。
As the magnetic flux generated from the electromagnet increases, the amount of heat generated from the electromagnet inevitably increases. In the conventional electromagnet coil device described above, the cooling pipe is installed on the surface of the coil, so the temperature gradient inside the coil becomes extremely large, and as a result, there are many variations in the characteristics of the anisotropic resin magnet formed by magnetic field. If the injection molding apparatus is worn out or operated for a long period of time, the magnetic flux density will fluctuate greatly, so that the energization of the electromagnet must be stopped from time to time, resulting in a problem in that the operating efficiency of the injection molding apparatus decreases.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、非磁性ボビンに巻線を巻回し
た電磁石用コイル装置において、上記巻線の巻回
途中で、この巻線の外側に巻線を覆うように第1
の銅材料が施され、この第1の銅材料の外側に水
冷パイプが巻回され、さらにこの水冷パイプを覆
うように第2の銅材料が施され、この第2の銅材
料上に上記の巻線が引き続き巻回されていること
を特徴とする電磁石用コイル装置が得られる。
According to the present invention, in an electromagnetic coil device in which a winding wire is wound around a non-magnetic bobbin, a first coil is installed on the outside of the winding wire in the middle of winding the winding wire so as to cover the winding wire.
A water-cooled pipe is wound around the outside of the first copper material, and a second copper material is applied to cover the water-cooled pipe. A coil arrangement for an electromagnet is obtained, which is characterized in that the windings are wound one after the other.

〔実施例〕〔Example〕

以下本発明について実施例によって説明する。 The present invention will be explained below with reference to Examples.

第1図を参照して、非磁性体で成形され、径方
向に張り出した一対の鍔部11を有する円筒状の
コイルボビン1に巻線2を巻回する。巻線2をほ
ぼ鍔部11の張り出し長さの中央部まで巻回した
後(以後この部分をコイル21とする。)、熱伝導
性のよい銅板3をコイル21上に巻き付ける。な
お銅板3のかわりに銅箔を多層に巻回してもよ
い。この銅板3上には図示のように円筒状あるい
は角筒状の銅パィプ4を巻回し、この銅パイプ4
の巻き始め端から冷却水が送り込まれ、巻き終り
端から冷却水が送出されることになる。銅パィプ
4の外周面には銅板5が巻きつけられ、この銅板
5上には引き続いて巻線2が巻回されて(以後こ
の部分をコイル22とする。)、電磁石用コイル装
置が構成される。
Referring to FIG. 1, a winding 2 is wound around a cylindrical coil bobbin 1 made of a non-magnetic material and having a pair of radially extending flanges 11. After winding the winding 2 to approximately the center of the length of the flange 11 (hereinafter, this part will be referred to as the coil 21), a copper plate 3 having good thermal conductivity is wound on the coil 21. Note that instead of the copper plate 3, copper foil may be wound in multiple layers. A cylindrical or rectangular copper pipe 4 is wound around this copper plate 3 as shown in the figure.
Cooling water is sent from the winding start end, and cooling water is sent out from the winding end. A copper plate 5 is wound around the outer circumferential surface of the copper pipe 4, and a winding 2 is subsequently wound on this copper plate 5 (hereinafter, this portion will be referred to as a coil 22) to constitute an electromagnet coil device. Ru.

上述の電磁石用コイル装置に磁心を装着して、
電磁石として、銅パィプ4に冷却水を流すと、銅
板3及び5を介して、それぞれコイル21及び2
2が冷却される。従ってコイル内部の温度勾配が
極めて小さく、長時間の運転でも磁束密度の変動
が少ない。この電磁石を前述した射出成形装置に
用いた場合、コイル内部の温度勾配が極めて小さ
いから、磁場成形された異方性樹脂磁石の特性に
バラツキが生じることが少ない。
Attach the magnetic core to the electromagnetic coil device described above,
As an electromagnet, when cooling water flows through the copper pipe 4, the coils 21 and 2 flow through the copper plates 3 and 5, respectively.
2 is cooled. Therefore, the temperature gradient inside the coil is extremely small, and there is little variation in magnetic flux density even during long-term operation. When this electromagnet is used in the injection molding apparatus described above, since the temperature gradient inside the coil is extremely small, variations in the characteristics of the anisotropic resin magnet formed by magnetic field molding are unlikely to occur.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による電磁石コイル
装置を用いれば電磁石自体が冷却されるととも
に、コイル内部の温度勾配が極めて小さいから、
長時間、磁束密度の変動が少ないという利点があ
る。
As explained above, by using the electromagnetic coil device according to the present invention, the electromagnet itself is cooled, and the temperature gradient inside the coil is extremely small.
It has the advantage that there is little fluctuation in magnetic flux density over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電磁石用コイル装置の一
実施例を示す断面図、第2図は従来の電磁石用コ
イル装置を示す断面図である。 1……コイルボビン、2……巻線、3,5……
銅板、4……銅パィプ、6……コイルボビン、7
……コイル、8……冷却パィプ。
FIG. 1 is a sectional view showing an embodiment of an electromagnet coil device according to the present invention, and FIG. 2 is a sectional view showing a conventional electromagnet coil device. 1... Coil bobbin, 2... Winding wire, 3, 5...
Copper plate, 4...Copper pipe, 6...Coil bobbin, 7
...Coil, 8...Cooling pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 非磁性ボビンに巻線を巻回した電磁石用コイ
ル装置において、前記巻線の巻回途中で、該巻線
の外側に該巻線を覆うように熱伝導性のよい第1
の銅部材が施され、該第1の銅部材の外側に熱伝
導性のよい冷却パイプが巻回され、さらに該冷却
パイプを覆うように熱伝導性のよい第2の銅材料
が施され、該第2の銅材料上に前記巻線が引き続
き巻回されていることを特徴とする電磁石用コイ
ル装置。
1. In an electromagnetic coil device in which a winding is wound around a non-magnetic bobbin, a first coil with good thermal conductivity is placed on the outside of the winding in the middle of winding the winding to cover the winding.
a copper member with good thermal conductivity is applied, a cooling pipe with good thermal conductivity is wound around the outside of the first copper member, and a second copper material with good thermal conductivity is applied to cover the cooling pipe, A coil device for an electromagnet, characterized in that the winding is successively wound on the second copper material.
JP3759485A 1985-02-28 1985-02-28 Coil device for electromagnet Granted JPS61198705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3759485A JPS61198705A (en) 1985-02-28 1985-02-28 Coil device for electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3759485A JPS61198705A (en) 1985-02-28 1985-02-28 Coil device for electromagnet

Publications (2)

Publication Number Publication Date
JPS61198705A JPS61198705A (en) 1986-09-03
JPH0314210B2 true JPH0314210B2 (en) 1991-02-26

Family

ID=12501874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3759485A Granted JPS61198705A (en) 1985-02-28 1985-02-28 Coil device for electromagnet

Country Status (1)

Country Link
JP (1) JPS61198705A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2656381B2 (en) * 1990-11-22 1997-09-24 株式会社東芝 Manufacturing method of coil for electromagnet
DE19938657A1 (en) * 1999-08-14 2001-02-15 Fev Motorentech Gmbh Electromagnetic actuator with heat conducting agents

Also Published As

Publication number Publication date
JPS61198705A (en) 1986-09-03

Similar Documents

Publication Publication Date Title
US4710667A (en) Brushless D.C. dynamoelectric machine with decreased magnitude of pulsations of air gap flux
US6741151B1 (en) Moving coil linear actuator
US10903000B2 (en) Manufacturing method of reactor
JP3907912B2 (en) Primary member for linear DC motor and linear DC motor
JPWO2009025162A1 (en) Cylindrical linear motor armature and cylindrical linear motor
JPH0314210B2 (en)
JP3849128B2 (en) Linear motor
JP2011124242A (en) Reactor device
TW523763B (en) Magnetic core having an effective magnetic bias and magnetic device using the magnetic core
JP2006261236A (en) Mold for molding anisotropy magnet, method of manufacturing anisotropy magnet, anisotropy magnet and motor using it
KR20080020510A (en) A motor and a method for winding coil
JP2013024304A (en) Solenoid valve
JP3774876B2 (en) Cylindrical radial anisotropic magnet forming device
JP2017079575A (en) Method of manufacturing rotor
US1507777A (en) Magnetic chuck
JP2020054120A (en) Moving-coil type voice coil motor
JP2000032730A (en) Electromagnetic actuator
JPH0126418Y2 (en)
JP2998407B2 (en) Cooling structure of electromagnetic induction disk winding
JP2012235051A (en) Coil component
JP2017034102A (en) Reactor
JP4876364B2 (en) Manufacturing method of motor
JPH0378626A (en) Magnetic filed generator for electro-magnetic flowmeter
JP2609346B2 (en) Gradient magnetic field coil device
JPH0744004Y2 (en) Structure of magnetizing yoke

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term