JPH03141272A - Production of lactones - Google Patents

Production of lactones

Info

Publication number
JPH03141272A
JPH03141272A JP1274998A JP27499889A JPH03141272A JP H03141272 A JPH03141272 A JP H03141272A JP 1274998 A JP1274998 A JP 1274998A JP 27499889 A JP27499889 A JP 27499889A JP H03141272 A JPH03141272 A JP H03141272A
Authority
JP
Japan
Prior art keywords
distillation column
lactones
solvent
acid
distillate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1274998A
Other languages
Japanese (ja)
Other versions
JPH07121927B2 (en
Inventor
Chihiro Miyazawa
宮沢 千尋
Kazunari Takahashi
和成 高橋
Hiroshi Kameo
広志 亀尾
Shinji Isotani
真治 磯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1274998A priority Critical patent/JPH07121927B2/en
Publication of JPH03141272A publication Critical patent/JPH03141272A/en
Publication of JPH07121927B2 publication Critical patent/JPH07121927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Furan Compounds (AREA)
  • Pyrane Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain lactones in high purity by hydrogenating dicarboxylic acids, distilling out the reaction solvent from the hydrogenation reaction product together with lactones at a specific ratio and distilling the distillate using properly combined purification processes. CONSTITUTION:A dicarboxylic acid, dicarboxylic acid anhydride or dicarboxylic acid ester is hydrogenated in liquid phase in the presence of a ruthenium catalyst to obtain a lactone-containing hydrocarbon product. The lactone is separated from the reaction product by the following processes A to C. (A) The lactone, water and 3-50wt.% of the solvent are distilled out by a 1st distillation column, the distillate is transferred to a 2nd distillation column and the unreacted raw material and the residual bottom liquid are recycled to the hydrogenation process. (B) Low-boiling component composed mainly of water is separated from the top of the 2nd distillation column and the column bottom composed mainly of lactones and solvent is transferred to a 3rd distillation column. (C) Lactones are distilled out from the top of the 3rd distillation column and the bottom product composed mainly of the solvent is extracted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はラクトン類の製造法に間するものである。詳し
くは、ジカルボン酸、ジカルボン酸無水物又はジカルボ
ン酸エステルを液相で水素化して得られるラクトン類を
含有する反応生成物から、高純度のラクトン類を製造す
る方法の改良に間するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing lactones. Specifically, the purpose is to improve a method for producing highly pure lactones from a reaction product containing lactones obtained by hydrogenating dicarboxylic acids, dicarboxylic acid anhydrides, or dicarboxylic acid esters in a liquid phase. .

(従来の技術) ジカルボン酸、ジカルボン酸無水物又はジカルボン酸エ
ステル、あるいはこれ等の混合物を水素化してラクトン
類を製造する方法は古くから検討され、これまでに多数
提案されている0例えば触媒としてニッケル系触媒(特
公昭43−6947号公報)、コバルト系触媒(特開昭
51−95057号公報)、鋼−クロム系触媒(特公昭
38−20119号公報)、銅−亜鉛系触媒(特公昭4
2−14463号公報)等を使用して、固定床又は懸濁
液相により水素化反応を行なう方法が知られている。
(Prior Art) Methods for producing lactones by hydrogenating dicarboxylic acids, dicarboxylic acid anhydrides, dicarboxylic acid esters, or mixtures thereof have been studied for a long time, and many proposals have been made so far. Nickel-based catalyst (Japanese Patent Publication No. 43-6947), cobalt-based catalyst (Japanese Patent Publication No. 51-95057), steel-chromium catalyst (Japanese Patent Publication No. 38-20119), copper-zinc catalyst (Japanese Patent Publication No. 1982-20119) 4
A method is known in which the hydrogenation reaction is carried out in a fixed bed or in a suspension phase using, for example, JP 2-14463.

一方、均一系のルテニウム系触媒を使用して上記の水素
化反応を行なう方法も知られ、例えば米国特許3957
827号には、[RuXn(PRi2Rs)xLy]型
のルテニウム系触媒を使用し40〜400ρs1の加圧
下で水素化してラクトン類を製造する方法が記載され、
また米国特許4485246号には、同様の触媒による
水素化反応を有機アミンの存在下で行なうことが記載さ
れている。
On the other hand, methods of carrying out the above hydrogenation reaction using a homogeneous ruthenium-based catalyst are also known, for example, in US Pat.
No. 827 describes a method for producing lactones by hydrogenation using a [RuXn(PRi2Rs)xLy] type ruthenium-based catalyst under a pressure of 40 to 400 ρs1,
Further, US Pat. No. 4,485,246 describes that a similar catalytic hydrogenation reaction is carried out in the presence of an organic amine.

(発明が解決しようとする課題) しかしながら、上記のニッケル系触媒、コバルト系触媒
、銅−クロム系触媒、銅−亜鉛系触媒等の固体触媒を使
用する従来の方法は、反応条件が数十気圧以上の苛酷な
条件の採用は避けられないという問題点があった。一方
、上記均一系のルテニウム系触媒を使用する方法は、比
較的温和な条件下で水素化反応が進行するという特徴が
ある半面、触媒活性がやや低水準であるうえ、触媒寿命
が短かく、またハロゲンを使用しているため反応装置の
腐蝕が生ずるという問題がある。
(Problem to be Solved by the Invention) However, in conventional methods using solid catalysts such as the above-mentioned nickel-based catalysts, cobalt-based catalysts, copper-chromium-based catalysts, copper-zinc-based catalysts, etc., the reaction conditions are several tens of atmospheres. There was a problem in that the adoption of the above harsh conditions was unavoidable. On the other hand, the method using the homogeneous ruthenium-based catalyst has the characteristic that the hydrogenation reaction proceeds under relatively mild conditions, but the catalyst activity is at a rather low level and the catalyst life is short. Furthermore, since halogen is used, there is a problem in that the reaction equipment is corroded.

そこで本出願人は、先に触媒としてルテニウム、有機ホ
スフィン及びpKa値が2より小さい酸の共役塩基を含
有するルテニウム触媒を使用し、液相で水素化する方法
を提案した(特開平!−25771号公報)。
Therefore, the present applicant previously proposed a method of hydrogenation in a liquid phase using a ruthenium catalyst containing ruthenium, an organic phosphine, and a conjugated base of an acid with a pKa value of less than 2 (JP-A-25771-1). Publication No.).

この方法では高活性なルテニウム触媒を使用するので、
温和な条件下で効率良くラクトン類を製造することがで
きるが、水素化反応生成物からラクトン類を蒸留して分
離する際に、触媒活性が低下したり、溶媒が着色したり
、あるいは原料や溶媒の分解による副生物がラクトン類
に混入して純度が低下する等の問題があり、これらの問
題を解決することが工業的にラクトン類を製造する場合
の大きな課題であった。
This method uses a highly active ruthenium catalyst, so
Lactones can be efficiently produced under mild conditions, but when distilling and separating lactones from the hydrogenation reaction product, the catalyst activity may decrease, the solvent may become colored, or the raw materials may There are problems such as by-products from the decomposition of the solvent contaminating the lactones, resulting in a decrease in purity, and solving these problems has been a major challenge when industrially producing lactones.

本発明は、ルテニウム触媒してラクトン類を工業的に製
造する方法における上述の問題点を解決し、高純度のラ
クトン類を工業的有利に製造することを目的とするもの
である。
The present invention aims to solve the above-mentioned problems in the method of industrially producing lactones using ruthenium catalyst, and to produce highly purified lactones industrially with advantage.

(課題を解決するための手段) 本発明者等は上記の目的を達成するために検討した結果
、水素化反応生成物からラクトン類を蒸留により分離精
製する場合に生じる上記の問題は、主として蒸留塔の塔
底温度が高過ぎることに起因するが、単に塔底温度を下
げるために塔頂の圧力を下げると、塔頂の沸点が低くな
り過ぎるため、塔頂部コンデンサーの冷却に冷凍機を要
するなど工業的実施上のコスト負担が過大となり著しく
不利であることが判明した。
(Means for Solving the Problems) As a result of studies to achieve the above object, the present inventors found that the above problems that occur when separating and purifying lactones from hydrogenation reaction products by distillation are mainly caused by distillation. This is caused by the tower bottom temperature being too high, but if you simply lower the pressure at the top to lower the tower bottom temperature, the boiling point at the top becomes too low, so a refrigerator is required to cool the tower top condenser. It was found that the cost burden for industrial implementation was excessive and was extremely disadvantageous.

上記の知見に基づいて更に検討の結果、水素化反応生成
物からラクトン類を蒸留分離する際に、特定割合の溶媒
をラクトン類と共に留出させ、かつその後の精製処理工
程を適切に組合わせることにより、触媒活性の低下、溶
媒の着色、ラクトン類純度の低下等の問題を生ずること
なく、工業的有利にラクトン類を製造し得ることを見出
し本発明を達成した。即ち本発明の要旨は、ジカルボン
酸、ジカルボン#無水物又はジカルボン酸エステルをル
テニウム触媒の存在下に溶媒を用いて液相で水素化して
得られたラクトン類を含有する反応生成物を、 (A)第1蒸留塔へ供給して塔頂からラクトン類、水及
び留出液に対し3〜50重量%の溶媒を留出させ、該留
出液を第2蒸留塔へ供給すると共に、第1蒸留塔の塔底
から未反応原料、残余の溶媒及び触媒を含む缶出液を導
出してその少なくとも一部を水素化工程へ循環し、 (B)第2蒸留塔の塔頂かろ水を主成分とする軽沸点物
質を留出分離すると共に、第2蒸留塔の塔底からラクト
ン類及び溶媒を主成分とする缶出液を導出してこれを第
3蒸留塔へ供給し、(C)第3蒸留塔の塔頂からラクト
ン類を留出させて採取すると共に、第3蒸留塔の塔底か
ら溶媒を主成分とする缶出液を導出することを特徴とす
るラクトン類の製造法に存する。
As a result of further studies based on the above knowledge, it was found that when lactones are distilled and separated from the hydrogenation reaction product, a specific proportion of the solvent is distilled out together with the lactones, and the subsequent purification process is appropriately combined. The present invention has been achieved by discovering that lactones can be produced industrially advantageously without causing problems such as a decrease in catalyst activity, coloring of the solvent, and a decrease in the purity of lactones. That is, the gist of the present invention is that a reaction product containing lactones obtained by hydrogenating dicarboxylic acid, dicarboxylic anhydride, or dicarboxylic acid ester in the liquid phase using a solvent in the presence of a ruthenium catalyst, (A ) The lactones, water and 3 to 50% by weight of the solvent are distilled out from the top of the column by supplying the distillate to the first distillation column, and the distillate is supplied to the second distillation column, and the distillate is supplied to the first distillation column. (B) The bottoms containing unreacted raw materials, residual solvent, and catalyst are drawn out from the bottom of the distillation column, and at least a portion of it is recycled to the hydrogenation process; While distilling and separating the light boiling point substances as the components, a bottoms mainly composed of lactones and solvent is derived from the bottom of the second distillation column and supplied to the third distillation column, (C) A method for producing lactones, which comprises distilling and collecting lactones from the top of a third distillation column, and deriving a bottoms mainly composed of a solvent from the bottom of the third distillation column. Exists.

本発明の詳細な説明するに、本発明におけるラクトン類
の原料物質としては、炭素数3〜7の飽和又は不飽和の
ジカルボン酸、それ等の無水物、又はそれ等のジカルボ
ン酸のエステル、あるいはこれ等の混合物が挙げられ、
エステルとしては低級アルキルエステルが好ましい、具
体的には例えば、マレイン酸、フマール酸、コハク酸、
無水マレイン酸、無水コハク酸、マレイン酸ジメチル、
フマール酸ジエチル、コハク酸−ジ−n−ブチル等が使
用される。
To explain the present invention in detail, the raw materials for the lactones in the present invention include saturated or unsaturated dicarboxylic acids having 3 to 7 carbon atoms, anhydrides thereof, esters of such dicarboxylic acids, or Mixtures of these may be mentioned,
The ester is preferably a lower alkyl ester, specifically, for example, maleic acid, fumaric acid, succinic acid,
Maleic anhydride, succinic anhydride, dimethyl maleate,
Diethyl fumarate, di-n-butyl succinate, etc. are used.

また、ルテニウム触媒としては、例えば(イ)ルテニウ
ム、(ロ)有機ホスフィン及び(ハ)pKaが2より小
さい酸の兵役塩基を含有するルテニウム系触媒が挙げら
れ、場合によりこれに更に(ニ)中性配位子を含有させ
た触媒が好適に使用される。
Further, examples of the ruthenium catalyst include a ruthenium-based catalyst containing (a) ruthenium, (b) an organic phosphine, and (c) a military base of an acid with a pKa of less than 2. A catalyst containing a functional ligand is preferably used.

本発明の処理の対象とするラクトン類を含有する反応生
成物を得るには、反応容器に、前記の原料物質、触媒成
分及び溶媒を導入し、更に水素を導入する。水素は窒素
あるいは二酸化炭素等の反応に不活性なガスで希釈され
たものであフてもよい0反応温度は通常50〜250℃
、好ましくは100〜200℃である0反応系内の水素
分圧は特に限られないが、工業的実施上は通常0.1=
 100 kg/ cm2、特に好ましくは!0〜50
kg/c曙2である。反応は回分方式及び連続方式の何
れも実施することができ、回分方式の場合の所要反応時
間は通常1〜20時間である。
In order to obtain a reaction product containing lactones, which is a target of the treatment of the present invention, the above-mentioned raw material, catalyst component, and solvent are introduced into a reaction vessel, and hydrogen is further introduced into the reaction vessel. Hydrogen may be diluted with a gas inert to the reaction such as nitrogen or carbon dioxide.The reaction temperature is usually 50 to 250°C.
, preferably 100 to 200°C.The hydrogen partial pressure in the reaction system is not particularly limited, but in industrial practice it is usually 0.1=
100 kg/cm2, particularly preferably! 0-50
kg/c Akebono 2. The reaction can be carried out either batchwise or continuously, and the required reaction time in the case of the batchwise method is usually 1 to 20 hours.

本発明は、上記の水素化反応により得られるラクトン類
を含有する反応生成物から、前記(A)、(、Jll)
及び(C)の工程によりラクトン類を分離することを骨
子とするものであり、これにより触媒活性の低下や溶媒
の着色がなく、高純度のラクトン類を収率よく得ること
ができる。
The present invention provides the above-mentioned (A), (, Jll) from a reaction product containing lactones obtained by the above-mentioned hydrogenation reaction.
The main point of this process is to separate lactones by the steps (C) and 1), and thereby high purity lactones can be obtained in good yield without deterioration of catalytic activity or coloring of the solvent.

本発明方法を更に具体的に説明するに、本発明において
は、ラクトン類、溶媒、触媒、未反応原料及び水等を含
有する反応生成物を先ず、(A)第1蒸留塔へ供給して
塔頂からラクトン類、水及び留出液の3〜50重量%に
相当する量の溶媒を留出させ、この留出液を第2蒸留塔
へ供給すると共に、第1蒸留塔の塔底から未反応原料、
残余の溶媒及び触媒を含む缶出液を導出して水素化工程
へ循環するものである。
To explain the method of the present invention more specifically, in the present invention, a reaction product containing lactones, a solvent, a catalyst, an unreacted raw material, water, etc. is first supplied to (A) a first distillation column. Lactones, water, and an amount of solvent corresponding to 3 to 50% by weight of the distillate are distilled from the top of the column, and this distillate is supplied to the second distillation column, and at the same time from the bottom of the first distillation column. unreacted raw materials,
The bottoms containing the remaining solvent and catalyst are taken out and recycled to the hydrogenation process.

第1蒸留塔の塔頂から留出液の3〜50重量%の溶媒を
留出させるには、蒸留塔の段数及び還流比等を適切に設
定して蒸留を行なえばよく、このような処理により、第
1蒸留塔の塔底温度は170℃以下に保持される。
In order to distill 3 to 50% by weight of the solvent from the distillate from the top of the first distillation column, it is sufficient to carry out distillation by appropriately setting the number of plates in the distillation column, the reflux ratio, etc. As a result, the bottom temperature of the first distillation column is maintained at 170° C. or lower.

蒸留塔の段数及び還流比等の操作条件は、予め蒸留塔の
段数及び還流比等を種々に設定して蒸留を行ない、夫々
の留出液中の溶媒量を分析し、留出した溶媒量の全溶媒
に対する重量%を求め、その値に基づいて適切に設定さ
れる。
The operating conditions such as the number of plates in the distillation column and the reflux ratio are determined by setting the number of plates in the distillation column and reflux ratio in various ways beforehand, and performing distillation, analyzing the amount of solvent in each distillate, and calculating the amount of solvent distilled out. The weight % of the total solvent is determined, and the value is set appropriately based on that value.

ラクトン類、溶媒、触媒、未反応原料及び水等を含有す
る反応生成物を蒸留することにより、ラクトン類を溶媒
及び触媒から分離する場合、一般に例えば30段以上の
多段数の蒸留塔を用い、大きい還流比が必要であるが、
多段数の蒸留塔では、塔内の圧力差が大きいために塔底
圧力が上昇して著しく高温度となり、このため触媒活性
の低下や溶媒の分解が生起する。また還流比を大きくす
ると、エネルギーのロスが大きく経済的でない。
When separating lactones from the solvent and catalyst by distilling a reaction product containing lactones, solvent, catalyst, unreacted raw materials, water, etc., generally a multi-stage distillation column of 30 or more stages is used, Although a large reflux ratio is required,
In a multi-stage distillation column, the pressure at the bottom of the column increases due to the large pressure difference within the column, resulting in a significantly high temperature, which causes a decrease in catalyst activity and decomposition of the solvent. Moreover, increasing the reflux ratio causes a large energy loss and is not economical.

本発明においては前記のように、第1蒸留塔として段数
が比較的少ないものを使用し、還流比を比較的小さくし
て、塔頂からラクトン類及び水と共に、留出液の3〜5
0重量%の溶媒が留出するように蒸留条件を選定するも
のであり、これにより蒸留塔の塔底温度の著しい上昇を
防止して、触媒活性の低下や溶媒及び原料の分解等を回
避すると共に、留出させた溶媒は後続する工程により回
収して循環使用するものである。
In the present invention, as described above, a first distillation column having a relatively small number of stages is used, and the reflux ratio is made relatively small, so that 3 to 5% of the distillate is collected from the top of the column together with lactones and water.
Distillation conditions are selected so that 0% by weight of the solvent is distilled out, thereby preventing a significant rise in the bottom temperature of the distillation column and avoiding a decrease in catalyst activity and decomposition of the solvent and raw materials. At the same time, the distilled solvent is recovered and recycled in subsequent steps.

一方、第1蒸留塔の塔底からは未反応原料、残余の溶媒
及び触媒を含む缶出液を導出して水素化工程へ循環して
再使用する。なお缶出液は全量を水素化工程へ循環する
要はなく、必要に応じて一部を系外に抜出すこともでき
る。(A)工程で第1蒸留塔の塔頂から第2蒸留塔へ供
給したラクトン類、水及び溶媒からなる留出物は次いで
、(B)第2蒸留塔で蒸留して、塔頂かろ水を主成分と
する軽沸点物質を留出分離して系外に排出する。一方、
第2蒸留塔の塔底からはラクトン類及び溶媒を主成分と
する缶出液を導出してこれを第3M留塔へ供給する。第
2蒸留塔における塔底温度は、第1蒸留塔におけると同
様に170℃程度以下に8持するのが、触媒活性の低下
及び溶媒の着色を防正し、高純度のラクトン類を得る上
で望ましい、(B)工程で第2蒸留塔の塔底から第3蒸
留塔へ供給したラクトン類及び溶媒を主成分とする缶出
液は次いで、 (C)第3蒸留塔で蒸留して、塔頂から目的とするラク
トン類を留出させて理数する。一方、第3蒸留塔の塔底
から導出した、溶媒を主成分とする缶出液は、そのまま
水素化反応に循環してもよく、また第1蒸留塔又は第2
蒸留塔へ循環することもできる。あるいはまた、缶出液
に触媒成分を添加して触媒液として再使用することもで
きる。第3蒸留塔における塔底温度は、第1蒸留塔及び
第2蒸留塔におけると同様に、170℃程度以下に保持
するのが、触媒活性の低下及び溶媒の着色を防止し、高
純度のラクトン類を得る上で望ましい。
On the other hand, bottoms containing unreacted raw materials, remaining solvent, and catalyst are taken out from the bottom of the first distillation column and recycled to the hydrogenation process for reuse. Note that it is not necessary to circulate the entire amount of the bottoms liquid to the hydrogenation process, and a portion of the bottom liquid can be extracted from the system as necessary. The distillate consisting of lactones, water, and solvent supplied from the top of the first distillation column to the second distillation column in step (A) is then distilled in the second distillation column (B), and the filtered water is discharged from the top of the column. The light boiling point substances mainly composed of are separated by distillation and discharged from the system. on the other hand,
From the bottom of the second distillation column, a bottoms containing lactones and solvent as main components is drawn out and supplied to the third M distillation column. The bottom temperature in the second distillation column should be kept at about 170°C or less, as in the first distillation column, in order to prevent a decrease in catalyst activity and coloration of the solvent, and to obtain high-purity lactones. Desirably, the bottoms mainly composed of lactones and solvent supplied from the bottom of the second distillation column to the third distillation column in step (B) are then distilled in the third distillation column (C), The desired lactones are distilled out from the top of the tower and analyzed. On the other hand, the bottoms derived from the bottom of the third distillation column and containing the solvent as a main component may be recycled as is to the hydrogenation reaction, or
It can also be recycled to the distillation column. Alternatively, a catalyst component can be added to the bottoms and reused as a catalyst liquid. As in the first and second distillation columns, the bottom temperature in the third distillation column is maintained at about 170°C or less to prevent a decrease in catalyst activity and coloration of the solvent, and to prevent high-purity lactone. It is desirable to obtain the same kind of results.

なお、本発明における射水(イ)ルテニウム、(ロ)有
機ホスフィン及び(ハ)pKa[が2より小さい酸の兵
役塩基を含有し、更に場合により中性配位子を含有して
いてもよいルテニウム触媒の具体例は以下の通りである
In addition, in the present invention, Imizu (a) ruthenium, (b) organic phosphine, and (c) ruthenium containing a military base of an acid with a pKa of less than 2, and further optionally containing a neutral ligand. Specific examples of the catalyst are as follows.

(イ)ルテニウム: ルテニウムとしては、金属ルテニウム及びルテニウム化
合物の何れも使用することができる。ルテニウム化合物
としては、ルテニウムの酸化物、ハロゲン化物、水酸化
物、無機酸塩、有機酸塩又は錯化合物が使用され、具体
的には例えば、二酸化ルテニウム、四酸化ルテニウム、
三水酸化ルテニウム、塩化ルテニウム、臭化ルテニウム
、ヨウ化ルテニウム、硝酸ルテニウム、酢酸ルテニウム
、トリス(アセチルアセトン)ルテニウム、ヘキサクロ
ロルテニウム酸ナトリウム、テトラカルボニルルテニウ
ム酸ジカリウム、ペンタカルボニルルテニウム、シクロ
ペンタジエニルジ力ルポニルルテニウム、ジブロモトリ
カルボニルルテニウム、クロロトリス(トリフェニルホ
スフィン)ヒドリドルテニウム、ビス(トリーローブチ
ルホスフィン)トリカルボニルルテニウム、ドデカカル
ボニルトリルテニウム、テトラヒドリドデカカルボニル
テトラルテニウム、オクタデカカルボニルへキサルテニ
ウム酸ジセシウム、ウンデカカルボニルヒドリドトリル
テニウム酸テトラフェニルホスホニウム等が挙げられる
。これ等の金属ルテニウム及びルテニウム化合物の使用
量は、反応溶液1リツトル中のルテニウムとしてo、o
oot〜10Gミリモル、好ましくは0.001−10
ミリモルである。
(a) Ruthenium: As ruthenium, both metal ruthenium and ruthenium compounds can be used. As the ruthenium compound, ruthenium oxides, halides, hydroxides, inorganic acid salts, organic acid salts, or complex compounds are used, and specifically, for example, ruthenium dioxide, ruthenium tetroxide,
Ruthenium trihydroxide, ruthenium chloride, ruthenium bromide, ruthenium iodide, ruthenium nitrate, ruthenium acetate, tris(acetylacetone)ruthenium, sodium hexachlororuthenate, dipotassium tetracarbonylruthenate, pentacarbonylruthenium, cyclopentadienyl dihydroporpe Niruthenium, dibromotricarbonylruthenium, chlorotris(triphenylphosphine)hydridoruthenium, bis(trilobylphosphine)tricarbonylruthenium, dodecacarbonyltriruthenium, tetrahydridodecacarbonyltetraruthenium, octadecacarbonylhexarthenate, dicesium Examples include decacarbonylhydridotriruthenate tetraphenylphosphonium. The amount of these metal ruthenium and ruthenium compounds used is o, o as ruthenium in 1 liter of reaction solution.
oot~10G mmol, preferably 0.001-10
Millimoles.

(ロ)有機ホスフィン: 有機ホスフィンは、主触媒である(イ)のルテニウムの
電子状態を制御したり、ルテニウムの活性状態を安定化
するのに寄与するものと考えられる。
(b) Organic phosphine: The organic phosphine is thought to contribute to controlling the electronic state of ruthenium (a), which is the main catalyst, and to stabilizing the active state of ruthenium.

有機ホスフィンの具体例としては、トリー〇−オクチル
ホスフィン、トリーn−ブチルホスフィン、ジメチル−
n−オクチルホスフィン等のトリアルキルホスフィン類
、トリシクロへキシルホスフィンのようなトリシクロア
ルキルホスフィン類、トリフェニルホスフィンのような
トリアリールホスフィン類、ジメチルフェニルホスフィ
ンのようなアルキルアリールホスフィン類、1.2−ビ
ス(ジフェニルホスフィノ)エタンのような多官能性ホ
スフィン類が挙げられる。有機ホスフィンの使用量は通
常、ルテニウム1モルに対して、0.1−1000モル
程度、好ましくは1−tooモルである。また、有機ホ
スフィンは、それ自体単独で、あるいはルテニウム触媒
との複合体の形で、反応系に供給することができる。
Specific examples of organic phosphine include tri-octylphosphine, tri-n-butylphosphine, dimethyl-
Trialkylphosphines such as n-octylphosphine, tricycloalkylphosphines such as tricyclohexylphosphine, triarylphosphines such as triphenylphosphine, alkylarylphosphine such as dimethylphenylphosphine, 1.2- Examples include polyfunctional phosphines such as bis(diphenylphosphino)ethane. The amount of organic phosphine used is usually about 0.1-1000 mol, preferably 1-too mol, per 1 mol of ruthenium. Further, the organic phosphine can be supplied to the reaction system either alone or in the form of a complex with a ruthenium catalyst.

(ハ) pKa値が2より小さい酸の共役塩基:ρにa
値が2より小さい酸の共役塩基は、ルテニウム触媒の付
加的促進剤として作用し、触媒調製中又は反応系中にお
いて、pKa値が2より小さい酸の共役塩基を生成する
ものであればよく、その供給形態としては、pKa値が
2より小さいブレンステッド酸又はその各種の塩等が用
いられる。具体的には例えば、硫酸、亜硫酸、硝酸、亜
硝酸、過塩素酸、燐酸、ホウフッ化水素酸、ヘキサフル
オロ燐酸、タングステン酸、燐モリブデン酸、燐タング
ステン酸、シリコンタングステン酸、ポリケイ酸、フル
オロスルホン酸等の無機酸類、トリクロロ酢酸、ジクロ
ロ酢酸、トリフルオロ酢酸、メタンスルホン酸、トリフ
ルオロメタンスルホン酸、ラウリルスルホン酸、ベンゼ
ンスルホン酸、p−)ルエンスルホン酸等の有機酸、あ
るいはこれ等の酸のアンモニウム塩、ホスホニウム塩が
挙げられる。
(c) Conjugate base of acid with pKa value smaller than 2: a to ρ
The conjugate base of an acid with a pKa value of less than 2 may act as an additional promoter for the ruthenium catalyst and produce the conjugate base of an acid with a pKa value of less than 2 during catalyst preparation or in the reaction system, As its supply form, a Brønsted acid having a pKa value of less than 2 or various salts thereof is used. Specifically, for example, sulfuric acid, sulfite, nitric acid, nitrous acid, perchloric acid, phosphoric acid, fluoroboric acid, hexafluorophosphoric acid, tungstic acid, phosphomolybdic acid, phosphotungstic acid, silicon tungstic acid, polysilicic acid, fluorosulfone Inorganic acids such as trichloroacetic acid, dichloroacetic acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, laurylsulfonic acid, benzenesulfonic acid, p-)luenesulfonic acid, etc., or organic acids such as these acids. Examples include ammonium salts and phosphonium salts.

また、これ等の酸の共役塩基が反応系で生成すると考え
られる酸誘導体、例えば酸ハロゲン化物、酸無水物、エ
ステル、酸アミド等の形で添加しても同様の効果が得ら
れる。これ等の酸又はその塩の使用量は、ルテニウム1
モルに対して0.01〜1000モル、好ましくは0.
1〜100モル、更に好ましくは0.5〜20モルの範
囲である。
Further, the same effect can be obtained even if the conjugate base of these acids is added in the form of an acid derivative thought to be produced in the reaction system, such as an acid halide, an acid anhydride, an ester, or an acid amide. The amount of these acids or their salts used is ruthenium 1
0.01 to 1000 mol, preferably 0.01 to 1000 mol.
The amount is in the range of 1 to 100 mol, more preferably 0.5 to 20 mol.

上記くイ)、(ロ)及び(ハ)の成分の外に、場合によ
り含有することができる(二)中性配位子としては、水
素、エチレン、プロピレン、ブテン、シクロペンテン、
シクロヘキセン、ブタジェン、シクロペンタジェン、シ
クロオクタジエン、ツルボナシエン等のオレフィン類、
−酸化炭素、ジエチルエーテル、アニソール、ジオキサ
ン、テトラヒドロフラン、アセトン、アセトフェノン、
ベンゾフェノン、シクロヘキサノン、プロピオン酸、カ
プロン酸、酪酸、安息香酸、酢酸エチル、酢酸アリル、
安息香酸ベンジル、ステアリン酸ベンジル等の含酸素化
合物、酸化窒素、アセトニトリル、プロピオニトリル、
ベンゾニトリル、シクロヘキシルイソニトリル、ブチル
アミン、アニリン、トルイジン、トリエチルアミン、ビ
ロール、ピリジン、N−メチルホルムアミド、アセトア
ミド、1,1,3.3−テトラメチル尿素、N−メチル
ピロリドン、カプロラクタム、ニトロメタン等の含窒素
化合物、二硫化炭素、n−ブチルメルカプタン、チオフ
ェノール、ジメチルスルフィド、ジメチルジスルフィド
、チオフェン、ジメチルスルホキシド、ジフェニルスル
ホキシド等の含硫黄化合物、トリブチルホスフィンオキ
シト、エチルジフェニルホスフィンオキシト、トリフェ
ニルホスフィンオキシト、ジエチルフェニルホスフィネ
ート、ジフェニルメチルホスフィネート、ジフェニルエ
チルホスフィネート、0.0−ジメチルメチルホスホノ
チオレート、トリエチルホスファイト、トリフェニルホ
スファイト、トリエチルホスフェート、トリフェニルホ
スフェート、ヘキサメチルホスホリックトリアミド等の
有機ホスフィン以外の含燐化合物が挙げられる。
In addition to the above components (i), (b), and (c), (ii) neutral ligands that may be optionally contained include hydrogen, ethylene, propylene, butene, cyclopentene,
Olefins such as cyclohexene, butadiene, cyclopentadiene, cyclooctadiene, turbonasien,
-carbon oxide, diethyl ether, anisole, dioxane, tetrahydrofuran, acetone, acetophenone,
Benzophenone, cyclohexanone, propionic acid, caproic acid, butyric acid, benzoic acid, ethyl acetate, allyl acetate,
Oxygenated compounds such as benzyl benzoate and benzyl stearate, nitrogen oxide, acetonitrile, propionitrile,
Nitrogen-containing compounds such as benzonitrile, cyclohexylisonitrile, butylamine, aniline, toluidine, triethylamine, virol, pyridine, N-methylformamide, acetamide, 1,1,3.3-tetramethylurea, N-methylpyrrolidone, caprolactam, nitromethane, etc. , carbon disulfide, n-butyl mercaptan, thiophenol, dimethyl sulfide, dimethyl disulfide, thiophene, dimethyl sulfoxide, diphenyl sulfoxide, and other sulfur-containing compounds, tributylphosphine oxide, ethyl diphenylphosphine oxide, triphenylphosphine oxide, diethyl Organic phosphines such as phenylphosphinate, diphenylmethylphosphinate, diphenylethylphosphinate, 0.0-dimethylmethylphosphonothiolate, triethylphosphite, triphenylphosphite, triethylphosphate, triphenylphosphate, hexamethylphosphoric triamide, etc. Other examples include phosphorus-containing compounds.

本発明の溶媒としては、前記原料物質自体を使用するこ
ともできるが、原料物質以外に例えば次に列挙する溶媒
を使用することができる。
As the solvent of the present invention, the raw material itself can be used, but in addition to the raw material, for example, the following solvents can be used.

ジエチルエーテル、アニソール、テトラヒドロフラン、
エチレングリコールジエチルエーテル、トリエチレング
リコールジメチルエーテル、ジオキサン等のエーテル類
;アセトン、メチルエチルケトン、アセトフェノン等の
ケトン類;メタノール、エタノール、 n−ブタノール、ベンジルアルコール、エチレングツコ
ール、ジエチレングリコール等のアルコール類;フェノ
ール類声ギ酸、酢酸、プロピオン酸、トルイル酸等のカ
ルボン酸類;酢酸メチル、酢酸ローブチル、安息香酸ベ
ンジル等のエステル類;ベンゼン、トルエン、エチルベ
ンゼン、テトラリン等の芳香族炭化水素;n−ヘキサン
、n−オクタン、シクロヘキサン等の脂肪族炭化水素;
ジクロロメタン、トリクロロエタン、クロロベンゼン等
のハロゲン化炭化水素;ニトロメタン、ニトロベンゼン
等のニトロ化炭化水素; N、N−ジメチルホルムアミ
ド、N、N−ジメチルアセトアミド、N−メチルピロリ
ドン等のカルボン酸アミド;ヘキサメチルリン酸トリア
ミド、N、N、N’、N’−テトラエチルスルファミド
等のその他のアミド類; N、N’−ジメチルイミダゾ
リトン、N、N、N、N−テトラメチル尿素等の尿素類
;ジメチルスルホン、テトラメチレンスルホン等のスル
ホン類;ジメチルスルホキシド、ジフェニルスルホキシ
ド等のスルホキシド類;γ−ブチロラクトン、ε−カプ
ロラクトン等のラクトン類;トリプライム(トリエチレ
ングリコールジメチルエーテル)、テトラグライム(テ
トラエチレングリコールジメチルエーテル)、18−ク
ラウン−6等のポリエーテル類、アセトニトリル、ベン
ゾニトリル等のニトリル類;ジメチルカーボネート、エ
チレンカーボネート等の炭酸エステル類・(実施例) 以下本発明を実施例及び比較例について更に詳細に説明
するが、本発明はその要旨を超えない限りこれ等の実施
例に限定されるものではない。
diethyl ether, anisole, tetrahydrofuran,
Ethers such as ethylene glycol diethyl ether, triethylene glycol dimethyl ether, and dioxane; Ketones such as acetone, methyl ethyl ketone, and acetophenone; Alcohols such as methanol, ethanol, n-butanol, benzyl alcohol, ethylene glycol, and diethylene glycol; Phenols Carboxylic acids such as formic acid, acetic acid, propionic acid, and toluic acid; Esters such as methyl acetate, lobutyl acetate, and benzyl benzoate; Aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and tetralin; n-hexane, n-octane, Aliphatic hydrocarbons such as cyclohexane;
Halogenated hydrocarbons such as dichloromethane, trichloroethane, and chlorobenzene; Nitrated hydrocarbons such as nitromethane and nitrobenzene; Carboxylic acid amides such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone; Hexamethylphosphoric acid Other amides such as triamide, N,N,N',N'-tetraethylsulfamide; ureas such as N,N'-dimethylimidazolitone, N,N,N,N-tetramethylurea; dimethylsulfone , Sulfones such as tetramethylene sulfone; Sulfoxides such as dimethyl sulfoxide and diphenyl sulfoxide; Lactones such as γ-butyrolactone and ε-caprolactone; Triprime (triethylene glycol dimethyl ether), Tetraglyme (tetraethylene glycol dimethyl ether), 18 - Polyethers such as Crown-6, nitriles such as acetonitrile and benzonitrile; carbonate esters such as dimethyl carbonate and ethylene carbonate (Examples) The present invention will be described in more detail below with reference to Examples and Comparative Examples. However, the present invention is not limited to these embodiments unless it exceeds the gist thereof.

実施例1 触媒液の調11= 0.039重量%のルテニウムアセチルアセトナ−) 
、0.37重量%のトリオクチルホスフィン及び0.1
6重量%のpiミルエンスルホンをトリエチレングリコ
ールジメチルエーテル(トリプライム、溶媒)に溶解し
、200℃で2時間加熱処理して触媒液を調製した。
Example 1 Catalyst liquid preparation 11 = 0.039% by weight of ruthenium acetylacetonate)
, 0.37% by weight trioctylphosphine and 0.1
A catalyst solution was prepared by dissolving 6% by weight of pi-mylene sulfone in triethylene glycol dimethyl ether (triprime, solvent) and heat-treating at 200° C. for 2 hours.

水素化反応: 第1図に示す流通型反応設備を使用して水素化反応を実
施した。第1図において、lは反応器、2は触媒液容器
、3は圧縮機、4は原料容器、5は冷却器、6は気液分
離器、7は第1蒸留塔、8は第2蒸留塔、9は第3蒸留
塔である。
Hydrogenation reaction: A hydrogenation reaction was carried out using the flow-type reaction equipment shown in FIG. In Figure 1, l is a reactor, 2 is a catalyst liquid container, 3 is a compressor, 4 is a raw material container, 5 is a cooler, 6 is a gas-liquid separator, 7 is a first distillation column, and 8 is a second distillation column. Column 9 is the third distillation column.

上記方法で調製した触媒液を触媒液容器2から2500
3/ hrの流量で反応器!(+01加圧釜)へ供給し
、水素ガスを圧縮機3より8 Ns3/hrO流で反応
器lに供給し、反応器lの圧力を40 kg/cm2 
G、温度を205℃に保持した。一方、篇水コハク酸8
0重量%及びγ−ブチロラクトン20重量%からなる原
料液を、原料容器4から200 g/ hrの流量で連
続的に反応器1に供給して水素化反応を行った。
The catalyst liquid prepared by the above method was poured into the catalyst liquid container 2.
Reactor with a flow rate of 3/hr! (+01 pressure cooker), hydrogen gas was supplied from compressor 3 to reactor L at a flow of 8 Ns3/hrO, and the pressure of reactor L was set to 40 kg/cm2.
G, temperature was held at 205°C. On the other hand, water succinic acid 8
A raw material liquid consisting of 0% by weight and 20% by weight of γ-butyrolactone was continuously supplied from the raw material container 4 to the reactor 1 at a flow rate of 200 g/hr to carry out a hydrogenation reaction.

反応生成液は冷却器5で130℃に冷却し、気液分離器
6において常圧下気液分離してガス成分は100 Nl
/hrをパージし、残部は圧縮機3へ循環した。
The reaction product liquid was cooled to 130°C in a cooler 5, and then separated into gas and liquid under normal pressure in a gas-liquid separator 6, resulting in a gas component of 100 Nl.
/hr was purged, and the remainder was circulated to compressor 3.

反応生成液を、後記条件の第1蒸留塔7に供給し一1塔
頂からγ−ブチロラクトン、水及びトリプライム(溶媒
)を留出させた。一方塔底からは未反応原料、残余の溶
媒及び触媒を含む缶出液を導出して反応器lへ循環した
。なお塔底温度は、若干生成した高沸点成分のため13
7℃から149℃に上昇し、塔頂温度は80℃であった
The reaction product liquid was supplied to the first distillation column 7 under the conditions described below, and γ-butyrolactone, water, and trime (solvent) were distilled out from the top of the column. On the other hand, bottoms containing unreacted raw materials, remaining solvent and catalyst were drawn out from the bottom of the column and circulated to reactor 1. Note that the bottom temperature of the tower was 13.
The temperature rose from 7°C to 149°C, and the tower top temperature was 80°C.

第1蒸留塔7の塔頂からの留出液は、後記条件の第2蒸
留塔8に供給し、塔頂かろ水を主成分とする軽沸点物質
を留出させた。一方、第2蒸留塔の塔底からγ−ブチロ
ラクトン及び溶媒を主成分とする缶出液を導出してこれ
を後記条件の第3蒸留塔へ供給した。
The distillate from the top of the first distillation column 7 was supplied to the second distillation column 8 under the conditions described below, and a light boiling point substance mainly composed of filtrate water was distilled from the top of the column. On the other hand, bottoms containing γ-butyrolactone and a solvent as main components were extracted from the bottom of the second distillation column and supplied to the third distillation column under the conditions described below.

第3蒸留塔の塔頂から精製γ−ブチロラクトンを留出さ
せて採取した。第3蒸留塔の塔底から溶媒を主成分とし
、若干量の高沸点成分を含む缶出液を導出した。
Purified γ-butyrolactone was distilled and collected from the top of the third distillation column. From the bottom of the third distillation column, a bottom solution containing a solvent as a main component and a small amount of high-boiling components was drawn out.

なお、第1、第2及び第3蒸留塔の条件は夫々次の通り
であ7た。
The conditions of the first, second and third distillation columns were as follows.

蒸留塔の運転条件 表  1 上記条件における各蒸留塔の塔頂温度の保持は工業的実
施上容易であり、また冷凍設備は不要であった。
Table of Operating Conditions for Distillation Columns 1 Maintaining the top temperature of each distillation column under the above conditions was easy in industrial practice, and no refrigeration equipment was required.

上記の方法により800時間の連続運転を行ない、77
6〜800時間に得られた第1蒸留塔及び第3蒸留塔の
塔頂からの留出液を、ガスクロマトグラフィーにより分
析したところ、夫々の組成は表1の通りであった。
After 800 hours of continuous operation using the above method, 77
When the distillate from the top of the first distillation column and the third distillation column obtained during 6 to 800 hours was analyzed by gas chromatography, the composition of each was as shown in Table 1.

(注)γ−BL :γ−ブチロラクトンD E GME
 ニジエチレングリコール七ツメチルエーテル 表1における第3蒸留塔の留出液組成に示されるように
、該留出液中のジエチレングリコールモノメチルエーテ
ル(原料の分解生成物)の濃度は極めて小さく、着色は
殆んどなく、また触媒活性の低下も認められなかった。
(Note) γ-BL: γ-butyrolactone DE GME
Nidiethylene glycol monomethyl ether As shown in the composition of the distillate from the third distillation column in Table 1, the concentration of diethylene glycol monomethyl ether (a decomposition product of the raw material) in the distillate is extremely small, and there is almost no coloration. No decrease in catalyst activity was observed.

実施例2 実施例1において、第1蒸留塔の加熱蒸気量を増して、
塔頂からの留出率を約1.5倍にした以外は、実施例1
と全く同様にして170時間の連続運転を行ない、15
0−170時間に得られた第1蒸留塔及び第3蒸留塔の
塔頂からの留出液を、ガスクロマトグラフィーにより分
析したところ、夫々の組成は表2の通りであった。
Example 2 In Example 1, the amount of heated steam in the first distillation column was increased,
Example 1 except that the distillation rate from the top of the column was increased by about 1.5 times.
Continuous operation was carried out for 170 hours in exactly the same manner as above, and 15
When the distillate from the top of the first distillation column and the third distillation column obtained from 0 to 170 hours was analyzed by gas chromatography, the composition of each was as shown in Table 2.

表  2 実施例1との相違は認められなかった。Table 2 No difference from Example 1 was observed.

実施例3 実施例1の触媒液の調製において、トリプライムの代り
に、γ−ブチロラクトンを使用した以外は、実施例1と
ほぼ同様にして168時間の連続運転を行ない、144
〜168時間に得られた第1蒸留塔及び第3蒸留塔の塔
頂からの留出液を、ガスクロマトグラフィーにより分析
したところ、夫々の組成は表3の通りであった。
Example 3 Continuous operation for 168 hours was carried out in the same manner as in Example 1, except that γ-butyrolactone was used instead of tripime in the preparation of the catalyst liquid in Example 1.
When the distillate from the top of the first distillation column and the third distillation column obtained for ~168 hours was analyzed by gas chromatography, the composition of each was as shown in Table 3.

表  3 なお、第1蒸留塔の塔底温度は、170時間運転   
 なお、第1、第2及び第3蒸留塔における塔頂後には
138℃から144℃に上昇したが、その他には  温
度は夫々89℃、46℃及び70℃であり、また塔底温
度は夫々115℃(16868時間後24℃)、127
℃及び111℃であった。
Table 3 The bottom temperature of the first distillation column was determined after 170 hours of operation.
Note that the temperature rose from 138°C to 144°C after the top of the first, second, and third distillation columns, but otherwise the temperature was 89°C, 46°C, and 70°C, respectively, and the bottom temperature of each column was 89°C, 46°C, and 70°C, respectively. 115°C (24°C after 16868 hours), 127
℃ and 111 ℃.

比較例1 実施例1における第1蒸留塔の還流比(1,0)を、4
.0とした以外は、実施例1と全く同様にして72時間
の連続運転を行ない、72時間後に得られた第1蒸留塔
及び第3蒸留塔の塔頂からの留出液を、ガスクロマトグ
ラフィーにより分析したところ、夫々の組成は表4の通
りであった。
Comparative Example 1 The reflux ratio (1,0) of the first distillation column in Example 1 was changed to 4
.. Continuous operation was carried out for 72 hours in exactly the same manner as in Example 1, except that the temperature was 0. After 72 hours, the distillate from the top of the first distillation column and the third distillation column was subjected to gas chromatography. As a result of analysis, the respective compositions were as shown in Table 4.

表  4 なお、第1蒸留塔の塔底温度は、72時間運転後には1
37℃から142℃に上昇した。また、第3蒸留塔の塔
底液は72時間抜き出さなかった。
Table 4 The bottom temperature of the first distillation column was 1 after 72 hours of operation.
The temperature rose from 37°C to 142°C. Further, the bottom liquid of the third distillation column was not extracted for 72 hours.

表4における第3蒸留塔の留出液組成に示されるように
、該留出液中のジエチレングリコールモノメチルエーテ
ル(溶媒の分解生成物)の濃度が高く、著しい着色が認
められた。
As shown in the composition of the distillate from the third distillation column in Table 4, the concentration of diethylene glycol monomethyl ether (solvent decomposition product) in the distillate was high, and significant coloration was observed.

比較例2 実施例1における第1蒸留塔の理論段数を60段とした
以外は、実施例1と全く同様にして72時間の連続運転
を行ない、72時間後に得られた第1蒸留塔及び第3蒸
留塔の塔頂からの留出液を、ガスクロマトグラフィーに
より分析したところ、夫々の組成は表5の通りであった
Comparative Example 2 Continuous operation for 72 hours was carried out in the same manner as in Example 1 except that the number of theoretical plates in the first distillation column in Example 1 was changed to 60. When the distillate from the top of the three distillation columns was analyzed by gas chromatography, the composition of each was as shown in Table 5.

表  5 なお、第1蒸留塔の塔底温度は、72時間運転後には1
72℃から178℃に上昇した。また、72時間運転後
の触媒活性は115に低下した。
Table 5 The bottom temperature of the first distillation column was 1 after 72 hours of operation.
The temperature rose from 72°C to 178°C. Moreover, the catalyst activity after 72 hours of operation decreased to 115.

表5における第3蒸留塔の留出液組成に示されるように
、該留出液中のジエチレングリコールモノメチルエーテ
ルの濃度が高く、着色もかなり認められた。
As shown in the composition of the distillate from the third distillation column in Table 5, the concentration of diethylene glycol monomethyl ether in the distillate was high, and considerable coloration was observed.

比較例3 実施例1の方法において、気液分離器6でガス成分を分
離した反応生成液を、第1蒸留塔7を経由せずに、第2
蒸留塔8に供給(第1図の点線経路)して、塔頂から水
を主成分とする軽沸点物質を留出させ、塔底からγ−ブ
チロラクトン及び溶媒を主成分とする缶出液を導出して
第3蒸留塔へ供給した。第3蒸留塔の塔頂からγ−ブチ
ロラクトンを留出させて採取し、塔底から溶媒を主成分
とする缶出液を抜き出して反応器1へ循環させた。
Comparative Example 3 In the method of Example 1, the reaction product liquid from which gas components were separated in the gas-liquid separator 6 was passed through the second distillation column 7 without passing through the first distillation column 7.
It is supplied to the distillation column 8 (dotted line route in Figure 1), and the light boiling point substance mainly composed of water is distilled from the top of the column, and the bottoms mainly composed of γ-butyrolactone and the solvent are distilled from the bottom of the column. It was taken out and supplied to the third distillation column. γ-Butyrolactone was distilled and collected from the top of the third distillation column, and the bottoms containing solvent as a main component was extracted from the bottom of the column and circulated to reactor 1.

上記の方法により72時閏の連続運転を行ない、得られ
た第3蒸留塔の塔頂からの留出液を、ガスクロマトグラ
フィーにより分析したところ、その組成は次の通りであ
り、コハク酸の分解が生起して生成水がγ−ブチロラク
トン中に混入し、大幅な純度の低下が認められた。
The distillate from the top of the third distillation column was analyzed by gas chromatography after 72 hours of continuous operation using the above method, and the composition was as follows. Decomposition occurred and the resulting water was mixed into γ-butyrolactone, resulting in a significant decrease in purity.

γ−B L      9B、52重量%D E G 
M E      0.04重量%水  分     
     1.02重量%なお163時間運転後に、第
2蒸留塔の塔底温度は138℃から145℃に上昇した
γ-B L 9B, 52 wt% D E G
M E 0.04% water by weight
1.02% by weight After 163 hours of operation, the bottom temperature of the second distillation column rose from 138°C to 145°C.

(発明の効果) 本発明方法によれば、ルテニウム触媒を使用してジカル
ボン酸、ジカルボン酸無水物又はジカルボン酸エステル
を液相で水素化することにより得られる水素化反応生成
物からラクトン類を蒸留分離する際に、特定割合の溶媒
をラクトン類と共に留出させ、かつ精製処理工程を適切
に組合わせることにより、触媒活性の低下、溶媒の着色
、ラクトン類純度の低下等の問題を生ずることなく、工
業的有利にラクトン類を製造することができ、その実用
上の価値は大きい。
(Effects of the Invention) According to the method of the present invention, lactones are distilled from the hydrogenation reaction product obtained by hydrogenating dicarboxylic acid, dicarboxylic acid anhydride, or dicarboxylic acid ester in a liquid phase using a ruthenium catalyst. By distilling a specific proportion of the solvent together with the lactones during separation and appropriately combining the purification process, problems such as a decrease in catalyst activity, coloring of the solvent, and a decrease in the purity of the lactones can be avoided. , it is possible to produce lactones with industrial advantage, and its practical value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用される流通型反応設備の工
程図を示す。 図中lは反応器、2は触媒液容器、3は圧縮機、4は原
料容器、5は冷却器、6は気液分離器、7は第1蒸留塔
、8は第2蒸留塔、9は第3蒸留塔である。
FIG. 1 shows a process diagram of a flow-through reaction facility used to carry out the present invention. In the figure, l is a reactor, 2 is a catalyst liquid container, 3 is a compressor, 4 is a raw material container, 5 is a cooler, 6 is a gas-liquid separator, 7 is a first distillation column, 8 is a second distillation column, 9 is the third distillation column.

Claims (1)

【特許請求の範囲】[Claims] (1)ジカルボン酸、ジカルボン酸無水物又はジカルボ
ン酸エステルをルテニウム触媒の存在下に溶媒を用いて
液相で水素化して得られたラクトン類を含有する反応生
成物を、 (A)第1蒸留塔へ供給して塔頂からラクトン類、水及
び留出液に対し3〜50重量%の溶媒を留出させ、該留
出液を第2蒸留塔へ供給すると共に、第1蒸留塔の塔底
から未反応原料、残余の溶媒及び触媒を含む缶出液を導
出してその少なくとも一部を水素化工程へ循環し、 (B)第2蒸留塔の塔頂から水を主成分とする軽沸点物
質を留出分離すると共に、第2蒸留塔の塔底からラクト
ン類及び溶媒を主成分とする缶出液を導出してこれを第
3蒸留塔へ供給し、 (C)第3蒸留塔の塔頂からラクトン類を留出させて採
取すると共に、第3蒸留塔の塔底から溶媒を主成分とす
る缶出液を導出することを特徴とするラクトン類の製造
法。
(1) A reaction product containing lactones obtained by hydrogenating dicarboxylic acid, dicarboxylic acid anhydride, or dicarboxylic acid ester in the liquid phase using a solvent in the presence of a ruthenium catalyst, (A) First distillation The lactones, water, and 3 to 50% by weight of the solvent are distilled from the top of the column to the distillate, and the distillate is supplied to the second distillation column, and the distillate is fed to the column of the first distillation column. (B) A bottom liquor containing unreacted raw materials, residual solvent and catalyst is drawn out from the bottom and at least a part of it is recycled to the hydrogenation process. Boiling point substances are distilled and separated, and a bottoms containing lactones and solvent as main components is derived from the bottom of the second distillation column and supplied to the third distillation column, (C) the third distillation column. A method for producing lactones, which comprises distilling and collecting lactones from the top of a third distillation column, and deriving a bottoms containing a solvent as a main component from the bottom of a third distillation column.
JP1274998A 1989-10-24 1989-10-24 Method for producing lactones Expired - Lifetime JPH07121927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1274998A JPH07121927B2 (en) 1989-10-24 1989-10-24 Method for producing lactones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1274998A JPH07121927B2 (en) 1989-10-24 1989-10-24 Method for producing lactones

Publications (2)

Publication Number Publication Date
JPH03141272A true JPH03141272A (en) 1991-06-17
JPH07121927B2 JPH07121927B2 (en) 1995-12-25

Family

ID=17549473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1274998A Expired - Lifetime JPH07121927B2 (en) 1989-10-24 1989-10-24 Method for producing lactones

Country Status (1)

Country Link
JP (1) JPH07121927B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342270A (en) * 2002-05-28 2003-12-03 Mitsubishi Chemicals Corp Method for producing carbonyl compound
JP2015131799A (en) * 2013-12-09 2015-07-23 三菱化学株式会社 Method for producing lactones
JP2015166339A (en) * 2014-02-17 2015-09-24 三菱化学株式会社 Gamma-butyrolactone composition and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342270A (en) * 2002-05-28 2003-12-03 Mitsubishi Chemicals Corp Method for producing carbonyl compound
JP2015131799A (en) * 2013-12-09 2015-07-23 三菱化学株式会社 Method for producing lactones
JP2015166339A (en) * 2014-02-17 2015-09-24 三菱化学株式会社 Gamma-butyrolactone composition and production method thereof

Also Published As

Publication number Publication date
JPH07121927B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
US4892955A (en) Method for producing a lactone
JPH0778054B2 (en) Method for producing lactones
JPH03141272A (en) Production of lactones
JP2516815B2 (en) Method for producing lactones
JP2785967B2 (en) Method for producing lactones
KR0145318B1 (en) Process for producing a lactone
JP2516809B2 (en) Method for producing lactones
JP2516805B2 (en) Method for producing lactones
JPH03204870A (en) Production of lactones
JPH03112973A (en) Production of lactones
JPH02121976A (en) Production of phthalides
JP3386569B2 (en) Method for concentration separation and reuse of ruthenium complex
JPH03112972A (en) Production of lactones
JP3758226B2 (en) Separation and recovery of ruthenium complex
JPH0491085A (en) Production of lactones
JPH03141273A (en) Purification of lactones
JP3637670B2 (en) Method for recovering ruthenium complex
JPH02233674A (en) Production of lactones
JPH04217636A (en) Production of 1,4-butanediol
JP2611831B2 (en) Method for producing 1,4-butanediol and / or tetrahydrofuran
JPH02200680A (en) Production of gamma-butyrolactone
JPH0436275A (en) Production of lactones
KR100876011B1 (en) Method for producing naphthalenedicarboxylic acid
JP3760497B2 (en) Method for recovering ruthenium complex
JPH0366680A (en) Purification of lactones

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 14

EXPY Cancellation because of completion of term