JPH03140754A - Condenser for solar ray - Google Patents
Condenser for solar rayInfo
- Publication number
- JPH03140754A JPH03140754A JP1277627A JP27762789A JPH03140754A JP H03140754 A JPH03140754 A JP H03140754A JP 1277627 A JP1277627 A JP 1277627A JP 27762789 A JP27762789 A JP 27762789A JP H03140754 A JPH03140754 A JP H03140754A
- Authority
- JP
- Japan
- Prior art keywords
- concave mirror
- receiving member
- sunlight
- light
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 claims abstract description 10
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- 238000010438 heat treatment Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、太陽光のエネルギによる、水等の流体の加熱
や太陽電池へのエネルギの供給に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the heating of fluids such as water and the supply of energy to solar cells using the energy of sunlight.
従来から、太陽熱を利用した温水発生器は種々提案され
ている。かかる温水発生器としては、例えば第14図に
示すように、凹面を有する反射鏡(この図では2個)1
を、移動する太陽の方向に常に向けて太陽光2を集光し
、水が供給されるパイプ3を太陽光2の集光部に配置し
て、集光された太陽光の熱により、パイプ3内の水を加
熱している。Conventionally, various hot water generators that utilize solar heat have been proposed. Such a hot water generator includes, for example, as shown in FIG. 14, a reflecting mirror (two in this figure) 1 having a concave surface.
is always directed in the direction of the moving sun to concentrate the sunlight 2, and the pipe 3 to which water is supplied is placed in the sunlight 2 concentrator, and the heat of the concentrated sunlight causes the pipe to The water inside 3 is heated.
C発明が解決しようとする課題〕
太陽は、1日のうちで東から西に移りながらその位置と
高さとを変えるとともに、季節の変化によってもその高
さを変化させている。なお、第14図中の太陽光2のう
ち鎖線は昼の時刻における光路を示し、実線は朝出夕方
の時刻における光路を示している。しかして、反射鏡1
を太陽位置の変動に追尾させてパイプ3を常に焦点位置
に置くために、各反射鏡1.1に連結された反射鏡移動
手段としてのストロークシリンダ4を図中左右方向に移
動させて、各反射鏡1,1を昼の時刻には鎖線の位置に
配置し、朝と夕方の時刻には実線の位置に配置している
。したがって、反射鏡1が大型化した場合には、上記ス
トロークシリンダ4を含む装置も大型化するという課題
があった。Problems to be solved by invention C] The sun changes its position and height as it moves from east to west during the day, and also changes its height as the seasons change. In addition, among the sunlight 2 in FIG. 14, the chain line indicates the optical path at noon time, and the solid line indicates the optical path at morning and evening times. However, reflector 1
In order to keep the pipe 3 at the focal position by tracking the changes in the sun's position, the stroke cylinder 4 as a reflector moving means connected to each reflector 1.1 is moved in the left and right directions in the figure. The reflecting mirrors 1, 1 are arranged at the positions indicated by the chain lines at noon time, and at the positions indicated by the solid lines at morning and evening times. Therefore, when the reflecting mirror 1 becomes larger, there is a problem that the device including the stroke cylinder 4 also becomes larger.
本発明は、かかる課題を解決するためになされたもので
、反射鏡を動かさなくても受光部材に太陽光を集光でき
る、太陽光の集光装置を得ることを目的とする。The present invention has been made to solve this problem, and an object of the present invention is to provide a sunlight condensing device that can condense sunlight onto a light receiving member without moving a reflecting mirror.
本発明に係る太陽光の集光装置は、太陽光を集光する反
射鏡と、この反射鏡の焦点位置に配設される受光部材と
、太陽光の光路の移動により変化する上記焦点位置に上
記受光部材を移動させる移動手段とを備えたものである
。The sunlight condensing device according to the present invention includes a reflecting mirror for concentrating sunlight, a light receiving member disposed at a focal position of the reflecting mirror, and a focal position changing as the optical path of sunlight changes. and a moving means for moving the light receiving member.
また、上記反射鏡は、縦長状に形成されるとともに横方
向に湾曲形成され、さらに長手方向を東西に向けて配設
された凹面鏡で構成された場合でもよい。Further, the reflecting mirror may be a concave mirror that is formed in a vertically elongated shape, curved in the horizontal direction, and further arranged with its longitudinal direction facing east and west.
さらに、上記受光部材は、上記凹面鏡の内方に上記長手
方向に向けて配設され、さらに上記移動手段により昇降
され、内部に流体が供給されるパイプで構成された場合
でもよい。Furthermore, the light-receiving member may be configured as a pipe that is disposed inside the concave mirror so as to face the longitudinal direction, and is further raised and lowered by the moving means, and into which fluid is supplied.
本発明においては、移動手段が、反射鏡の焦点位置の変
動に追従して受光部材を移動させるので、受光部材は常
に反射鏡の焦点位置に移動配置される。In the present invention, the moving means moves the light-receiving member following changes in the focal position of the reflecting mirror, so that the light-receiving member is always moved to the focal position of the reflecting mirror.
第1実施例
第1図乃至第3図は、本発明の第1実施例を示す太陽光
の集光装置の図で、本実施例では太陽熱による流体加熱
装置の場合であって、第2図中、左方は南、右方は北を
示し、第3図中、左方は西、右方は東を示している。本
実施例装置における、太陽光を集光する反射鏡は、図示
するように、縦長状(第3図中の左右方向に縦長)に形
成されるとともに横方向(第2図中の左右方向)に湾曲
形成され、さらに、長手方向を東西に向けて配設された
凹面鏡11を用いている。この凹面鏡11は、円弧状に
湾曲されているが、湾曲した外周面部と全周端縁部には
補強材12,13.14が固定されて凹面鏡11の強度
を向上させている。また、凹面鏡11の長手方向の両端
部と中央部には、軸100(但し、第3図中の右側の軸
は図示を省略)と110とが設けられ、このl[111
00,110は、地面15上に固定された門形の3本の
支柱16(第3図中の最右端の支柱は図示を省略)の各
軸受17に回動自在に支持されている。また、第3図に
示すように、中央の支柱(図中右側の支柱)16の部分
では凹面鏡11を分離することにより、支柱16が凹面
鏡11の揺動動作の邪魔にならないようにしている。符
号18は、凹面鏡11に固定されたストローク接続ロッ
ドで、図示しないストロークシリンダに連結され、シリ
ンダの進退動作によって凹面鏡11を軸100,110
を中心に回動させるためのものである。FIRST EMBODIMENT FIGS. 1 to 3 are diagrams of a solar light condensing device according to a first embodiment of the present invention. In this embodiment, a fluid heating device using solar heat is shown. In the middle, the left side shows south and the right side shows north. In Figure 3, the left side shows west and the right side shows east. In the device of this embodiment, the reflecting mirror for concentrating sunlight is formed in a vertically elongated shape (longitudinal in the left-right direction in FIG. 3) and in a horizontal direction (in the left-right direction in FIG. 2), as shown in the figure. A concave mirror 11 is used, which has a curved shape and is arranged with its longitudinal direction facing east and west. This concave mirror 11 is curved in an arc shape, and reinforcing members 12, 13, and 14 are fixed to the curved outer circumferential surface and the entire circumferential edge to improve the strength of the concave mirror 11. In addition, shafts 100 (however, the shaft on the right side in FIG. 3 is not shown) and 110 are provided at both ends and the center in the longitudinal direction of the concave mirror 11, and this l[111
00 and 110 are rotatably supported by bearings 17 of three gate-shaped columns 16 (the rightmost column in FIG. 3 is not shown) fixed on the ground 15. Furthermore, as shown in FIG. 3, the concave mirror 11 is separated from the central support 16 (the right support in the figure) so that the support 16 does not interfere with the swinging movement of the concave mirror 11. Reference numeral 18 denotes a stroke connecting rod fixed to the concave mirror 11, which is connected to a stroke cylinder (not shown), and moves the concave mirror 11 to the shafts 100, 110 by moving the cylinder forward and backward.
This is for rotating around the center.
凹面鏡11の焦点位置には、受光部材としてのステンレ
ス製(SUS304製)のパイプ(受熱部材)21が配
設されている。凹面鏡11の上部にはサポート材22,
23.24が固定され、このサポート材22.23.2
4の上端部には、シリンダ25が取付けられている。シ
リンダ25は、凹面鏡11の内方に長手方向(第3図中
の左右方向)に向けて配設され、内部に流体(この実施
例では水)が供給されるパイプ21を、図中矢印で示す
ように中心線lにそって昇降させて、太陽光の光路の移
動により変化する焦点位置(凹面鏡11の焦点位置)に
移動させる移動手段を構成している。At the focal point of the concave mirror 11, a stainless steel (SUS304) pipe (heat receiving member) 21 is provided as a light receiving member. A support material 22 is provided on the upper part of the concave mirror 11,
23.24 is fixed and this support material 22.23.2
A cylinder 25 is attached to the upper end of the cylinder 4. The cylinder 25 is disposed inside the concave mirror 11 in the longitudinal direction (left-right direction in FIG. 3), and a pipe 21 into which fluid (water in this embodiment) is supplied is indicated by an arrow in the figure. As shown, it constitutes a moving means that moves up and down along the center line 1 to a focal position (focal position of the concave mirror 11) that changes with the movement of the optical path of sunlight.
第4図乃至第8図は本発明の原理を示す図で、第4図に
示すように、地球上のある一点Oから太陽Sを見たとき
、夏の季節には太陽Sは、昼の時刻には例えば77°の
仰角となるように朝、昼、夕方の順に曲線Pに従って東
から西に移動するが、冬の季節には太陽Sは、昼の時刻
には例えば29°の仰角となるように朝、昼、夕方の順
に曲線Qに従って東から西に移動する。なお、春と秋に
はこの中間の仰角で移動し、太陽高さの変動範囲は角θ
となる。また、1日間の太陽Sの動きの変動は、最大で
角度180°である。Figures 4 to 8 are diagrams showing the principle of the present invention. As shown in Figure 4, when looking at the sun S from a certain point O on the earth, the sun S is The sun S moves from east to west according to the curve P in the order of morning, noon, and evening so that it has an elevation angle of, for example, 77 degrees at time, but in the winter season, the sun S has an elevation angle of, for example, 29 degrees at noon time. Move from east to west following curve Q in the order of morning, noon, and evening so that In addition, in spring and autumn, the sun moves at an intermediate elevation angle, and the range of variation in the sun's height is within the angle θ.
becomes. Further, the maximum variation in the movement of the sun S during one day is 180°.
このように、太陽Sは1日の間で大きく変動することか
ら、太陽Sの動きによって凹面鏡11の焦点位置も移動
する。第5A、5B図乃至第7A。As described above, since the sun S changes greatly during the day, the focal position of the concave mirror 11 also moves due to the movement of the sun S. Figures 5A, 5B to 7A.
7B図に示すように、凹面鏡11を、その長手方向を東
西に向けて配置し、かつ凹面鏡11を動かさない場合、
凹面鏡11の焦点位置Fについては、朝の時刻には太陽
光りは焦点F、(即ち、直線A 上の位置)に集光しく
第5A図、第5B図)、昼の時刻には、太陽光りは焦点
位置 F2(即ち、直線A2上の位置)に集光しく第6
A図、第6B図)、夕方の時刻には太陽光りは焦点F3
(即ち、直線A3上の位置)に集光しく第7A図、第7
B図)、シかも変動する焦点位置A1〜A3は、上下方
向に直線Bに従って移動する。この点に本発明者は着目
し、パイプ21が常に直線A1−A3上に位置するよう
に、シリンダ25によリパイプ21を直線Bに従って昇
降させている(第8図中の矢印a)。第8図中、曲線C
は季節によって変動する焦点位置の軌跡を示し、夏の朝
と夕方には位置31が、冬の朝と夕方には位置32がそ
れぞれ焦点位置となる(第8図中の矢印b)。したがっ
て、季節の移り変りに対応させて、図示しないストロー
クシリンダによりストローク接続ロッド18を軸100
,110まわりに回動させて凹面鏡11を常に太陽Sの
方向に向ければ集光の効率は向上するが、ストロークシ
リンダは設けず凹面鏡11を回動させない場合であって
もよく、この場合にはストロークシリンダを省略できて
装置が簡略化する。As shown in Figure 7B, when the concave mirror 11 is arranged with its longitudinal direction facing east and west, and the concave mirror 11 is not moved,
Regarding the focal point F of the concave mirror 11, in the morning the sunlight is concentrated at the focal point F (i.e., the position on the straight line A) (Figures 5A and 5B), and in the afternoon the sunlight is concentrated at the focal point F (i.e., the position on the straight line A). is the sixth point to condense the light to the focal point F2 (i.e., the position on the straight line A2).
Figures A and 6B), in the evening the sun's rays are at focus F3.
(In other words, the position on the straight line A3)
In Figure B), the focal positions A1 to A3, which are subject to change, move vertically along straight line B. The inventor of the present invention has focused on this point, and uses the cylinder 25 to move the pipe 21 up and down along the straight line B so that the pipe 21 is always located on the straight line A1-A3 (arrow a in FIG. 8). In Figure 8, curve C
shows the locus of the focal position that varies depending on the season, with position 31 being the focal position in the morning and evening of summer, and position 32 being the focal position in the morning and evening of winter (arrow b in Fig. 8). Therefore, in response to the change of seasons, the stroke connecting rod 18 is moved to the shaft 100 by a stroke cylinder (not shown).
, 110 so as to always point the concave mirror 11 in the direction of the sun S, the efficiency of condensing light can be improved. The stroke cylinder can be omitted, simplifying the device.
第9図は本実施例に係る流体加熱装置により温水を得る
システムを示しており、図示するように、多数の凹面鏡
11を並設するとともに、ポンプ41によりパイプ21
内に水を供給すれば、冷水は加熱装置により温水となり
、この温水を熱使用装置42で使用することができる。FIG. 9 shows a system for obtaining hot water using the fluid heating device according to this embodiment. As shown in the figure, a large number of concave mirrors 11 are arranged in parallel, and a pipe 2
If water is supplied inside the heating device, the cold water becomes hot water by the heating device, and this hot water can be used by the heat use device 42.
例えば、関東地区では4000〜5500 (kcal
/rri・day 〕の熱量が太陽光りから得られるた
め、従来の風呂用平面型受熱体では約80℃の温水を得
ることが可能であるが、本実施例のような凹面鏡11を
使用した場合には、より高温の熱水が得られる。For example, in the Kanto area, 4000-5500 (kcal
/rri・day ] is obtained from sunlight, so it is possible to obtain hot water of approximately 80°C with a conventional flat heat receiver for baths, but when using the concave mirror 11 as in this embodiment. In this case, higher temperature hot water can be obtained.
第9図に示す装置を用いて産業用廃水を蒸発させるよう
な、時間的制約のない場合には本発明はより有効である
。The present invention is more effective when there is no time constraint, such as when industrial wastewater is evaporated using the apparatus shown in FIG.
実験例
第10図は、本発明者の行なった実験装置を示しており
、第1表にそのデータを示す。図示するように、ポンプ
51により水を加熱装置52及び水槽53に循環させて
温水を生成している。加熱装置52は、上述と同様の凹
面鏡11を備えている。EXPERIMENTAL EXAMPLE FIG. 10 shows an experimental apparatus conducted by the present inventor, and Table 1 shows the data. As shown in the figure, a pump 51 circulates water through a heating device 52 and a water tank 53 to generate hot water. The heating device 52 includes the same concave mirror 11 as described above.
(実験条件)
1、凹面鏡11の寸法と台数:
曲率直径0.57φm×長さ2m×3台2、水槽53の
寸法と容量
横0.38mX縦0.26mX高さ0.22m、容量2
1.713、温度計
T1 水槽53内の水温
第1表
このように、約1時間の間、水を循環させることにより
、30.5℃の冷水を39℃まで加熱することができる
。(Experimental conditions) 1. Dimensions and number of concave mirrors 11: Curvature diameter 0.57 φm x length 2 m x 3 units 2. Dimensions and capacity of water tank 53 Width 0.38 m x Length 0.26 m x Height 0.22 m, Capacity 2
1.713, Thermometer T1 Water temperature in water tank 53 Table 1 As described above, by circulating the water for about 1 hour, cold water of 30.5°C can be heated to 39°C.
第2実施例
第11図は、本発明の第2実施例を示しており、この実
施例における受光部材としてのバイブロ1は、断面矩形
のステンレスバイブロ2.63を上下2段に配設すると
ともに、両バイブロ2.63の間と両側面とにのみ断熱
材64を取付けている。Second Embodiment FIG. 11 shows a second embodiment of the present invention. A vibro 1 as a light receiving member in this embodiment includes stainless steel vibros 2.63 each having a rectangular cross section arranged in upper and lower stages. , a heat insulating material 64 is attached only between the two vibros 2.63 and on both sides.
また、密封された末端部65では上下バイブロ2゜63
が互いに連通している。上部バイブロ2には冷水が供給
され、この冷水は末端部65で下部バイブロ3に移り、
この下部バイブロ3で加熱されて温水となって排出され
る。即ち、バイブロ1は常に凹面鏡11の焦点位置に配
置していることから、冷水は、上部バイブロ2を通過す
る間に、断熱材が取付けられていない上面66からの太
陽光によりある程度温められた後、下部バイブロ3では
断熱材を有しない下面67からの集光太陽光の熱により
急激に加熱されて排出される。断熱材64は、水を約6
0℃以上にまで加熱する場合や水を蒸発させる場合には
、放熱による水の冷却防止の点と、焦点の近辺が高熱と
なるため太陽熱を吸収するという点で有効である。In addition, in the sealed end portion 65, the upper and lower vibrators 2°63
are connected to each other. The upper vibro 2 is supplied with cold water, and this cold water is transferred to the lower vibro 3 at the end 65.
The water is heated by the lower vibro 3 and discharged as hot water. That is, since the vibro 1 is always located at the focal point of the concave mirror 11, the cold water is heated to some extent by sunlight from the upper surface 66 to which no heat insulating material is attached while passing through the upper vibro 2. In the lower vibro 3, it is rapidly heated by the heat of the concentrated sunlight from the lower surface 67, which does not have a heat insulating material, and is discharged. The insulation material 64 absorbs water by approximately 6
When heating to 0° C. or higher or when water is evaporated, it is effective in preventing the water from cooling due to heat radiation and in absorbing solar heat because the area near the focal point becomes highly heated.
第3実施例
第12図、第13図は本発明の第3実施例を示す図で、
この実施例では受光部材として太陽電池71を用い、こ
れを凹面鏡11の焦点位置に配置している。したがって
、凹面鏡11にて集光した太陽光りを太陽電池71の光
源として利用できることとなり、太陽電池71の単位面
積当りの発電効率を高めることができる。即ち、第13
図のグラフに示すように、従来は光の量が少ないため発
電量も小さかったが(図中M)、本実施例では光の量が
増大するので、発電量も大幅に増大する(図中N)。な
お、曲線りは太陽電池71における光の量に対する発電
量の関係を示している。Third Embodiment FIGS. 12 and 13 are diagrams showing a third embodiment of the present invention.
In this embodiment, a solar cell 71 is used as a light receiving member, and is placed at the focal point of the concave mirror 11. Therefore, the sunlight collected by the concave mirror 11 can be used as a light source for the solar cell 71, and the power generation efficiency per unit area of the solar cell 71 can be increased. That is, the 13th
As shown in the graph of the figure, in the past, the amount of power generation was small because the amount of light was small (M in the figure), but in this example, the amount of light increases, so the amount of power generated also increases significantly (M in the figure). N). Note that the curve indicates the relationship between the amount of power generated and the amount of light in the solar cell 71.
上記第1乃至第3実施例における凹面鏡11としては、
ガラスを用いた鏡の場合が反射効率が最もよく望ましい
が、プラスチック製やステンレス製であってもよ(、こ
のステンレス製の凹面鏡はメンテナンスが容易であり好
ましい。The concave mirror 11 in the first to third embodiments is as follows:
A mirror made of glass is preferable because it has the best reflection efficiency, but it may also be made of plastic or stainless steel (this concave mirror made of stainless steel is preferred because it is easy to maintain).
近年大気中の炭酸ガス(CO2)濃度の増加が地球規模
での環境に悪影響を及ぼしているとの考え方がクローズ
アップしているが、本発明に係る太陽光の集光装置のよ
うな太陽光を利用した技術は大気を汚染する心配もない
ため最も望ましい。In recent years, the idea that the increase in the concentration of carbon dioxide (CO2) in the atmosphere is having a negative impact on the global environment has come into focus. Technology using this is the most desirable because there is no need to worry about polluting the air.
なお、凹面鏡は上記各実施例のような上方を開放した円
筒形が望ましいが、放物線を有する筒形でもよく、また
上方を開放した球形であってもよい。The concave mirror preferably has a cylindrical shape with an open top as in the above embodiments, but it may also have a cylindrical shape with a parabola or a spherical shape with an open top.
また、上記第1、第2実施例中のパイプ21゜61の内
部に供給する流体は水に限られるものではない。Further, the fluid supplied to the inside of the pipe 21°61 in the first and second embodiments is not limited to water.
なお、各図中同一符号は同−又は相当部分を示す。Note that the same reference numerals in each figure indicate the same or corresponding parts.
本発明は、以上説明したとおり、移動手段により受光部
材を常に反射鏡の焦点位置に移動させることから、反射
鏡を動かさなくても受光部材に太陽光を集光することが
できることとなり、装置全体を小型化できる。As explained above, in the present invention, since the light receiving member is always moved to the focal position of the reflecting mirror by the moving means, sunlight can be focused on the light receiving member without moving the reflecting mirror, and the entire device can be made smaller.
第1図乃至第3図は本発明の第1実施例を示す図で、第
1図は凹面鏡とパイプの配置関係を示す斜視図、第2図
と第3図は本実施例に係る太陽熱による流体加熱装置の
側面図と正面図、第4図乃至第8図は本発明の原理を示
す図で、第4図は太陽の軌跡を示す説明図、第5A図と
第5B図は朝の時刻における太陽光の光路を示す正面断
面図と側面図、第6A図と第6B図は昼の時刻における
太陽光の光路を示す正面断面図と側面図、第7A図と第
7B図は夕方の時刻における太陽光の光路を示す正面断
面図と側面図、第8図は凹面鏡の焦点位置の移動を示す
側面図、第9図は第1実施例に係る流体加熱装置により
温水を得るシステムを示す系統図、第10図は本発明に
係る実験装置の系統図、第11図は本発明の第2実施例
を示す図で、パイプを有する加熱装置の一部断面斜視図
、第12図は本発明の第3実施例を示す太陽光の集光装
置の斜視図、第13図は同実施例を説明するためのグラ
フ、第14図は従来の加熱装置を示す側面図である。
11・・・反射鏡(凹面鏡)、
21.61・・受光部材(パイプ)、
25・・・移動手段(シリンダ)、
1
・・受光部材
Fl・ A 〜A3
L・・太陽光。
(太陽電池)
・・・焦点位置、1 to 3 are diagrams showing a first embodiment of the present invention. FIG. 1 is a perspective view showing the arrangement relationship between a concave mirror and a pipe, and FIGS. A side view and a front view of the fluid heating device, and FIGS. 4 to 8 are diagrams showing the principle of the present invention, FIG. 4 is an explanatory diagram showing the trajectory of the sun, and FIGS. 5A and 5B are morning time 6A and 6B are front sectional views and side views showing the optical path of sunlight at daytime, and FIGS. 7A and 7B are evening time views. 8 is a side view showing the movement of the focal position of the concave mirror, and FIG. 9 is a system showing a system for obtaining hot water by the fluid heating device according to the first embodiment. 10 is a system diagram of an experimental apparatus according to the present invention, FIG. 11 is a diagram showing a second embodiment of the present invention, and FIG. 12 is a partially sectional perspective view of a heating device having a pipe, and FIG. FIG. 13 is a graph for explaining the third embodiment, and FIG. 14 is a side view of a conventional heating device. 11... Reflecting mirror (concave mirror), 21.61... Light receiving member (pipe), 25... Moving means (cylinder), 1... Light receiving member Fl. A to A3 L... Sunlight. (Solar cell) ・・・focal position,
Claims (1)
に配設される受光部材と、太陽光の光路の移動により変
化する上記焦点位置に上記受光部材を移動させる移動手
段とを備えたことを特徴とする太陽光の集光装置。 2、上記反射鏡は、縦長状に形成されるとともに横方向
に湾曲形成され、さらに長手方向を東西に向けて配設さ
れた凹面鏡で構成されたことを特徴とする請求項1記載
の太陽光の集光装置。 3、上記受光部材は、上記凹面鏡の内方に上記長手方向
に向けて配設され、さらに上記移動手段により昇降され
、内部に流体が供給されるパイプで構成されたことを特
徴とする請求項1又は2記載の太陽光の集光装置。[Claims] 1. A reflecting mirror that collects sunlight, a light-receiving member disposed at the focal position of the reflecting mirror, and a light-receiving member disposed at the focal position that changes with movement of the optical path of the sunlight. 1. A solar light condensing device comprising a means for moving sunlight. 2. The sunlight according to claim 1, wherein the reflecting mirror is a concave mirror that is formed vertically and curved in the horizontal direction, and is arranged with its longitudinal direction facing east and west. condensing device. 3. The light-receiving member is disposed inside the concave mirror so as to face the longitudinal direction, and is further raised and lowered by the moving means, and is configured with a pipe into which fluid is supplied. 2. The sunlight condensing device according to 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1277627A JPH03140754A (en) | 1989-10-25 | 1989-10-25 | Condenser for solar ray |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1277627A JPH03140754A (en) | 1989-10-25 | 1989-10-25 | Condenser for solar ray |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03140754A true JPH03140754A (en) | 1991-06-14 |
Family
ID=17586064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1277627A Pending JPH03140754A (en) | 1989-10-25 | 1989-10-25 | Condenser for solar ray |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03140754A (en) |
-
1989
- 1989-10-25 JP JP1277627A patent/JPH03140754A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3991741A (en) | Roof-lens solar collector | |
US3915148A (en) | Thermostatically controlled non-tracking type solar energy concentrator | |
US8490396B2 (en) | Configuration and tracking of 2-D “modular heliostat” | |
US4284839A (en) | Internal refractor focusing solar energy collector apparatus and method | |
US3998206A (en) | System for collecting and utilizing solar energy | |
US4148301A (en) | Water-borne rotating solar collecting and storage systems | |
US4520794A (en) | Solar energy concentrating slat arrangement and collector | |
CA1090222A (en) | High efficiency solar collector | |
JP5876873B2 (en) | Photovoltaic power generation apparatus provided with a columnar condensing device | |
US4211212A (en) | Solar refrigeration system | |
US4644933A (en) | Solar system | |
US4150663A (en) | Solar energy collector and concentrator | |
MX2012012260A (en) | A solar energy collector system. | |
US20160079461A1 (en) | Solar generator with focusing optics including toroidal arc lenses | |
US4566434A (en) | Solar energy collector | |
Dang | Concentrators: a review | |
Singh et al. | A review on solar energy collection for thermal applications | |
Yousef et al. | Development of solar thermal energy systems | |
CN206626824U (en) | solar concentrator | |
US4144873A (en) | Apparatus for refracting, concentrating and collecting solar radiation | |
KR100822926B1 (en) | Collector-emitter device with a polished perimetrical concave reflecting surface oriented in a oblique direction | |
JPH03140754A (en) | Condenser for solar ray | |
Sukhatme | Solar thermal power generation | |
JPS59100349A (en) | Solar heat collector | |
ES2726673T3 (en) | Solar concentrator with separate pivot connections |